Articles | Volume 13, issue 8
https://doi.org/10.5194/se-13-1327-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-1327-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Structural characterization and K–Ar illite dating of reactivated, complex and heterogeneous fault zones: lessons from the Zuccale Fault, Northern Apennines
Dipartimento di Scienze Biologiche, Geologiche ed Ambientali - BiGeA, Università di Bologna, Bologna, Italy
Giovanni Musumeci
Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italy
Francesco Mazzarini
Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italy
Lorenzo Tavazzani
Institute of Geochemistry and Petrology, ETH Zürich, 8092
Zürich, Switzerland
Manuel Curzi
Dipartimento di Scienze Biologiche, Geologiche ed Ambientali - BiGeA, Università di Bologna, Bologna, Italy
Espen Torgersen
Geological Survey of Norway, Trondheim, Norway
Roelant van der Lelij
Geological Survey of Norway, Trondheim, Norway
Luca Aldega
Dipartimento di Scienze della Terra, Sapienza Università di
Roma, Rome, Italy
Related authors
Selina Bonini, Riccardo Asti, Giulio Viola, Giulia Tartaglia, Stefano Rodani, Gianluca Benedetti, Massimo Comedini, and Gianluca Vignaroli
Nat. Hazards Earth Syst. Sci., 25, 2981–2998, https://doi.org/10.5194/nhess-25-2981-2025, https://doi.org/10.5194/nhess-25-2981-2025, 2025
Short summary
Short summary
Considering the structural complexity related to the internal architecture of active and capable faults, seismic hazard may be linked to different fault attributes depending on the fault domain crossed by a linear infrastructure. We propose a structural geology-based approach for the preliminary study of the area potentially affected by earthquake-induced surface ruptures during infrastructural design, based on the geometric relationships between the active fault and the infrastructure itself.
Riccardo Asti, Selina Bonini, Giulio Viola, and Gianluca Vignaroli
Solid Earth, 15, 1525–1551, https://doi.org/10.5194/se-15-1525-2024, https://doi.org/10.5194/se-15-1525-2024, 2024
Short summary
Short summary
This study addresses the tectonic evolution of the seismogenic Monti Martani Fault System (northern Apennines, Italy). By applying a field-based structural geology approach, we reconstruct the evolution of the stress field and we challenge the current interpretation of the fault system in terms of both geometry and state of activity. We stress that the peculiar behavior of this system during post-orogenic extension is still significantly influenced by the pre-orogenic structural template.
Matthew S. Hodge, Guri Venvik, Jochen Knies, Roelant van der Lelij, Jasmin Schönenberger, Øystein Nordgulen, Marco Brönner, Aziz Nasuti, and Giulio Viola
Solid Earth, 15, 589–615, https://doi.org/10.5194/se-15-589-2024, https://doi.org/10.5194/se-15-589-2024, 2024
Short summary
Short summary
Smøla island, in the mid-Norwegian margin, has complex fracture and fault patterns resulting from tectonic activity. This study uses a multiple-method approach to unravel Smøla's tectonic history. We found five different phases of deformation related to various fracture geometries and minerals dating back hundreds of millions of years. 3D models of these features visualise these structures in space. This approach may help us to understand offshore oil and gas reservoirs hosted in the basement.
Alberto Ceccato, Giulia Tartaglia, Marco Antonellini, and Giulio Viola
Solid Earth, 13, 1431–1453, https://doi.org/10.5194/se-13-1431-2022, https://doi.org/10.5194/se-13-1431-2022, 2022
Short summary
Short summary
The Earth's surface is commonly characterized by the occurrence of fractures, which can be mapped, and their can be geometry quantified on digital representations of the surface at different scales of observation. Here we present a series of analytical and statistical tools, which can aid the quantification of fracture spatial distribution at different scales. In doing so, we can improve our understanding of how fracture geometry and geology affect fluid flow within the fractured Earth crust.
Leonardo Del Sole, Marco Antonellini, Roger Soliva, Gregory Ballas, Fabrizio Balsamo, and Giulio Viola
Solid Earth, 11, 2169–2195, https://doi.org/10.5194/se-11-2169-2020, https://doi.org/10.5194/se-11-2169-2020, 2020
Short summary
Short summary
This study focuses on the impact of deformation bands on fluid flow and diagenesis in porous sandstones in two different case studies (northern Apennines, Italy; Provence, France) by combining a variety of multiscalar mapping techniques, detailed field and microstructural observations, and stable isotope analysis. We show that deformation bands buffer and compartmentalize fluid flow and foster and localize diagenesis, recorded by carbonate cement nodules spatially associated with the bands.
