Articles | Volume 13, issue 8
https://doi.org/10.5194/se-13-1327-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-1327-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Structural characterization and K–Ar illite dating of reactivated, complex and heterogeneous fault zones: lessons from the Zuccale Fault, Northern Apennines
Dipartimento di Scienze Biologiche, Geologiche ed Ambientali - BiGeA, Università di Bologna, Bologna, Italy
Giovanni Musumeci
Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italy
Francesco Mazzarini
Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italy
Lorenzo Tavazzani
Institute of Geochemistry and Petrology, ETH Zürich, 8092
Zürich, Switzerland
Manuel Curzi
Dipartimento di Scienze Biologiche, Geologiche ed Ambientali - BiGeA, Università di Bologna, Bologna, Italy
Espen Torgersen
Geological Survey of Norway, Trondheim, Norway
Roelant van der Lelij
Geological Survey of Norway, Trondheim, Norway
Luca Aldega
Dipartimento di Scienze della Terra, Sapienza Università di
Roma, Rome, Italy
Related authors
Riccardo Asti, Selina Bonini, Giulio Viola, and Gianluca Vignaroli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2319, https://doi.org/10.5194/egusphere-2024-2319, 2024
Short summary
Short summary
This study addresses the tectonic evolution of the seismogenic Monti Martani Fault System (Northern Apennines, Italy). By applying a field-based structural geology approach, we reconstruct the evolution of the stress field and we challenge the current interpretation of the fault system both in terms of geometry and state of activity. We stress that the peculiar behavior of this system during post-orogenic extension is still significantly influenced by the pre-orogenic structural template.
Matthew S. Hodge, Guri Venvik, Jochen Knies, Roelant van der Lelij, Jasmin Schönenberger, Øystein Nordgulen, Marco Brönner, Aziz Nasuti, and Giulio Viola
Solid Earth, 15, 589–615, https://doi.org/10.5194/se-15-589-2024, https://doi.org/10.5194/se-15-589-2024, 2024
Short summary
Short summary
Smøla island, in the mid-Norwegian margin, has complex fracture and fault patterns resulting from tectonic activity. This study uses a multiple-method approach to unravel Smøla's tectonic history. We found five different phases of deformation related to various fracture geometries and minerals dating back hundreds of millions of years. 3D models of these features visualise these structures in space. This approach may help us to understand offshore oil and gas reservoirs hosted in the basement.
Alberto Ceccato, Giulia Tartaglia, Marco Antonellini, and Giulio Viola
Solid Earth, 13, 1431–1453, https://doi.org/10.5194/se-13-1431-2022, https://doi.org/10.5194/se-13-1431-2022, 2022
Short summary
Short summary
The Earth's surface is commonly characterized by the occurrence of fractures, which can be mapped, and their can be geometry quantified on digital representations of the surface at different scales of observation. Here we present a series of analytical and statistical tools, which can aid the quantification of fracture spatial distribution at different scales. In doing so, we can improve our understanding of how fracture geometry and geology affect fluid flow within the fractured Earth crust.
Leonardo Del Sole, Marco Antonellini, Roger Soliva, Gregory Ballas, Fabrizio Balsamo, and Giulio Viola
Solid Earth, 11, 2169–2195, https://doi.org/10.5194/se-11-2169-2020, https://doi.org/10.5194/se-11-2169-2020, 2020
Short summary
Short summary
This study focuses on the impact of deformation bands on fluid flow and diagenesis in porous sandstones in two different case studies (northern Apennines, Italy; Provence, France) by combining a variety of multiscalar mapping techniques, detailed field and microstructural observations, and stable isotope analysis. We show that deformation bands buffer and compartmentalize fluid flow and foster and localize diagenesis, recorded by carbonate cement nodules spatially associated with the bands.
Francesca Prando, Luca Menegon, Mark Anderson, Barbara Marchesini, Jussi Mattila, and Giulio Viola
Solid Earth, 11, 489–511, https://doi.org/10.5194/se-11-489-2020, https://doi.org/10.5194/se-11-489-2020, 2020
Barbara Marchesini, Paolo Stefano Garofalo, Luca Menegon, Jussi Mattila, and Giulio Viola
Solid Earth, 10, 809–838, https://doi.org/10.5194/se-10-809-2019, https://doi.org/10.5194/se-10-809-2019, 2019
Short summary
Short summary
We documented the role of fluids in the initial embrittlement of the Svecofennian basement and subsequent strain localization and fault evolution at the brittle–ductile transition zone. We studied the fault rocks of a deeply exhumed fault system characterized by mixed brittle–ductile deformation. Results from fluid inclusions, mineral chemistry, and geothermometry of synkinematic minerals document the ingress of distinct fluid batches and fluid pressure oscillations.
Mirko Carlini, Giulio Viola, Jussi Mattila, and Luca Castellucci
Solid Earth, 10, 343–356, https://doi.org/10.5194/se-10-343-2019, https://doi.org/10.5194/se-10-343-2019, 2019
Short summary
Short summary
Physical properties of layered sedimentary rocks affect nucleation and propagation of discontinuities therein. Fractures developing through sedimentary sequences characterized by the alternation of strong and weak layers are strongly deviated along their track at layers’ boundaries, and depending on the layer they cross-cut, they show very thick (strong layers) or very thin (weak layers) infills of precipitated minerals, potentially representing pathways for ore deposits and oil/water resources.
Marcel Guillong, Elias Samankassou, Inigo A. Müller, Dawid Szymanowski, Nathan Looser, Lorenzo Tavazzani, Óscar Merino-Tomé, Juan R. Bahamonde, Yannick Buret, and Maria Ovtcharova
Geochronology, 6, 465–474, https://doi.org/10.5194/gchron-6-465-2024, https://doi.org/10.5194/gchron-6-465-2024, 2024
Short summary
Short summary
RA138 is a new reference material for U–Pb dating of carbonate samples via laser ablation inductively coupled plasma mass spectrometry. RA138 exhibits variable U–Pb ratios and consistent U content, resulting in a precise isochron with low uncertainty. Isotope dilution thermal ionization mass spectrometry analyses fix a reference age of 321.99 ± 0.65 Ma. This research advances our ability to date carbonate samples accurately, providing insights into geological processes and historical timelines.
Riccardo Asti, Selina Bonini, Giulio Viola, and Gianluca Vignaroli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2319, https://doi.org/10.5194/egusphere-2024-2319, 2024
Short summary
Short summary
This study addresses the tectonic evolution of the seismogenic Monti Martani Fault System (Northern Apennines, Italy). By applying a field-based structural geology approach, we reconstruct the evolution of the stress field and we challenge the current interpretation of the fault system both in terms of geometry and state of activity. We stress that the peculiar behavior of this system during post-orogenic extension is still significantly influenced by the pre-orogenic structural template.
Matthew S. Hodge, Guri Venvik, Jochen Knies, Roelant van der Lelij, Jasmin Schönenberger, Øystein Nordgulen, Marco Brönner, Aziz Nasuti, and Giulio Viola
Solid Earth, 15, 589–615, https://doi.org/10.5194/se-15-589-2024, https://doi.org/10.5194/se-15-589-2024, 2024
Short summary
Short summary
Smøla island, in the mid-Norwegian margin, has complex fracture and fault patterns resulting from tectonic activity. This study uses a multiple-method approach to unravel Smøla's tectonic history. We found five different phases of deformation related to various fracture geometries and minerals dating back hundreds of millions of years. 3D models of these features visualise these structures in space. This approach may help us to understand offshore oil and gas reservoirs hosted in the basement.
Alberto Ceccato, Giulia Tartaglia, Marco Antonellini, and Giulio Viola
Solid Earth, 13, 1431–1453, https://doi.org/10.5194/se-13-1431-2022, https://doi.org/10.5194/se-13-1431-2022, 2022
Short summary
Short summary
The Earth's surface is commonly characterized by the occurrence of fractures, which can be mapped, and their can be geometry quantified on digital representations of the surface at different scales of observation. Here we present a series of analytical and statistical tools, which can aid the quantification of fracture spatial distribution at different scales. In doing so, we can improve our understanding of how fracture geometry and geology affect fluid flow within the fractured Earth crust.