Selina Bonini, Riccardo Asti, Giulio Viola, Giulia Tartaglia, Stefano Rodani, Gianluca Benedetti, Massimo Comedini, and Gianluca Vignaroli
Nat. Hazards Earth Syst. Sci., 25, 2981–2998, https://doi.org/10.5194/nhess-25-2981-2025, https://doi.org/10.5194/nhess-25-2981-2025, 2025
Short summary
Short summary
Considering the structural complexity related to the internal architecture of active and capable faults, seismic hazard may be linked to different fault attributes depending on the fault domain crossed by a linear infrastructure. We propose a structural geology-based approach for the preliminary study of the area potentially affected by earthquake-induced surface ruptures during infrastructural design, based on the geometric relationships between the active fault and the infrastructure itself.
Riccardo Asti, Selina Bonini, Giulio Viola, and Gianluca Vignaroli
Solid Earth, 15, 1525–1551, https://doi.org/10.5194/se-15-1525-2024, https://doi.org/10.5194/se-15-1525-2024, 2024
Short summary
Short summary
This study addresses the tectonic evolution of the seismogenic Monti Martani Fault System (northern Apennines, Italy). By applying a field-based structural geology approach, we reconstruct the evolution of the stress field and we challenge the current interpretation of the fault system in terms of both geometry and state of activity. We stress that the peculiar behavior of this system during post-orogenic extension is still significantly influenced by the pre-orogenic structural template.
Marcel Guillong, Elias Samankassou, Inigo A. Müller, Dawid Szymanowski, Nathan Looser, Lorenzo Tavazzani, Óscar Merino-Tomé, Juan R. Bahamonde, Yannick Buret, and Maria Ovtcharova
Geochronology, 6, 465–474, https://doi.org/10.5194/gchron-6-465-2024, https://doi.org/10.5194/gchron-6-465-2024, 2024
Short summary
Short summary
RA138 is a new reference material for U–Pb dating of carbonate samples via laser ablation inductively coupled plasma mass spectrometry. RA138 exhibits variable U–Pb ratios and consistent U content, resulting in a precise isochron with low uncertainty. Isotope dilution thermal ionization mass spectrometry analyses fix a reference age of 321.99 ± 0.65 Ma. This research advances our ability to date carbonate samples accurately, providing insights into geological processes and historical timelines.
Matthew S. Hodge, Guri Venvik, Jochen Knies, Roelant van der Lelij, Jasmin Schönenberger, Øystein Nordgulen, Marco Brönner, Aziz Nasuti, and Giulio Viola
Solid Earth, 15, 589–615, https://doi.org/10.5194/se-15-589-2024, https://doi.org/10.5194/se-15-589-2024, 2024
Short summary
Short summary
Smøla island, in the mid-Norwegian margin, has complex fracture and fault patterns resulting from tectonic activity. This study uses a multiple-method approach to unravel Smøla's tectonic history. We found five different phases of deformation related to various fracture geometries and minerals dating back hundreds of millions of years. 3D models of these features visualise these structures in space. This approach may help us to understand offshore oil and gas reservoirs hosted in the basement.
Alberto Ceccato, Giulia Tartaglia, Marco Antonellini, and Giulio Viola
Solid Earth, 13, 1431–1453, https://doi.org/10.5194/se-13-1431-2022, https://doi.org/10.5194/se-13-1431-2022, 2022
Short summary
Short summary
The Earth's surface is commonly characterized by the occurrence of fractures, which can be mapped, and their can be geometry quantified on digital representations of the surface at different scales of observation. Here we present a series of analytical and statistical tools, which can aid the quantification of fracture spatial distribution at different scales. In doing so, we can improve our understanding of how fracture geometry and geology affect fluid flow within the fractured Earth crust.
Leonardo Del Sole, Marco Antonellini, Roger Soliva, Gregory Ballas, Fabrizio Balsamo, and Giulio Viola
Solid Earth, 11, 2169–2195, https://doi.org/10.5194/se-11-2169-2020, https://doi.org/10.5194/se-11-2169-2020, 2020
Short summary
Short summary
This study focuses on the impact of deformation bands on fluid flow and diagenesis in porous sandstones in two different case studies (northern Apennines, Italy; Provence, France) by combining a variety of multiscalar mapping techniques, detailed field and microstructural observations, and stable isotope analysis. We show that deformation bands buffer and compartmentalize fluid flow and foster and localize diagenesis, recorded by carbonate cement nodules spatially associated with the bands.