Leonardo Del Sole, Marco Antonellini, Roger Soliva, Gregory Ballas, Fabrizio Balsamo, and Giulio Viola
Solid Earth, 11, 2169–2195, https://doi.org/10.5194/se-11-2169-2020, https://doi.org/10.5194/se-11-2169-2020, 2020
Short summary
Short summary
This study focuses on the impact of deformation bands on fluid flow and diagenesis in porous sandstones in two different case studies (northern Apennines, Italy; Provence, France) by combining a variety of multiscalar mapping techniques, detailed field and microstructural observations, and stable isotope analysis. We show that deformation bands buffer and compartmentalize fluid flow and foster and localize diagenesis, recorded by carbonate cement nodules spatially associated with the bands.
Francesca Prando, Luca Menegon, Mark Anderson, Barbara Marchesini, Jussi Mattila, and Giulio Viola
Solid Earth, 11, 489–511, https://doi.org/10.5194/se-11-489-2020, https://doi.org/10.5194/se-11-489-2020, 2020
Barbara Marchesini, Paolo Stefano Garofalo, Luca Menegon, Jussi Mattila, and Giulio Viola
Solid Earth, 10, 809–838, https://doi.org/10.5194/se-10-809-2019, https://doi.org/10.5194/se-10-809-2019, 2019
Short summary
Short summary
We documented the role of fluids in the initial embrittlement of the Svecofennian basement and subsequent strain localization and fault evolution at the brittle–ductile transition zone. We studied the fault rocks of a deeply exhumed fault system characterized by mixed brittle–ductile deformation. Results from fluid inclusions, mineral chemistry, and geothermometry of synkinematic minerals document the ingress of distinct fluid batches and fluid pressure oscillations.
Mirko Carlini, Giulio Viola, Jussi Mattila, and Luca Castellucci
Solid Earth, 10, 343–356, https://doi.org/10.5194/se-10-343-2019, https://doi.org/10.5194/se-10-343-2019, 2019
Short summary
Short summary
Physical properties of layered sedimentary rocks affect nucleation and propagation of discontinuities therein. Fractures developing through sedimentary sequences characterized by the alternation of strong and weak layers are strongly deviated along their track at layers’ boundaries, and depending on the layer they cross-cut, they show very thick (strong layers) or very thin (weak layers) infills of precipitated minerals, potentially representing pathways for ore deposits and oil/water resources.
Aladino Govoni, Luciana Bonatto, Marco Capello, Adriano Cavaliere, Claudio Chiarabba, Ezio D'Alema, Stefania Danesi, Sara Lovati, Lucia Margheriti, Marco Massa, Salvatore Mazza, Francesco Mazzarini, Stephen Monna, Milena Moretti, Anna Nardi, Davide Piccinini, Claudia Piromallo, Silvia Pondrelli, Simone Salimbeni, Enrico Serpelloni, Stefano Solarino, Massimiliano Vallocchia, Marco Santulin, and the AlpArray Working Group
Adv. Geosci., 43, 39–52, https://doi.org/10.5194/adgeo-43-39-2017, https://doi.org/10.5194/adgeo-43-39-2017, 2017
Short summary
Short summary
We describe here the contribution of Istituto Nazionale di Geofisica e Vulcanolgia (INGV) to the AlpArray Seismic Network (AASN) in the framework of the AlpArray project (http://www.alparray.ethz.ch), a large European collaborative research initiative.
The aim of AlpArray is carrying out cutting edge research to advance our understanding of the deep structure, geodynamics, tectonics and seismic hazard of the greater Alpine area (Alps-Apennines-Carpathians-Dinarides orogenic system).
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Structural geology
Localized shear and distributed strain accumulation as competing shear accommodation mechanisms in crustal shear zones: constraining their dictating factors
Influence of water on crystallographic preferred orientation patterns in a naturally deformed quartzite
Geomorphic expressions of active rifting reflect the role of structural inheritance: a new model for the evolution of the Shanxi Rift, northern China
Driven magmatism and crustal thinning of coastal southern China in response to subduction
Selection and characterization of the target fault for fluid-induced activation and earthquake rupture experiments
Reconciling post-orogenic faulting, paleostress evolution and structural inheritance in the seismogenic Northern Apennines (Italy): Insights from the Monti Martani Fault System
Naturally fractured reservoir characterisation in heterogeneous sandstones: insight for uranium in situ recovery (Imouraren, Niger)
Understanding the stress field at the lateral termination of a thrust fold using generic geomechanical models and clustering methods
Multiscalar 3D temporal structural characterisation of Smøla island, mid-Norwegian passive margin: an analogue for unravelling the tectonic history of offshore basement highs
Impact of faults on the remote stress state
Subduction plate interface shear stress associated with rapid subduction at deep slow earthquake depths: example from the Sanbagawa belt, southwestern Japan
Multiple phase rifting and subsequent inversion in the West Netherlands Basin: implications for geothermal reservoir characterization
Analogue modelling of basin inversion: implications for the Araripe Basin (Brazil)
Natural fracture patterns at Swift Reservoir anticline, NW Montana: the influence of structural position and lithology from multiple observation scales
Rapid hydration and weakening of anhydrite under stress: implications for natural hydration in the Earth's crust and mantle
Analogue experiments on releasing and restraining bends and their application to the study of the Barents Shear Margin
Structural framework and timing of the Pahtohavare Cu ± Au deposits, Kiruna mining district, Sweden
Does the syn- versus post-rift thickness ratio have an impact on the inversion-related structural style?
Inversion of accommodation zones in salt-bearing extensional systems: insights from analog modeling
Structural control of inherited salt structures during inversion of a domino basement-fault system from an analogue modelling approach
Kinematics and time-resolved evolution of the main thrust-sense shear zone in the Eo-Alpine orogenic wedge (the Vinschgau Shear Zone, eastern Alps)
Role of inheritance during tectonic inversion of a rift system in basement-involved to salt-decoupled transition: analogue modelling and application to the Pyrenean–Biscay system
Water release and homogenization by dynamic recrystallization of quartz
Hydrothermal activity of the Lake Abhe geothermal field (Djibouti): Structural controls and paths for further exploration
Time-dependent frictional properties of granular materials used in analogue modelling: implications for mimicking fault healing during reactivation and inversion
Large grain-size-dependent rheology contrasts of halite at low differential stress: evidence from microstructural study of naturally deformed gneissic Zechstein 2 rock salt (Kristallbrockensalz) from the northern Netherlands
Analogue modelling of the inversion of multiple extensional basins in foreland fold-and-thrust belts
A contribution to the quantification of crustal shortening and kinematics of deformation across the Western Andes ( ∼ 20–22° S)
Rift thermal inheritance in the SW Alps (France): insights from RSCM thermometry and 1D thermal numerical modelling
The Luangwa Rift Active Fault Database and fault reactivation along the southwestern branch of the East African Rift
Clustering has a meaning: optimization of angular similarity to detect 3D geometric anomalies in geological terrains
Shear zone evolution and the path of earthquake rupture
Mechanical compaction mechanisms in the input sediments of the Sumatra subduction complex – insights from microstructural analysis of cores from IODP Expedition 362
Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods
Multiscale lineament analysis and permeability heterogeneity of fractured crystalline basement blocks
How do differences in interpreting seismic images affect estimates of geological slip rates?
Progressive veining during peridotite carbonation: insights from listvenites in Hole BT1B, Samail ophiolite (Oman)
Tectonic evolution of the Indio Hills segment of the San Andreas fault in southern California, southwestern USA
Structural diagenesis in ultra-deep tight sandstones in the Kuqa Depression, Tarim Basin, China
Variscan structures and their control on latest to post-Variscan basin architecture: insights from the westernmost Bohemian Massif and southeastern Germany
Multi-disciplinary characterizations of the BedrettoLab – a new underground geoscience research facility
Biotite supports long-range diffusive transport in dissolution–precipitation creep in halite through small porosity fluctuations
De-risking the energy transition by quantifying the uncertainties in fault stability
Virtual field trip to the Esla Nappe (Cantabrian Zone, NW Spain): delivering traditional geological mapping skills remotely using real data
Marine forearc structure of eastern Java and its role in the 1994 Java tsunami earthquake
Roughness of fracture surfaces in numerical models and laboratory experiments
Impact of basement thrust faults on low-angle normal faults and rift basin evolution: a case study in the Enping sag, Pearl River Basin
Evidence for and significance of the Late Cretaceous Asteroussia event in the Gondwanan Ios basement terranes
Investigating spatial heterogeneity within fracture networks using hierarchical clustering and graph distance metrics
Dating folding beyond folding, from layer-parallel shortening to fold tightening, using mesostructures: lessons from the Apennines, Pyrenees, and Rocky Mountains
Pramit Chatterjee, Arnab Roy, and Nibir Mandal
Solid Earth, 15, 1281–1301, https://doi.org/10.5194/se-15-1281-2024, https://doi.org/10.5194/se-15-1281-2024, 2024
Short summary
Short summary
Understanding strain accumulation processes in shear zones is essential for explaining failure mechanisms at great crustal depths. This study explores the rheological and kinematic factors determining the varying modes of shear accommodation in natural shear zones. Numerical simulations suggest that an interplay of parameters – initial viscosity, bulk shear rate, and internal cohesion – governs the dominance of one accommodation mechanism over another.