Cited articles
Aldega, L., Viola, G., Casas-Sainz, A., Marcén, M., Román-Berdiel,
T., and Lelij, R.: Unravelling multiple thermo-tectonic events accommodated
by crustal-scale faults in northern Iberia, Spain: Insights from K-Ar dating
of clay gouges, Tectonics, 38, 3629–3651, https://doi.org/10.1029/2019tc005585, 2019.
Barberi, F., Innocenti, F., and Ricci, C. A.: Il complesso scistoso di Capo
Calamita (Isola d'Elba), Atti Della
Società Toscana Di Scienze Naturali Residente a Pisa, Memorie Ser. A,
72, 579–617, 1967.
Barboni, M., Annen, C., and Schoene, B.: Evaluating the construction and
evolution of upper crustal magma reservoirs with coupled U Pb zircon
geochronology and thermal modeling: A case study from the Mt. Capanne pluton
(Elba, Italy), Earth Planet. Sc. Lett., 432, 436–448,
https://doi.org/10.1016/j.epsl.2015.09.043, 2015.
Bedford, J. D., Faulkner, D. R., and Lapusta, N.: Fault rock heterogeneity
can produce fault weakness and reduce fault stability, Nat. Commun., 13, 326,
https://doi.org/10.1038/s41467-022-27998-2, 2022.
Bianco, C., Brogi, A., Caggianelli, A., Giorgetti, G., Liotta, D., and
Meccheri, M.: HP-LT metamorphism in Elba Island: Implications for the
geodynamic evolution of the inner Northern Apennines (Italy), J.
Geodyn., 91, 13–25, https://doi.org/10.1016/j.jog.2015.08.001, 2015.
Boccaletti, M. and Sani, F.: Cover thrust reactivations related to internal
basement involvement during Neogene-Quaternary evolution of the northern
Apennines, Tectonics, 17, 112–130, https://doi.org/10.1029/97tc02067, 1998.
Boccaletti, M., Elter, P., and Guazzone, R.: Plate tectonics models for the
development of Western Alps and northern Apennines, Nature, 234, 108–111,
1971.
Bonini, M., Sani, F., Stucchi, E. M., Moratti, G., Benvenuti, M., Menanno,
G., and Tanini, C.: Late Miocene shortening of the Northern Apennines
back-arc, J. Geodyn., 74, 1–31, https://doi.org/10.1016/j.jog.2013.11.002, 2014.
Bortolotti, V., Fazzuoli, M., Pandeli, E., Principi, G., Babbini, A., and
Corti, S.: Geology of Central and Eastern Elba Island, Italy, Ofioliti, 26,
97–150, 2001.
Braathen, A., Tveranger, J., Fossen, H., Skar, T., Cardozo, N., Semshaug, S.
E., Bastesen, E., and Sverdrup, E.: Fault facies and its application to
sandstone reservoirs, AAPG Bull., 93, 891–917, https://doi.org/10.1306/03230908116, 2009.
Bruhn, R. L., Yonkee, W. A., and Parry, W. T.: Structural and Fluid-Chemical
Properties of Seismogenic Normal Faults, Tectonophysics, 175, 139–157,
https://doi.org/10.1016/0040-1951(90)90135-U, 1990.
Brunet, C., Monié, P., Jolivet, L., and Cadet, J.-P.: Migration of
compression and extension in the Tyrrhenian Sea, insights from
40Ar 39Ar ages on micas along a transect from Corsica to Tuscany,
Tectonophysics, 321, 127–155, 2000.
Caggianelli, A., Zucchi, M., Bianco, C., Brogi, A., and Liotta, D.:
Estimating P-T metamorphic conditions of the roof of a hidden granitic
pluton: an example from the Mt. Calamita promontory (Elba Island, Italy),
Ital. J. Geosci., 137, 238–253, https://doi.org/10.3301/IJG.2018.11, 2018.
Caine, J. S., Evans, J. P., and Forster, C. B.: Fault zone architecture and
permeability structure, Geology, 24, 1025–1028, 1996.
Carboni, F., Viola, G., Aldega, L., Van Der Lelij, R., Brozzetti, F., and
Barchi, M. R.: K-Ar fault gouge dating of Neogene thrusting: the case of the
siliciclastic deposits of the Trasimeno Tectonic Wedge (Northern Apennines,
Italy), Ital. J. Geosci., 139, 1–13, https://doi.org/10.3301/ijg.2020.06,
2020.
Carmignani, L., Decandia, F. A., Disperati, L., Fantozzi, P. L., Lazzarotto,
A., Liotta, D., and Oggiano, G.: Relationships between the Tertiary
structural evolution of the Sardinia-Corsica-Pronencal Domain and the
Northern Apennines, Terra Nova, 7, 128–137, 1995.
Carmignani, L., Decandia, F. A., Disperati, L., Fantozzi, P. L., Kligfield,
R., Lazzarotto, A., Liotta, D., and Meccheri, M.: Inner northern Apennine,
in: Anatomy of an orogen: The Apennines and adjacent Mediderranean basins,
edited by: Vai, G. B. and Martini, I. P., 197–214, Springer-Science + Business Media, B.V., ISBN 978-90-481-4020-6,
https://doi.org/10.1007/978-94-015-9829-3, 2001.
Collettini, C.: The mechanical paradox of low-angle normal faults: Current
understanding and open questions, Tectonophysics, 510, 253–268,
https://doi.org/10.1016/j.tecto.2011.07.015, 2011.
Collettini, C. and Holdsworth, R. E.: Fault zone weakening and character of
slip along low-angle normal faults: insights from the Zuccale fault, Elba,
Italy, J. Geol. Soc., 161, 1039–1051,
https://doi.org/10.1144/0016-764903-179, 2004.
Collettini, C., Viti, C., Smith, S. A. F., and Holdsworth, R. E.:
Development of interconnected talc networks and weakening of continental
low-angle normal faults, Geology, 37, 567–570, https://doi.org/10.1130/g25645a.1, 2009.
Collettini, C., Niemeijer, A., Viti, C., Smith, S. A. F., and Marone, C.:
Fault structure, frictional properties and mixed-mode fault slip behavior,
Earth Planet. Sc. Lett., 311, 316–327,
https://doi.org/10.1016/j.epsl.2011.09.020, 2011.
Curzi, M., Aldega, L., Bernasconi, S. M., Berra, F., Billi, A., Boschi, C.,
Franchini, S., Van der Lelij, R., Viola, G., and Carminati, E.: Architecture
and evolution of an extensionally-inverted thrust (Mt. Tancia Thrust,
Central Apennines): Geological, structural, geochemical, and K–Ar
geochronological constraints, J. Struct. Geol., 104059,
https://doi.org/10.1016/j.jsg.2020.104059, 2020a.
Curzi, M., Billi, A., Carminati, E., Rossetti, F., Albert, R., Aldega, L.,
Cardello, G. L., Conti, A., Gerdes, A., Smeraglia, L., Van der Lelij, R.,
Vignaroli, G., and Viola, G.: Disproving the Presence of Paleozoic-Triassic
Metamorphic Rocks on the Island of Zannone (Central Italy): Implications for
the Early Stages of the Tyrrhenian-Apennines Tectonic Evolution, Tectonics,
39, e2020TC006296, https://doi.org/10.1029/2020tc006296, 2020b.
Dallan-Nardi, L.: Segnalazione di Lepidocydine nella parte basale dello
“pseudomacigno” delle Alpi Apuane, B. Soc. Geol.
Ital., 95, 459–477, 1977.
Daniel, J. M. and Jolivet, L.: Detachment faults and pluton emplacement;
Elba Island (Tyrrhenian Sea), B. Soc. Géol.
France, 166, 341–354, https://doi.org/10.2113/gssgfbull.166.4.341, 1995.
Decandia, F. A., Lazzarotto, A., and Liotta, D.: La “serie ridotta” nel
quadro dell'evoluzione geologica della Toscana meridionale, Memorie
Soc. Geol. Ital., 49, 181–191, 1993.
Dini, A., Innocenti, F., Rocchi, S., Tonarini, S., and Westerman, D. S.: The
magmatic evolution of the late Miocene laccolith–pluton–dyke granitic
complex of Elba Island, Italy, Geol. Mag., 139, 257–279, 2002.
Duranti, S., Palmeri, R., Pertusati, P. C., and Ricci, C. A.: Geological
evolution and metamorphic petrology of the basal sequences of eastern Elba
(Complex II), Acta Vulcanologica, 2, Marinelli Volume, 213–229, 1992.
Eberl, D. D., Środoń, J., Lee, M., Nadeau, P. H., and Northrup, H.
R.: Sericite from the Silverton caldera, Colorado: Correlation among
structure, composition, origin, and particle thickness, Am. Mineral., 72,
914–934, 1987.
Faccenna, C., Becker, T. W., Miller, M. S., Serpelloni, E., and Willett, S.