Jeffrey M. Rahl, Brendan Moehringer, Kenneth S. Befus, and John S. Singleton
Solid Earth, 15, 1233–1240, https://doi.org/10.5194/se-15-1233-2024, https://doi.org/10.5194/se-15-1233-2024, 2024
Short summary
Short summary
At the high temperatures present in the deeper crust, minerals such as quartz can flow much like silly putty. The detailed mechanisms of how atoms are reorganized depends upon several factors, such as the temperature and the rate of which the mineral changes shape. We present observations from a naturally deformed rock showing that the amount of water present also influences the type of deformation in quartz, with implications for geological interpretations.
Malte Froemchen, Ken J. W. McCaffrey, Mark B. Allen, Jeroen van Hunen, Thomas B. Phillips, and Yueren Xu
Solid Earth, 15, 1203–1231, https://doi.org/10.5194/se-15-1203-2024, https://doi.org/10.5194/se-15-1203-2024, 2024
Short summary
Short summary
The Shanxi Rift is a young, active rift in northern China that formed atop a Proterozoic orogen. The impact of these structures on active rift faults is poorly understood. Here, we quantify the landscape response to active faulting and compare it with published maps of inherited structures. We find that inherited structures played an important role in the segmentation of the Shanxi Rift and in the development of rift interaction zones, which are the most active regions in the Shanxi Rift.
Jinbao Su, Wenbin Zhu, and Guangwei Li
Solid Earth, 15, 1133–1141, https://doi.org/10.5194/se-15-1133-2024, https://doi.org/10.5194/se-15-1133-2024, 2024
Short summary
Short summary
The late Mesozoic igneous rocks in the South China Block exhibit flare-ups and lulls, which form in compressional or extensional backgrounds. The ascending of magma forms a mush-like head and decreases crustal thickness. The presence of faults and pre-existing magmas will accelerate emplacement of underplating magma. The magmatism at different times may be formed under similar subduction conditions, and the boundary compression forces will delay magma ascent.
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024, https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary
Short summary
We detail the selection and characterization of a fault zone for earthquake experiments in the Fault Activation and Earthquake Ruptures (FEAR) project at the Bedretto Lab. FEAR, which studies earthquake processes, overcame data collection challenges near faults. The fault zone in Rotondo granite was selected based on geometry, monitorability, and hydro-mechanical properties. Remote sensing, borehole logging, and geological mapping were used to create a 3D model for precise monitoring.
Riccardo Asti, Selina Bonini, Giulio Viola, and Gianluca Vignaroli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2319, https://doi.org/10.5194/egusphere-2024-2319, 2024
Short summary
Short summary
This study addresses the tectonic evolution of the seismogenic Monti Martani Fault System (Northern Apennines, Italy). By applying a field-based structural geology approach, we reconstruct the evolution of the stress field and we challenge the current interpretation of the fault system both in terms of geometry and state of activity. We stress that the peculiar behavior of this system during post-orogenic extension is still significantly influenced by the pre-orogenic structural template.
Maxime Jamet, Gregory Ballas, Roger Soliva, Olivier Gerbeaud, Thierry Lefebvre, Christine Leredde, and Didier Loggia
Solid Earth, 15, 895–920, https://doi.org/10.5194/se-15-895-2024, https://doi.org/10.5194/se-15-895-2024, 2024
Short summary
Short summary
This study characterizes the Tchirezrine II sandstone reservoir in northern Niger. Crucial for potential uranium in situ recovery (ISR), our multifaceted approach reveals (i) a network of homogeneously distributed orthogonal structures, (ii) the impact of clustered E–W fault structures on anisotropic fluid flow, and (iii) local changes in the matrix behaviour of the reservoir as a function of the density and nature of the deformation structure.
Anthony Adwan, Bertrand Maillot, Pauline Souloumiac, Christophe Barnes, Christophe Nussbaum, Meinert Rahn, and Thomas Van Stiphout
EGUsphere, https://doi.org/10.5194/egusphere-2024-1906, https://doi.org/10.5194/egusphere-2024-1906, 2024
Short summary
Short summary
We use computer simulations to study how stress is distributed in large-scale geological models, focusing on how fault lines behave under pressure. By running many 2D and 3D simulations with varying conditions, we discover patterns in how faults form and interact. Our findings reveal that even small changes in conditions can lead to different stress outcomes. This research helps us better understand earthquake mechanics and could improve predictions of fault behavior in real-world scenarios.
Matthew S. Hodge, Guri Venvik, Jochen Knies, Roelant van der Lelij, Jasmin Schönenberger, Øystein Nordgulen, Marco Brönner, Aziz Nasuti, and Giulio Viola
Solid Earth, 15, 589–615, https://doi.org/10.5194/se-15-589-2024, https://doi.org/10.5194/se-15-589-2024, 2024
Short summary
Short summary
Smøla island, in the mid-Norwegian margin, has complex fracture and fault patterns resulting from tectonic activity. This study uses a multiple-method approach to unravel Smøla's tectonic history. We found five different phases of deformation related to various fracture geometries and minerals dating back hundreds of millions of years. 3D models of these features visualise these structures in space. This approach may help us to understand offshore oil and gas reservoirs hosted in the basement.
Karsten Reiter, Oliver Heidbach, and Moritz O. Ziegler
Solid Earth, 15, 305–327, https://doi.org/10.5194/se-15-305-2024, https://doi.org/10.5194/se-15-305-2024, 2024
Short summary
Short summary
It is generally assumed that faults have an influence on the stress state of the Earth’s crust. It is questionable whether this influence is still present far away from a fault. Simple numerical models were used to investigate the extent of the influence of faults on the stress state. Several models with different fault representations were investigated. The stress fluctuations further away from the fault (> 1 km) are very small.
Yukinojo Koyama, Simon R. Wallis, and Takayoshi Nagaya
Solid Earth, 15, 143–166, https://doi.org/10.5194/se-15-143-2024, https://doi.org/10.5194/se-15-143-2024, 2024
Short summary
Short summary
Stress along a subduction plate boundary is important for understanding subduction phenomena such as earthquakes. We estimated paleo-stress using quartz recrystallized grain size combined with deformation temperature and P–T paths of exhumed rocks. The obtained results show differential stresses of 30.8–82.7 MPa consistent over depths of 17–27 km in the paleo-subduction boundary. The obtained stress may represent the initial conditions under which slow earthquakes nucleated in the same domain.
Annelotte Weert, Kei Ogata, Francesco Vinci, Coen Leo, Giovanni Bertotti, Jerome Amory, and Stefano Tavani
Solid Earth, 15, 121–141, https://doi.org/10.5194/se-15-121-2024, https://doi.org/10.5194/se-15-121-2024, 2024
Short summary
Short summary
On the road to a sustainable planet, geothermal energy is considered one of the main substitutes when it comes to heating. The geological history of an area can have a major influence on the application of these geothermal systems, as demonstrated in the West Netherlands Basin. Here, multiple episodes of rifting and subsequent basin inversion have controlled the distribution of the reservoir rocks, thus influencing the locations where geothermal energy can be exploited.
Pâmela C. Richetti, Frank Zwaan, Guido Schreurs, Renata S. Schmitt, and Timothy C. Schmid
Solid Earth, 14, 1245–1266, https://doi.org/10.5194/se-14-1245-2023, https://doi.org/10.5194/se-14-1245-2023, 2023
Short summary
Short summary
The Araripe Basin in NE Brazil was originally formed during Cretaceous times, as South America and Africa broke up. The basin is an important analogue to offshore South Atlantic break-up basins; its sediments were uplifted and are now found at 1000 m height, allowing for studies thereof, but the cause of the uplift remains debated. Here we ran a series of tectonic laboratory experiments that show how a specific plate tectonic configuration can explain the evolution of the Araripe Basin.