D.: Isostasy, dynamic topography, and the elevation of the Apennines of
Italy, Earth Planet. Sc. Lett., 407, 163–174,
https://doi.org/10.1016/j.epsl.2014.09.027, 2014.
Fagereng, Å., Remitti, F., and Sibson, R. H.: Incrementally developed
slickenfibers – Geological record of repeating low stress-drop seismic
events?, Tectonophysics, 510, 381–386, https://doi.org/10.1016/j.tecto.2011.08.015, 2011.
Faulkner, D. R., Lewis, A. C., and Rutter, E. H.: On the internal structure
and mechanics of large strike-slip fault zones: field observations of the
Carboneras fault in southeastern Spain, Tectonophysics, 367, 235–251,
https://doi.org/10.1016/s0040-1951(03)00134-3, 2003.
Gagnevin, D., Daly, J. S., Horstwood, M. S. A., and Whitehouse, M. J.:
In-situ zircon U–Pb, oxygen and hafnium isotopic evidence for magma mixing
and mantle metasomatism in the Tuscan Magmatic Province, Italy, Earth
Planet. Sc. Lett., 305, 45–56, https://doi.org/10.1016/j.epsl.2011.02.039, 2011.
Gundlach-Graham, A., Garofalo, P. S., Schwarz, G., Redi, D., and
Günther, D.: High-resolution, Quantitative Element Imaging of an Upper
Crust, Low-angle Cataclasite (Zuccale Fault, Northern Apennines) by Laser
Ablation ICP Time-of-Flight Mass Spectrometry, Geostand.
Geoanal. Res., 42, 559–574, https://doi.org/10.1111/ggr.12233, 2018.
Hałas, S. and Wójtowicz, A.: Propagation of error formulas for K/Ar
dating method, Geochronometria, 41, 202–206, 2014.
Hunziker, J. C., Frey, M., Clauer, N., Dallmeyer, R. D., Friedrichsen, H.,
Flehmig, W., Hochstrasser, K., Roggwiler, P., and Schwander, H.: The
evolution of illite to muscovite: mineralogical and isotopic data from the
Glarus Alps, Switzerland, Contrib. Mineral. Petr., 92,
157–180, https://doi.org/10.1007/bf00375291, 1986.
Keller, J. V. A. and Coward, M. P.: The structure and evolution of the
northern Tyrrhenian Sea, Geol. Mag., 103, 1–16, 1996.
Keller, J. V. A. and Pialli, G.: Tectonics of the Island of Elba: A
reappraisal, B. Soc. Geol. Ital., 109, 413–425,
1990.
Kligfield, R., Hunziker, J. C., Dallmeyer, R. D., and Schamel, S.: Dating
deformation phases using K-Ar and 40A 39Ar techniques: results from the
Northern Apennines, J. Struct. Geol., 8, 781–786, 1986.
Lee, J. Y., Marti, K., Severinghaus, J. P., Kawamura, K., Yoo, H. S., Lee,
J. B., and Kim, J. S.: A redetermination of the isotopic abundances of
atmospheric Ar, Geochim. Cosmochim. Ac., 70, 4507–4512, 2006.
Liotta, D., Brogi, A., Meccheri, M., Dini, A., BIanco, C., and Ruggieri, G.: Coexistence of low-angle normal and high-angle strike- to oblique-slip
faults during Late Miocene mineralization in eastern Elba Island (Italy),
Tectonophysics, 660, 17–34,
https://doi.org/10.1016/j.tecto.2015.06.025, 2015.
Lippolt, H. J., Wernicke, R. S., and Baehr, R.: Paragenetic specularite and
adularia (Elba, Italy): Concordand (U + Th)-He and K-Ar ages, Earth
Planet. Sc. Lett., 132, 43–51, 1995.
Mancktelow, N., Zwingmann, H., Campani, M., Fugenschuh, B., and Mulch, A.:
Timing and conditions of brittle faulting on the Silltal-Brenner Fault Zone,
Eastern Alps (Austria), Swiss J. Geosci., 108, 305–326,
https://doi.org/10.1007/s00015-015-0179-y, 2015.
Massa, G., Musumeci, G., Mazzarini, F., and Pieruccioni, D.: Coexistence of
contractional and extensional tectonics during the northern Apennines
orogeny: the late Miocene out-of-sequence thrust in the Elba Island nappe
stack, Geol. J., 52, 353–368, https://doi.org/10.1002/gj.2761, 2017.