Adam J. Cawood, Hannah Watkins, Clare E. Bond, Marian J. Warren, and Mark A. Cooper
Solid Earth, 14, 1005–1030, https://doi.org/10.5194/se-14-1005-2023, https://doi.org/10.5194/se-14-1005-2023, 2023
Short summary
Short summary
Here we test conceptual models of fracture development by investigating fractures across multiple scales. We find that most fractures increase in abundance towards the fold hinge, and we interpret these as being fold related. Other fractures at the site show inconsistent orientations and are unrelated to fold formation. Our results show that predicting fracture patterns requires the consideration of multiple geologic variables.
Johanna Heeb, David Healy, Nicholas E. Timms, and Enrique Gomez-Rivas
Solid Earth, 14, 985–1003, https://doi.org/10.5194/se-14-985-2023, https://doi.org/10.5194/se-14-985-2023, 2023
Short summary
Short summary
Hydration of rocks is a key process in the Earth’s crust and mantle that is accompanied by changes in physical traits and mechanical behaviour of rocks. This study assesses the influence of stress on hydration reaction kinetics and mechanics in experiments on anhydrite. We show that hydration occurs readily under stress and results in localized hydration along fractures and mechanic weakening. New gypsum growth is selective and depends on the stress field and host anhydrite crystal orientation.
Roy Helge Gabrielsen, Panagiotis Athanasios Giannenas, Dimitrios Sokoutis, Ernst Willingshofer, Muhammad Hassaan, and Jan Inge Faleide
Solid Earth, 14, 961–983, https://doi.org/10.5194/se-14-961-2023, https://doi.org/10.5194/se-14-961-2023, 2023
Short summary
Short summary
The Barents Shear Margin defines the border between the relatively shallow Barents Sea that is situated on a continental plate and the deep ocean. This margin's evolution history was probably influenced by plate tectonic reorganizations. From scaled experiments, we deduced several types of structures (faults, folds, and sedimentary basins) that help us to improve the understanding of the history of the opening of the North Atlantic.
Leslie Logan, Ervin Veress, Joel B. H. Andersson, Olof Martinsson, and Tobias E. Bauer
Solid Earth, 14, 763–784, https://doi.org/10.5194/se-14-763-2023, https://doi.org/10.5194/se-14-763-2023, 2023
Short summary
Short summary
The Pahtohavare Cu ± Au deposits in the Kiruna mining district have a dubious timing of formation and have not been contextualized within an up-to-date tectonic framework. Structural mapping was carried out to reveal that the deposits are hosted in brittle structures that cut a noncylindrical, SE-plunging anticline constrained to have formed during the late-Svecokarelian orogeny. These results show that Cu ± Au mineralization formed more than ca. 80 Myr after iron oxide–apatite mineralization.
Alexandra Tamas, Dan M. Tamas, Gabor Tari, Csaba Krezsek, Alexandru Lapadat, and Zsolt Schleder
Solid Earth, 14, 741–761, https://doi.org/10.5194/se-14-741-2023, https://doi.org/10.5194/se-14-741-2023, 2023
Short summary
Short summary
Tectonic processes are complex and often difficult to understand due to the limitations of surface or subsurface data. One such process is inversion tectonics, which means that an area initially developed in an extension (such as the opening of an ocean) is reversed to compression (the process leading to mountain building). In this research, we use a laboratory method (analogue modelling), and with the help of a sandbox, we try to better understand structures (folds/faults) related to inversion.
Elizabeth Parker Wilson, Pablo Granado, Pablo Santolaria, Oriol Ferrer, and Josep Anton Muñoz
Solid Earth, 14, 709–739, https://doi.org/10.5194/se-14-709-2023, https://doi.org/10.5194/se-14-709-2023, 2023
Short summary
Short summary
This work focuses on the control of accommodation zones on extensional and subsequent inversion in salt-detached domains using sandbox analogue models. During extension, the transfer zone acts as a pathway for the movement of salt, changing the expected geometries. When inverted, the salt layer and syn-inversion sedimentation control the deformation style in the salt-detached cover system. Three natural cases are compared to the model results and show similar inversion geometries.
Oriol Ferrer, Eloi Carola, and Ken McClay
Solid Earth, 14, 571–589, https://doi.org/10.5194/se-14-571-2023, https://doi.org/10.5194/se-14-571-2023, 2023
Short summary
Short summary
Using an experimental approach based on scaled sandbox models, this work aims to understand how salt above different rotational fault blocks influences the cover geometry and evolution, first during extension and then during inversion. The results show that inherited salt structures constrain contractional deformation. We show for the first time how welds and fault welds are reopened during contractional deformation, having direct implications for the subsurface exploration of natural resources.
Chiara Montemagni, Stefano Zanchetta, Martina Rocca, Igor M. Villa, Corrado Morelli, Volkmar Mair, and Andrea Zanchi
Solid Earth, 14, 551–570, https://doi.org/10.5194/se-14-551-2023, https://doi.org/10.5194/se-14-551-2023, 2023
Short summary
Short summary
The Vinschgau Shear Zone (VSZ) is one of the largest and most significant shear zones developed within the Late Cretaceous thrust stack in the Austroalpine domain of the eastern Alps. 40Ar / 39Ar geochronology constrains the activity of the VSZ between 97 and 80 Ma. The decreasing vorticity towards the core of the shear zone, coupled with the younging of mylonites, points to a shear thinning behavior. The deepest units of the Eo-Alpine orogenic wedge were exhumed along the VSZ.
Jordi Miró, Oriol Ferrer, Josep Anton Muñoz, and Gianreto Manastchal
Solid Earth, 14, 425–445, https://doi.org/10.5194/se-14-425-2023, https://doi.org/10.5194/se-14-425-2023, 2023
Short summary
Short summary
Using the Asturian–Basque–Cantabrian system and analogue (sandbox) models, this work focuses on the linkage between basement-controlled and salt-decoupled domains and how deformation is accommodated between the two during extension and subsequent inversion. Analogue models show significant structural variability in the transitional domain, with oblique structures that can be strongly modified by syn-contractional sedimentation. Experimental results are consistent with the case study.
Junichi Fukuda, Takamoto Okudaira, and Yukiko Ohtomo
Solid Earth, 14, 409–424, https://doi.org/10.5194/se-14-409-2023, https://doi.org/10.5194/se-14-409-2023, 2023
Short summary
Short summary
We measured water distributions in deformed quartz by infrared spectroscopy mapping and used the results to discuss changes in water distribution resulting from textural development. Because of the grain size reduction process (dynamic recrystallization), water contents decrease from 40–1750 wt ppm in host grains of ~2 mm to 100–510 wt ppm in recrystallized regions composed of fine grains of ~10 µm. Our results indicate that water is released and homogenized by dynamic recrystallization.
Bastien Walter, Yves Géraud, Alexiane Favier, Nadjib Chibati, and Marc Diraison
EGUsphere, https://doi.org/10.5194/egusphere-2023-397, https://doi.org/10.5194/egusphere-2023-397, 2023
Preprint archived
Short summary
Short summary
Lake Abhe in southwestern Djibouti is known for its exposures of massive hydrothermal chimneys and hot springs on the lake’s eastern shore. This study highlights the control of the main structural faults of the area on the development of these hydrothermal features. This work contributes to better understand hydrothermal fluid pathways in this area and may help further exploration for the geothermal development of this remarkable site.
Michael Rudolf, Matthias Rosenau, and Onno Oncken
Solid Earth, 14, 311–331, https://doi.org/10.5194/se-14-311-2023, https://doi.org/10.5194/se-14-311-2023, 2023
Short summary
Short summary
Analogue models of tectonic processes rely on the reproduction of their geometry, kinematics and dynamics. An important property is fault behaviour, which is linked to the frictional characteristics of the fault gouge. This is represented by granular materials, such as quartz sand. In our study we investigate the time-dependent frictional properties of various analogue materials and highlight their impact on the suitability of these materials for analogue models focusing on fault reactivation.
Jessica Barabasch, Joyce Schmatz, Jop Klaver, Alexander Schwedt, and Janos L. Urai
Solid Earth, 14, 271–291, https://doi.org/10.5194/se-14-271-2023, https://doi.org/10.5194/se-14-271-2023, 2023
Short summary
Short summary
We analysed Zechstein salt with microscopes and observed specific microstructures that indicate much faster deformation in rock salt with fine halite grains when compared to salt with larger grains. This is important because people build large cavities in the subsurface salt for energy storage or want to deposit radioactive waste inside it. When engineers and scientists use grain-size data and equations that include this mechanism, it will help to make better predictions in geological models.
Nicolás Molnar and Susanne Buiter
Solid Earth, 14, 213–235, https://doi.org/10.5194/se-14-213-2023, https://doi.org/10.5194/se-14-213-2023, 2023
Short summary
Short summary
Progression of orogenic wedges over pre-existing extensional structures is common in nature, but deciphering the spatio-temporal evolution of deformation from the geological record remains challenging. Our laboratory experiments provide insights on how horizontal stresses are transferred across a heterogeneous crust, constrain which pre-shortening conditions can either favour or hinder the reactivatation of extensional structures, and explain what implications they have on critical taper theory.
Tania Habel, Martine Simoes, Robin Lacassin, Daniel Carrizo, and German Aguilar
Solid Earth, 14, 17–42, https://doi.org/10.5194/se-14-17-2023, https://doi.org/10.5194/se-14-17-2023, 2023
Short summary
Short summary
The Central Andes are one of the most emblematic reliefs on Earth, but their western flank remains understudied. Here we explore two rare key sites in the hostile conditions of the Atacama desert to build cross-sections, quantify crustal shortening, and discuss the timing of this deformation at ∼20–22°S. We propose that the structures of the Western Andes accommodated significant crustal shortening here, but only during the earliest stages of mountain building.
Naïm Célini, Frédéric Mouthereau, Abdeltif Lahfid, Claude Gout, and Jean-Paul Callot
Solid Earth, 14, 1–16, https://doi.org/10.5194/se-14-1-2023, https://doi.org/10.5194/se-14-1-2023, 2023
Short summary
Short summary
We investigate the peak temperature of sedimentary rocks of the SW Alps (France), using Raman spectroscopy on carbonaceous material. This method provides an estimate of the peak temperature achieved by organic-rich rocks. To determine the timing and the tectonic context of the origin of these temperatures we use 1D thermal modelling. We find that the high temperatures up to 300 °C were achieved during precollisional extensional events, not during tectonic burial in the Western Alps.
Luke N. J. Wedmore, Tess Turner, Juliet Biggs, Jack N. Williams, Henry M. Sichingabula, Christine Kabumbu, and Kawawa Banda
Solid Earth, 13, 1731–1753, https://doi.org/10.5194/se-13-1731-2022, https://doi.org/10.5194/se-13-1731-2022, 2022
Short summary
Short summary
Mapping and compiling the attributes of faults capable of hosting earthquakes are important for the next generation of seismic hazard assessment. We document 18 active faults in the Luangwa Rift, Zambia, in an active fault database. These faults are between 9 and 207 km long offset Quaternary sediments, have scarps up to ~30 m high, and are capable of hosting earthquakes from Mw 5.8 to 8.1. We associate the Molaza Fault with surface ruptures from two unattributed M 6+ 20th century earthquakes.
Michał P. Michalak, Lesław Teper, Florian Wellmann, Jerzy Żaba, Krzysztof Gaidzik, Marcin Kostur, Yuriy P. Maystrenko, and Paulina Leonowicz
Solid Earth, 13, 1697–1720, https://doi.org/10.5194/se-13-1697-2022, https://doi.org/10.5194/se-13-1697-2022, 2022
Short summary
Short summary
When characterizing geological/geophysical surfaces, various geometric attributes are calculated, such as dip angle (1D) or dip direction (2D). However, the boundaries between specific values may be subjective and without optimization significance, resulting from using default color palletes. This study proposes minimizing cosine distance among within-cluster observations to detect 3D anomalies. Our results suggest that the method holds promise for identification of megacylinders or megacones.
Erik M. Young, Christie D. Rowe, and James D. Kirkpatrick
Solid Earth, 13, 1607–1629, https://doi.org/10.5194/se-13-1607-2022, https://doi.org/10.5194/se-13-1607-2022, 2022
Short summary
Short summary
Studying how earthquakes spread deep within the faults they originate from is crucial to improving our understanding of the earthquake process. We mapped preserved ancient earthquake surfaces that are now exposed in South Africa and studied their relationship with the shape and type of rocks surrounding them. We determined that these surfaces are not random and are instead associated with specific kinds of rocks and that their shape is linked to the evolution of the faults in which they occur.
Sivaji Lahiri, Kitty L. Milliken, Peter Vrolijk, Guillaume Desbois, and Janos L. Urai
Solid Earth, 13, 1513–1539, https://doi.org/10.5194/se-13-1513-2022, https://doi.org/10.5194/se-13-1513-2022, 2022
Short summary
Short summary
Understanding the mechanism of mechanical compaction is important. Previous studies on mechanical compaction were mostly done by performing experiments. Studies on natural rocks are rare due to compositional heterogeneity of the sedimentary succession with depth. Due to remarkable similarity in composition and grain size, the Sumatra subduction complex provides a unique opportunity to study the micromechanism of mechanical compaction on natural samples.
Dongwon Lee, Nikolaos Karadimitriou, Matthias Ruf, and Holger Steeb
Solid Earth, 13, 1475–1494, https://doi.org/10.5194/se-13-1475-2022, https://doi.org/10.5194/se-13-1475-2022, 2022
Short summary
Short summary
This research article focuses on filtering and segmentation methods employed in high-resolution µXRCT studies for crystalline rocks, bearing fractures, or fracture networks, of very small aperture. Specifically, we focus on the identification of artificially induced (via quenching) fractures in Carrara marble samples. Results from the same dataset from all five different methods adopted were produced and compared with each other in terms of their output quality and time efficiency.
Alberto Ceccato, Giulia Tartaglia, Marco Antonellini, and Giulio Viola
Solid Earth, 13, 1431–1453, https://doi.org/10.5194/se-13-1431-2022, https://doi.org/10.5194/se-13-1431-2022, 2022
Short summary
Short summary
The Earth's surface is commonly characterized by the occurrence of fractures, which can be mapped, and their can be geometry quantified on digital representations of the surface at different scales of observation. Here we present a series of analytical and statistical tools, which can aid the quantification of fracture spatial distribution at different scales. In doing so, we can improve our understanding of how fracture geometry and geology affect fluid flow within the fractured Earth crust.
Wan-Lin Hu
Solid Earth, 13, 1281–1290, https://doi.org/10.5194/se-13-1281-2022, https://doi.org/10.5194/se-13-1281-2022, 2022
Short summary
Short summary
Having a seismic image is generally expected to enable us to better determine fault geometry and thus estimate geological slip rates accurately. However, the process of interpreting seismic images may introduce unintended uncertainties, which have not yet been widely discussed. Here, a case of a shear fault-bend fold in the frontal Himalaya is used to demonstrate how differences in interpretations can affect the following estimates of slip rates and dependent conclusions.
Manuel D. Menzel, Janos L. Urai, Estibalitz Ukar, Thierry Decrausaz, and Marguerite Godard
Solid Earth, 13, 1191–1218, https://doi.org/10.5194/se-13-1191-2022, https://doi.org/10.5194/se-13-1191-2022, 2022
Short summary
Short summary
Mantle rocks can bind large quantities of carbon by reaction with CO2, but this capacity requires fluid pathways not to be clogged by carbonate. We studied mantle rocks from Oman to understand the mechanisms allowing their transformation into carbonate and quartz. Using advanced imaging techniques, we show that abundant veins were essential fluid pathways driving the reaction. Our results show that tectonic stress was important for fracture opening and a key ingredient for carbon fixation.
Jean-Baptiste P. Koehl, Steffen G. Bergh, and Arthur G. Sylvester
Solid Earth, 13, 1169–1190, https://doi.org/10.5194/se-13-1169-2022, https://doi.org/10.5194/se-13-1169-2022, 2022
Short summary
Short summary
The San Andreas fault is a major active fault associated with ongoing earthquake sequences in southern California. The present study investigates the development of the Indio Hills area in the Coachella Valley along the main San Andreas fault and the Indio Hills fault. The Indio Hills area is located near an area with high ongoing earthquake activity (Brawley seismic zone), and, therefore, its recent tectonic evolution has implications for earthquake prediction.
Jin Lai, Dong Li, Yong Ai, Hongkun Liu, Deyang Cai, Kangjun Chen, Yuqiang Xie, and Guiwen Wang
Solid Earth, 13, 975–1002, https://doi.org/10.5194/se-13-975-2022, https://doi.org/10.5194/se-13-975-2022, 2022
Short summary
Short summary
(1) Structural diagenesis analysis is performed on the ultra-deep tight sandstone. (2) Fracture and intergranular pores are related to the low in situ stress magnitudes. (3) Dissolution is associated with the presence of fracture.