Mazzarini, F., Musumeci, G., and Cruden, A. R.: Vein development during folding in the upper brittle crust: The case of
tourmaline-rich veins of eastern Elba Island, northern Tyrrhenian Sea, Italy,
J. Struct.Geol., 33, 1509–1522,
https://doi.org/10.1016/j.jsg.2011.07.001, 2011.
McDougall, I. and Wellman, P.: Calibration of GA1550 biotite standard for
K Ar and 40Ar 39Ar dating, Chem. Geol., 280, 19–25, 2011.
Montanari, L. and Rossi, M.: Evoluzione delle Uniti stratigrafico –
strutturali del Nord Appennino: 1 – L'Unità di Canetolo, B.
Soc. Geol. Ital., 101, 275–289, 1982.
Moore, D. M. and Reynolds, R. C. J.: X-ray diffraction and the
identification and analysis of clay minerals, Oxford University Press,
Oxford, 378 pp., ISBN 9780195087130, 1997.
Musumeci, G. and Vaselli, L.: Neogene deformation and granite emplacement in
the metamorphic units of northern Apennines (Italy): Insights from mylonitic
marbles in the Porto Azzurro pluton contact aureole (Elba Island),
Geosphere, 8, 470–490, https://doi.org/10.1130/Ges00665.1, 2012.
Musumeci, G., Mazzarini, F., and Cruden, A. R.: The Zuccale Fault, Elba
Island, Italy: A new perspective from fault architecture, Tectonics, 34,
1195–1218, https://doi.org/10.1002/2014tc003809, 2015.
Papeschi, S. and Musumeci, G.: Fluid assisted strain localization in quartz
at the brittle/ductile transition, Geochem. Geophy. Geosy., 20, 3044–3064,
https://doi.org/10.1029/2019gc008270, 2019.
Papeschi, S., Musumeci, G., and Mazzarini, F.: Heterogeneous brittle-ductile
deformation at shallow crustal levels under high thermal conditions: The
case of a synkinematic contact aureole in the inner northern Apennines,
southeastern Elba Island, Italy, Tectonophysics, 717, 547–564,
https://doi.org/10.1016/j.tecto.2017.08.020, 2017.
Papeschi, S., Musumeci, G., Massonne, H. J., Bartoli, O., and Cesare, B.:
Partial melting and strain localization in metapelites at very low-pressure
conditions: The northern Apennines magmatic arc on the Island of Elba,
Italy, Lithos, 350/351, 105230, https://doi.org/10.1016/j.lithos.2019.105230, 2019.
Papeschi, S., Musumeci, G., Massonne, H. J., Mazzarini, F., Ryan, E. J., and
Viola, G.: High-P (P = 1.5–1.8 GPa) blueschist from Elba: Implications for
underthrusting and exhumation of continental units in the Northern
Apennines, J. Metamor. Geol., 38, 495–525, https://doi.org/10.1111/jmg.12530,
2020.
Papeschi, S., Ryan, E., Musumeci, G., Mazzarini, F., Garofalo, P. S., and
Viola, G.: Geology of the Northern Apennines nappe stack on eastern Elba
(Italy): new insights on the Neogene orogenic evolution of the Northern
Tyrrhenian Sea, J. Maps, 17, 519–532, https://doi.org/10.1080/17445647.2021.1972854,
2021.
Perrin, M.: L'Ile d'Elbe et la limite Alpes-Apennin: données sur la
structure géologique et l'evolution tectogénétique de l'Elbe
alpine et de l'Elbe apennine, B. Soc. Geol.
Ital., 94, 1929–1955, 1975.
Pertusati, P. C., G., R., Ricci, C. A., Duranti, S., and Palmeri, R.:
Evoluzione post-collisionale dell'Elba centtro-orientale, Mem. Soc. Geol.
It, 49, 297–312, 1993.
Pevear, D. R.: Illite and hydrocarbon exploration, P.
Natl. Acad. Sci. USA, 96, 3440–3446, 1999.
Renne, P. R., Deino, A. L., Hames, W. E., Heizler, M. T., Hemming, S. R.,
Hodges, K. V., Koppers, A. A. P., Mark, D. F., Morgan, L. E., and Phillips,
D.: Data reporting norms for 40Ar/39Ar geochronology, Quat.
Geochronol., 4, 346–352, https://doi.org/10.1016/j.quageo.2009.06.005, 2009.
Ryan, E., Papeschi, S., Viola, G., Musumeci, G., Mazzarini, F., Torgersen,
E., Sørensen, B. E., and Ganerød, M.: Syn-orogenic exhumation of
high-P units by upward extrusion in an accretionary wedge: Insights from the
Eastern Elba nappe stack (Northern Apennines, Italy), Tectonics, 40, e2020TC006348,
https://doi.org/10.1029/2020tc006348, 2021.
Scheiber, T., Viola, G., van der Lelij, R., Margreth, A., and
Schönenberger, J.: Microstructurally-constrained versus bulk fault gouge
K-Ar dating, J. Struct. Geol., 127, 103868, https://doi.org/10.1016/j.jsg.2019.103868,
2019.
Schumacher, E.: Herstellung von 99, 9997 % 38Ar für die 40K 40Ar
Geochronologie, Geochronologia Chimia, 24, 441–442, 1975.
Scuderi, M. M., Tinti, E., Cocco, M., and Collettini, C.: The Role of Shear
Fabric in Controlling Breakdown Processes During Laboratory Slow-Slip
Events, J. Geophys. Res.-Sol. Ear., 125, e2020JB020405,
https://doi.org/10.1029/2020jb020405, 2020.
Sibson, R. H.: Fault rocks and fault mechanisms, J. Geol.
Soc., 133, 191–213, https://doi.org/10.1144/gsjgs.133.3.0191, 1977.
Smith, S. A. F. and Faulkner, D. R.: Laboratory measurements of the
frictional properties of the Zuccale low-angle normal fault, Elba Island,
Italy, J. Geophys. Res., 115, B02407, https://doi.org/10.1029/2008jb006274, 2010.
Smith, S. A. F., Holdsworth, R. E., and Collettini, C.: Interactions between
low-angle normal faults and plutonism in the upper crust: Insights from the
Island of Elba, Italy, Geol. Soc. Am. Bull., 123, 329–346,
https://doi.org/10.1130/b30200.1, 2011a.
Smith, S. A. F., Holdsworth, R. E., Collettini, C., and Pearce, M. A.: The
microstructural character and mechanical significance of fault rocks
associated with a continental low-angle normal fault: The Zuccale Fault,
Elba Island, Italy, in: Geological Society of London Special Publication:
Geology of the Earthquake Source: A Volume in Honour of Rick Sibson, edited
by: Fagereng, Å., Toy, V. G., and Rawland, J. V., Geol. Soc.
Lond., 359, 97–113, https://doi.org/10.1144/SP359.6, 2011b.
Spiess, R., Langone, A., Caggianelli, A., Stuart, F. M., Zucchi, M., Bianco, C., Brogi, A., and Liotta, D.:
Unveiling ductile deformation during fast exhumation of a granitic pluton in a transfer zone,
J. Struct. Geol., 147, 104326, https://doi.org/10.1016/j.jsg.2021.104326, 2021.
Steiger, R. and Jäger, E.: Subcommission on geochronology: convention on
the use of decay constants in geo-and cosmochronology, Earth Planet.
Sc. Lett., 36, 359–362, 1977.
Stober, I. and Bucher, K.: Hydraulic conductivity of fractured upper crust:
insights from hydraulic tests in boreholes and fluid-rock interaction in
crystalline basement rocks, Geofluids, 15, 161–178, https://doi.org/10.1111/gfl.12104, 2015.
Tartaglia, G., Viola, G., van der Lelij, R., Scheiber, T., Ceccato, A., and
Schönenberger, J.: “Brittle structural facies” analysis: A diagnostic
method to unravel and date multiple slip events of long-lived faults, Earth
Planet. Sc. Lett., 545, 116420, https://doi.org/10.1016/j.epsl.2020.116420, 2020.
Tesei, T., Collettini, C., Barchi, M. R., Carpenter, B. M., and Di Stefano,
G.: Heterogeneous strength and fault zone complexity of carbonate-bearing
thrusts with possible implications for seismicity, Earth Planet.
Sc. Lett., 408, 307–318, https://doi.org/10.1016/j.epsl.2014.10.021, 2014.
Torgersen, E. and Viola, G.: Structural and temporal evolution of a
reactivated brittle-ductile fault – Part I: Fault architecture, strain
localization mechanisms and deformation history, Earth Planet. Sc.
Lett., 407, 205–220, https://doi.org/10.1016/j.epsl.2014.09.019, 2014.
Torgersen, E., Viola, G., Zwingmann, H., and Harris, C.: Structural and
temporal evolution of a reactivated brittle-ductile fault – Part II: Timing
of fault initiation and reactivation by K-Ar dating of synkinematic
illite/muscovite, Earth Planet. Sc. Lett., 410, 212–224,
https://doi.org/10.1016/j.epsl.2014.11.013, 2015a.