Hamed Fazlikhani, Wolfgang Bauer, and Harald Stollhofen
Solid Earth, 13, 393–416, https://doi.org/10.5194/se-13-393-2022, https://doi.org/10.5194/se-13-393-2022, 2022
Short summary
Short summary
Interpretation of newly acquired FRANKEN 2D seismic survey data in southeeastern Germany shows that upper Paleozoic low-grade metasedimentary rocks and possible nappe units are transported by Variscan shear zones to ca. 65 km west of the Franconian Fault System (FFS). We show that the locations of post-Variscan upper Carboniferous–Permian normal faults and associated graben and half-graben basins are controlled by the geometry of underlying Variscan shear zones.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Berit Schwichtenberg, Florian Fusseis, Ian B. Butler, and Edward Andò
Solid Earth, 13, 41–64, https://doi.org/10.5194/se-13-41-2022, https://doi.org/10.5194/se-13-41-2022, 2022
Short summary
Short summary
Hydraulic rock properties such as porosity and permeability are relevant factors that have an impact on groundwater resources, geological repositories and fossil fuel reservoirs. We investigate the influence of chemical compaction upon the porosity evolution in salt–biotite mixtures and related transport length scales by conducting laboratory experiments in combination with 4-D analysis. Our observations invite a renewed discussion of the effect of sheet silicates on chemical compaction.
David Healy and Stephen Paul Hicks
Solid Earth, 13, 15–39, https://doi.org/10.5194/se-13-15-2022, https://doi.org/10.5194/se-13-15-2022, 2022
Short summary
Short summary
The energy transition requires operations in faulted rocks. To manage the technical challenges and public concern over possible induced earthquakes, we need to quantify the risks. We calculate the probability of fault slip based on uncertain inputs, stresses, fluid pressures, and the mechanical properties of rocks in fault zones. Our examples highlight the specific gaps in our knowledge. Citizen science projects could produce useful data and include the public in the discussions about hazards.
Manuel I. de Paz-Álvarez, Thomas G. Blenkinsop, David M. Buchs, George E. Gibbons, and Lesley Cherns
Solid Earth, 13, 1–14, https://doi.org/10.5194/se-13-1-2022, https://doi.org/10.5194/se-13-1-2022, 2022
Short summary
Short summary
We describe a virtual geological mapping course implemented in response to travelling and social restrictions derived from the ongoing COVID-19 pandemic. The course was designed to replicate a physical mapping exercise as closely as possible with the aid of real field data and photographs collected by the authors during previous years in the Cantabrian Zone (NW Spain). The course is delivered through Google Earth via a KMZ file with outcrop descriptions and links to GitHub-hosted photographs.
Yueyang Xia, Jacob Geersen, Dirk Klaeschen, Bo Ma, Dietrich Lange, Michael Riedel, Michael Schnabel, and Heidrun Kopp
Solid Earth, 12, 2467–2477, https://doi.org/10.5194/se-12-2467-2021, https://doi.org/10.5194/se-12-2467-2021, 2021
Short summary
Short summary
The 2 June 1994 Java tsunami earthquake ruptured in a seismically quiet subduction zone and generated a larger-than-expected tsunami. Here, we re-process a seismic line across the rupture area. We show that a subducting seamount is located up-dip of the mainshock in a region that did not rupture during the earthquake. Seamount subduction modulates the topography of the marine forearc and acts as a seismic barrier in the 1994 earthquake rupture.
Steffen Abe and Hagen Deckert
Solid Earth, 12, 2407–2424, https://doi.org/10.5194/se-12-2407-2021, https://doi.org/10.5194/se-12-2407-2021, 2021
Short summary
Short summary
We use numerical simulations and laboratory experiments on rock samples to investigate how stress conditions influence the geometry and roughness of fracture surfaces. The roughness of the surfaces was analyzed in terms of absolute roughness and scaling properties. The results show that the surfaces are self-affine but with different scaling properties between the numerical models and the real rock samples. Results suggest that stress conditions have little influence on the surface roughness.
Chao Deng, Rixiang Zhu, Jianhui Han, Yu Shu, Yuxiang Wu, Kefeng Hou, and Wei Long
Solid Earth, 12, 2327–2350, https://doi.org/10.5194/se-12-2327-2021, https://doi.org/10.5194/se-12-2327-2021, 2021
Short summary
Short summary
This study uses seismic reflection data to interpret the geometric relationship and evolution of intra-basement and rift-related structures in the Enping sag in the northern South China Sea. Our observations suggest the primary control of pre-existing thrust faults is the formation of low-angle normal faults, with possible help from low-friction materials, and the significant role of pre-existing basement thrust faults in fault geometry, paleotopography, and syn-rift stratigraphy of rift basins.
Sonia Yeung, Marnie Forster, Emmanuel Skourtsos, and Gordon Lister
Solid Earth, 12, 2255–2275, https://doi.org/10.5194/se-12-2255-2021, https://doi.org/10.5194/se-12-2255-2021, 2021
Short summary
Short summary
We do not know when the ancient Tethys Ocean lithosphere began to founder, but one clue can be found in subduction accreted tectonic slices, including Gondwanan basement terranes on the island of Ios, Cyclades, Greece. We propose a 250–300 km southwards jump of the subduction megathrust with a period of flat-slab subduction followed by slab break-off. The initiation and its subsequent rollback of a new subduction zone would explain the onset of Oligo–Miocene extension and accompanying magmatism.
Rahul Prabhakaran, Giovanni Bertotti, Janos Urai, and David Smeulders
Solid Earth, 12, 2159–2209, https://doi.org/10.5194/se-12-2159-2021, https://doi.org/10.5194/se-12-2159-2021, 2021
Short summary
Short summary
Rock fractures are organized as networks with spatially varying arrangements. Due to networks' influence on bulk rock behaviour, it is important to quantify network spatial variation. We utilize an approach where fracture networks are treated as spatial graphs. By combining graph similarity measures with clustering techniques, spatial clusters within large-scale fracture networks are identified and organized hierarchically. The method is validated on a dataset with nearly 300 000 fractures.
Olivier Lacombe, Nicolas E. Beaudoin, Guilhem Hoareau, Aurélie Labeur, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 12, 2145–2157, https://doi.org/10.5194/se-12-2145-2021, https://doi.org/10.5194/se-12-2145-2021, 2021
Short summary
Short summary
This paper aims to illustrate how the timing and duration of contractional deformation associated with folding in orogenic forelands can be constrained by the dating of brittle mesostructures observed in folded strata. The study combines new and already published absolute ages of fractures to provide, for the first time, an educated discussion about the factors controlling the duration of the sequence of deformation encompassing layer-parallel shortening, fold growth, and late fold tightening.
Cited articles
Aldega, L., Viola, G., Casas-Sainz, A., Marcén, M., Román-Berdiel,
T., and Lelij, R.: Unravelling multiple thermo-tectonic events accommodated
by crustal-scale faults in northern Iberia, Spain: Insights from K-Ar dating
of clay gouges, Tectonics, 38, 3629–3651, https://doi.org/10.1029/2019tc005585, 2019.
Barberi, F., Innocenti, F., and Ricci, C. A.: Il complesso scistoso di Capo
Calamita (Isola d'Elba), Atti Della
Società Toscana Di Scienze Naturali Residente a Pisa, Memorie Ser. A,
72, 579–617, 1967.
Barboni, M., Annen, C., and Schoene, B.: Evaluating the construction and
evolution of upper crustal magma reservoirs with coupled U Pb zircon
geochronology and thermal modeling: A case study from the Mt. Capanne pluton
(Elba, Italy), Earth Planet. Sc. Lett., 432, 436–448,
https://doi.org/10.1016/j.epsl.2015.09.043, 2015.
Bedford, J. D., Faulkner, D. R., and Lapusta, N.: Fault rock heterogeneity
can produce fault weakness and reduce fault stability, Nat. Commun., 13, 326,
https://doi.org/10.1038/s41467-022-27998-2, 2022.
Bianco, C., Brogi, A., Caggianelli, A., Giorgetti, G., Liotta, D., and
Meccheri, M.: HP-LT metamorphism in Elba Island: Implications for the
geodynamic evolution of the inner Northern Apennines (Italy), J.
Geodyn., 91, 13–25, https://doi.org/10.1016/j.jog.2015.08.001, 2015.
Boccaletti, M. and Sani, F.: Cover thrust reactivations related to internal
basement involvement during Neogene-Quaternary evolution of the northern
Apennines, Tectonics, 17, 112–130, https://doi.org/10.1029/97tc02067, 1998.
Boccaletti, M., Elter, P., and Guazzone, R.: Plate tectonics models for the
development of Western Alps and northern Apennines, Nature, 234, 108–111,
1971.
Bonini, M., Sani, F., Stucchi, E. M., Moratti, G., Benvenuti, M., Menanno,
G., and Tanini, C.: Late Miocene shortening of the Northern Apennines
back-arc, J. Geodyn., 74, 1–31, https://doi.org/10.1016/j.jog.2013.11.002, 2014.
Bortolotti, V., Fazzuoli, M., Pandeli, E., Principi, G., Babbini, A., and
Corti, S.: Geology of Central and Eastern Elba Island, Italy, Ofioliti, 26,
97–150, 2001.
Braathen, A., Tveranger, J., Fossen, H., Skar, T., Cardozo, N., Semshaug, S.
E., Bastesen, E., and Sverdrup, E.: Fault facies and its application to
sandstone reservoirs, AAPG Bull., 93, 891–917, https://doi.org/10.1306/03230908116, 2009.
Bruhn, R. L., Yonkee, W. A., and Parry, W. T.: Structural and Fluid-Chemical
Properties of Seismogenic Normal Faults, Tectonophysics, 175, 139–157,
https://doi.org/10.1016/0040-1951(90)90135-U, 1990.
Brunet, C., Monié, P., Jolivet, L., and Cadet, J.-P.: Migration of
compression and extension in the Tyrrhenian Sea, insights from
40Ar 39Ar ages on micas along a transect from Corsica to Tuscany,
Tectonophysics, 321, 127–155, 2000.
Caggianelli, A., Zucchi, M., Bianco, C., Brogi, A., and Liotta, D.:
Estimating P-T metamorphic conditions of the roof of a hidden granitic
pluton: an example from the Mt. Calamita promontory (Elba Island, Italy),
Ital. J. Geosci., 137, 238–253, https://doi.org/10.3301/IJG.2018.11, 2018.
Caine, J. S., Evans, J. P., and Forster, C. B.: Fault zone architecture and
permeability structure, Geology, 24, 1025–1028, 1996.
Carboni, F., Viola, G., Aldega, L., Van Der Lelij, R., Brozzetti, F., and
Barchi, M. R.: K-Ar fault gouge dating of Neogene thrusting: the case of the
siliciclastic deposits of the Trasimeno Tectonic Wedge (Northern Apennines,
Italy), Ital. J. Geosci., 139, 1–13, https://doi.org/10.3301/ijg.2020.06,
2020.
Carmignani, L., Decandia, F. A., Disperati, L., Fantozzi, P. L., Lazzarotto,
A., Liotta, D., and Oggiano, G.: Relationships between the Tertiary
structural evolution of the Sardinia-Corsica-Pronencal Domain and the
Northern Apennines, Terra Nova, 7, 128–137, 1995.
Carmignani, L., Decandia, F. A., Disperati, L., Fantozzi, P. L., Kligfield,
R., Lazzarotto, A., Liotta, D., and Meccheri, M.: Inner northern Apennine,
in: Anatomy of an orogen: The Apennines and adjacent Mediderranean basins,
edited by: Vai, G. B. and Martini, I. P., 197–214, Springer-Science + Business Media, B.V., ISBN 978-90-481-4020-6,
https://doi.org/10.1007/978-94-015-9829-3, 2001.
Collettini, C.: The mechanical paradox of low-angle normal faults: Current
understanding and open questions, Tectonophysics, 510, 253–268,
https://doi.org/10.1016/j.tecto.2011.07.015, 2011.
Collettini, C. and Holdsworth, R. E.: Fault zone weakening and character of
slip along low-angle normal faults: insights from the Zuccale fault, Elba,
Italy, J. Geol. Soc., 161, 1039–1051,
https://doi.org/10.1144/0016-764903-179, 2004.
Collettini, C., Viti, C., Smith, S. A. F., and Holdsworth, R. E.:
Development of interconnected talc networks and weakening of continental
low-angle normal faults, Geology, 37, 567–570, https://doi.org/10.1130/g25645a.1, 2009.
Collettini, C., Niemeijer, A., Viti, C., Smith, S. A. F., and Marone, C.:
Fault structure, frictional properties and mixed-mode fault slip behavior,
Earth Planet. Sc. Lett., 311, 316–327,
https://doi.org/10.1016/j.epsl.2011.09.020, 2011.
Curzi, M., Aldega, L., Bernasconi, S. M., Berra, F., Billi, A., Boschi, C.,
Franchini, S., Van der Lelij, R., Viola, G., and Carminati, E.: Architecture
and evolution of an extensionally-inverted thrust (Mt. Tancia Thrust,
Central Apennines): Geological, structural, geochemical, and K–Ar
geochronological constraints, J. Struct. Geol., 104059,
https://doi.org/10.1016/j.jsg.2020.104059, 2020a.
Curzi, M., Billi, A., Carminati, E., Rossetti, F., Albert, R., Aldega, L.,
Cardello, G. L., Conti, A., Gerdes, A., Smeraglia, L., Van der Lelij, R.,
Vignaroli, G., and Viola, G.: Disproving the Presence of Paleozoic-Triassic
Metamorphic Rocks on the Island of Zannone (Central Italy): Implications for
the Early Stages of the Tyrrhenian-Apennines Tectonic Evolution, Tectonics,
39, e2020TC006296, https://doi.org/10.1029/2020tc006296, 2020b.
Dallan-Nardi, L.: Segnalazione di Lepidocydine nella parte basale dello
“pseudomacigno” delle Alpi Apuane, B. Soc. Geol.
Ital., 95, 459–477, 1977.
Daniel, J. M. and Jolivet, L.: Detachment faults and pluton emplacement;
Elba Island (Tyrrhenian Sea), B. Soc. Géol.
France, 166, 341–354, https://doi.org/10.2113/gssgfbull.166.4.341, 1995.
Decandia, F. A., Lazzarotto, A., and Liotta, D.: La “serie ridotta” nel
quadro dell'evoluzione geologica della Toscana meridionale, Memorie
Soc. Geol. Ital., 49, 181–191, 1993.
Dini, A., Innocenti, F., Rocchi, S., Tonarini, S., and Westerman, D. S.: The
magmatic evolution of the late Miocene laccolith–pluton–dyke granitic
complex of Elba Island, Italy, Geol. Mag., 139, 257–279, 2002.
Duranti, S., Palmeri, R., Pertusati, P. C., and Ricci, C. A.: Geological
evolution and metamorphic petrology of the basal sequences of eastern Elba
(Complex II), Acta Vulcanologica, 2, Marinelli Volume, 213–229, 1992.
Eberl, D. D., Środoń, J., Lee, M., Nadeau, P. H., and Northrup, H.
R.: Sericite from the Silverton caldera, Colorado: Correlation among
structure, composition, origin, and particle thickness, Am. Mineral., 72,
914–934, 1987.
Faccenna, C., Becker, T. W., Miller, M. S., Serpelloni, E., and Willett, S.
D.: Isostasy, dynamic topography, and the elevation of the Apennines of
Italy, Earth Planet. Sc. Lett., 407, 163–174,
https://doi.org/10.1016/j.epsl.2014.09.027, 2014.
Fagereng, Å., Remitti, F., and Sibson, R. H.: Incrementally developed
slickenfibers – Geological record of repeating low stress-drop seismic
events?, Tectonophysics, 510, 381–386, https://doi.org/10.1016/j.tecto.2011.08.015, 2011.
Faulkner, D. R., Lewis, A. C., and Rutter, E. H.: On the internal structure
and mechanics of large strike-slip fault zones: field observations of the
Carboneras fault in southeastern Spain, Tectonophysics, 367, 235–251,
https://doi.org/10.1016/s0040-1951(03)00134-3, 2003.
Gagnevin, D., Daly, J. S., Horstwood, M. S. A., and Whitehouse, M. J.:
In-situ zircon U–Pb, oxygen and hafnium isotopic evidence for magma mixing
and mantle metasomatism in the Tuscan Magmatic Province, Italy, Earth
Planet. Sc. Lett., 305, 45–56, https://doi.org/10.1016/j.epsl.2011.02.039, 2011.