Torgersen, E., Viola, G., Zwingmann, H., and Henderson, I. H. C.: Inclined
K-Ar illite age spectra in brittle fault gouges: effects of fault
reactivation and wall-rock contamination, Terra Nova, 27, 106–113,
https://doi.org/10.1111/ter.12136, 2015b.
Trevisan, L.: L'Elba orientale e la sua tettonica di scivolamento per
gravità, Memorie Istituto Geologia Università Padova, 16, 5–39,
1950.
Vai, G. B. and Martini, I. P. (Eds.): Anatomy of an Orogen: The Apennines
and Adjacent Mediterranean Basins, 637 pp., Springer-Science + Business Media, B.V., ISBN 978-90-481-4020-6,
https://doi.org/10.1007/978-94-015-9829-3,
2001.
Vignaroli, G., Viola, G., Diamanti, R., Zuccari, C., Garofalo, P. S.,
Bonini, S., and Selli, L.: Multistage strain localisation and fluid-assisted
cataclasis in carbonate rocks during the seismic cycle: Insights from the
Belluno Thrust (eastern Southern Alps, Italy), J. Struct.
Geol., 141, 104216, https://doi.org/10.1016/j.jsg.2020.104216, 2020.
Viola, G., Zwingmann, H., Mattila, J., and Kapyaho, A.: K-Ar illite age
constraints on the Proterozoic formation and reactivation history of a
brittle fault in Fennoscandia, Terra Nova, 25, 236–244, https://doi.org/10.1111/ter.12031,
2013.
Viola, G., Scheiber, T., Fredin, O., Zwingmann, H., Margreth, A., and Knies,
J. M.: Deconvoluting complex structural histories archived in brittle fault
zones, Nat. Commun., 7, 13448, https://doi.org/10.1038/ncomms13448,
2016.
Viola, G., Torgersen, E., Mazzarini, F., Musumeci, G., van der Lelij, R.,
Schönenberger, J., and Garofalo, P. S.: New Constraints on the Evolution
of the Inner Northern Apennines by K-Ar Dating of Late Miocene-Early
Pliocene Compression on the Island of Elba, Italy, Tectonics, 37, 3229–3243,
https://doi.org/10.1029/2018tc005182, 2018.
Volpe, G., Pozzi, G., Carminati, E., Barchi, M. R., Scuderi, M. M., Tinti,
E., Aldega, L., Marone, C., and Collettini, C.: Frictional controls on the
seismogenic zone: Insights from the Apenninic basement, Central Italy, Earth
Planet. Sci. Lett., 583, 117444, https://doi.org/10.1016/j.epsl.2022.117444,
2022.
Wang, Y., Zwingmann, H., Zhou, L. Y., Lo, C. H., Viola, G., and Hao, J. H.:
Direct dating of folding events by Ar40 Ar39 analysis of
synkinematic muscovite from flexural-slip planes, J. Struct.
Geol., 83, 46–59, https://doi.org/10.1016/j.jsg.2015.12.003, 2016.
Westerman, D. S., Dini, A., Innocenti, F., and Rocchi, S.: Rise and fall of
a nested Christmas-tree laccolith complex, Elba Island, Italy, in: Physical
Geology of High-Level Magmatic Systems, edited by: Breitkreuz, C. and
Petford, N., Geol. Soc. Lond., 234, 195–213, 2004.
Wibberley, C. A. J. and Shimamoto, T.: Internal structure and permeability
of major strike-slip fault zones: the Median Tectonic Line in Mie
Prefecture, Southwest Japan, J. Struct. Geol., 25, 59–78,
https://doi.org/10.1016/S0191-8141(02)00014-7, 2003.
Wise, D. U., Dunn, D. E., Engelder, J. T., Geiser, P. A., Hatcher, R.D.,
Kish, S. A., Odom, A. L., and Schamel, S.: Fault-related rocks: Suggestions
for terminology, Geology, 12, 391–394,
https://doi.org/10.1130/0091-7613(1984)12<391:FRSFT>2.0.CO;2, 1984.
Short summary
A structural-geochronological approach helps to unravel the Zuccale Fault's architecture. By mapping its internal structure and dating some of its fault rocks, we constrained a deformation history lasting 20 Myr starting at ca. 22 Ma. Such long activity is recorded by now tightly juxtaposed brittle structural facies, i.e. different types of fault rocks. Our results also have implications on the regional evolution of the northern Apennines, of which the Zuccale Fault is an important structure.
A structural-geochronological approach helps to unravel the Zuccale Fault's architecture. By...