Gundlach-Graham, A., Garofalo, P. S., Schwarz, G., Redi, D., and
Günther, D.: High-resolution, Quantitative Element Imaging of an Upper
Crust, Low-angle Cataclasite (Zuccale Fault, Northern Apennines) by Laser
Ablation ICP Time-of-Flight Mass Spectrometry, Geostand.
Geoanal. Res., 42, 559–574, https://doi.org/10.1111/ggr.12233, 2018.
Hałas, S. and Wójtowicz, A.: Propagation of error formulas for K/Ar
dating method, Geochronometria, 41, 202–206, 2014.
Hunziker, J. C., Frey, M., Clauer, N., Dallmeyer, R. D., Friedrichsen, H.,
Flehmig, W., Hochstrasser, K., Roggwiler, P., and Schwander, H.: The
evolution of illite to muscovite: mineralogical and isotopic data from the
Glarus Alps, Switzerland, Contrib. Mineral. Petr., 92,
157–180, https://doi.org/10.1007/bf00375291, 1986.
Keller, J. V. A. and Coward, M. P.: The structure and evolution of the
northern Tyrrhenian Sea, Geol. Mag., 103, 1–16, 1996.
Keller, J. V. A. and Pialli, G.: Tectonics of the Island of Elba: A
reappraisal, B. Soc. Geol. Ital., 109, 413–425,
1990.
Kligfield, R., Hunziker, J. C., Dallmeyer, R. D., and Schamel, S.: Dating
deformation phases using K-Ar and 40A 39Ar techniques: results from the
Northern Apennines, J. Struct. Geol., 8, 781–786, 1986.
Lee, J. Y., Marti, K., Severinghaus, J. P., Kawamura, K., Yoo, H. S., Lee,
J. B., and Kim, J. S.: A redetermination of the isotopic abundances of
atmospheric Ar, Geochim. Cosmochim. Ac., 70, 4507–4512, 2006.
Liotta, D., Brogi, A., Meccheri, M., Dini, A., BIanco, C., and Ruggieri, G.: Coexistence of low-angle normal and high-angle strike- to oblique-slip
faults during Late Miocene mineralization in eastern Elba Island (Italy),
Tectonophysics, 660, 17–34,
https://doi.org/10.1016/j.tecto.2015.06.025, 2015.
Lippolt, H. J., Wernicke, R. S., and Baehr, R.: Paragenetic specularite and
adularia (Elba, Italy): Concordand (U + Th)-He and K-Ar ages, Earth
Planet. Sc. Lett., 132, 43–51, 1995.
Mancktelow, N., Zwingmann, H., Campani, M., Fugenschuh, B., and Mulch, A.:
Timing and conditions of brittle faulting on the Silltal-Brenner Fault Zone,
Eastern Alps (Austria), Swiss J. Geosci., 108, 305–326,
https://doi.org/10.1007/s00015-015-0179-y, 2015.
Massa, G., Musumeci, G., Mazzarini, F., and Pieruccioni, D.: Coexistence of
contractional and extensional tectonics during the northern Apennines
orogeny: the late Miocene out-of-sequence thrust in the Elba Island nappe
stack, Geol. J., 52, 353–368, https://doi.org/10.1002/gj.2761, 2017.
Mazzarini, F., Musumeci, G., and Cruden, A. R.: Vein development during folding in the upper brittle crust: The case of
tourmaline-rich veins of eastern Elba Island, northern Tyrrhenian Sea, Italy,
J. Struct.Geol., 33, 1509–1522,
https://doi.org/10.1016/j.jsg.2011.07.001, 2011.
McDougall, I. and Wellman, P.: Calibration of GA1550 biotite standard for
K Ar and 40Ar 39Ar dating, Chem. Geol., 280, 19–25, 2011.
Montanari, L. and Rossi, M.: Evoluzione delle Uniti stratigrafico –
strutturali del Nord Appennino: 1 – L'Unità di Canetolo, B.
Soc. Geol. Ital., 101, 275–289, 1982.
Moore, D. M. and Reynolds, R. C. J.: X-ray diffraction and the
identification and analysis of clay minerals, Oxford University Press,
Oxford, 378 pp., ISBN 9780195087130, 1997.
Musumeci, G. and Vaselli, L.: Neogene deformation and granite emplacement in
the metamorphic units of northern Apennines (Italy): Insights from mylonitic
marbles in the Porto Azzurro pluton contact aureole (Elba Island),
Geosphere, 8, 470–490, https://doi.org/10.1130/Ges00665.1, 2012.
Musumeci, G., Mazzarini, F., and Cruden, A. R.: The Zuccale Fault, Elba
Island, Italy: A new perspective from fault architecture, Tectonics, 34,
1195–1218, https://doi.org/10.1002/2014tc003809, 2015.
Papeschi, S. and Musumeci, G.: Fluid assisted strain localization in quartz
at the brittle/ductile transition, Geochem. Geophy. Geosy., 20, 3044–3064,
https://doi.org/10.1029/2019gc008270, 2019.
Papeschi, S., Musumeci, G., and Mazzarini, F.: Heterogeneous brittle-ductile
deformation at shallow crustal levels under high thermal conditions: The
case of a synkinematic contact aureole in the inner northern Apennines,
southeastern Elba Island, Italy, Tectonophysics, 717, 547–564,
https://doi.org/10.1016/j.tecto.2017.08.020, 2017.
Papeschi, S., Musumeci, G., Massonne, H. J., Bartoli, O., and Cesare, B.:
Partial melting and strain localization in metapelites at very low-pressure
conditions: The northern Apennines magmatic arc on the Island of Elba,
Italy, Lithos, 350/351, 105230, https://doi.org/10.1016/j.lithos.2019.105230, 2019.
Papeschi, S., Musumeci, G., Massonne, H. J., Mazzarini, F., Ryan, E. J., and
Viola, G.: High-P (P = 1.5–1.8 GPa) blueschist from Elba: Implications for
underthrusting and exhumation of continental units in the Northern
Apennines, J. Metamor. Geol., 38, 495–525, https://doi.org/10.1111/jmg.12530,
2020.
Papeschi, S., Ryan, E., Musumeci, G., Mazzarini, F., Garofalo, P. S., and
Viola, G.: Geology of the Northern Apennines nappe stack on eastern Elba
(Italy): new insights on the Neogene orogenic evolution of the Northern
Tyrrhenian Sea, J. Maps, 17, 519–532, https://doi.org/10.1080/17445647.2021.1972854,
2021.
Perrin, M.: L'Ile d'Elbe et la limite Alpes-Apennin: données sur la
structure géologique et l'evolution tectogénétique de l'Elbe
alpine et de l'Elbe apennine, B. Soc. Geol.
Ital., 94, 1929–1955, 1975.
Pertusati, P. C., G., R., Ricci, C. A., Duranti, S., and Palmeri, R.:
Evoluzione post-collisionale dell'Elba centtro-orientale, Mem. Soc. Geol.
It, 49, 297–312, 1993.
Pevear, D. R.: Illite and hydrocarbon exploration, P.
Natl. Acad. Sci. USA, 96, 3440–3446, 1999.
Renne, P. R., Deino, A. L., Hames, W. E., Heizler, M. T., Hemming, S. R.,
Hodges, K. V., Koppers, A. A. P., Mark, D. F., Morgan, L. E., and Phillips,
D.: Data reporting norms for 40Ar/39Ar geochronology, Quat.
Geochronol., 4, 346–352, https://doi.org/10.1016/j.quageo.2009.06.005, 2009.
Ryan, E., Papeschi, S., Viola, G., Musumeci, G., Mazzarini, F., Torgersen,
E., Sørensen, B. E., and Ganerød, M.: Syn-orogenic exhumation of
high-P units by upward extrusion in an accretionary wedge: Insights from the
Eastern Elba nappe stack (Northern Apennines, Italy), Tectonics, 40, e2020TC006348,
https://doi.org/10.1029/2020tc006348, 2021.
Scheiber, T., Viola, G., van der Lelij, R., Margreth, A., and
Schönenberger, J.: Microstructurally-constrained versus bulk fault gouge
K-Ar dating, J. Struct. Geol., 127, 103868, https://doi.org/10.1016/j.jsg.2019.103868,
2019.
Schumacher, E.: Herstellung von 99, 9997 % 38Ar für die 40K 40Ar
Geochronologie, Geochronologia Chimia, 24, 441–442, 1975.
Scuderi, M. M., Tinti, E., Cocco, M., and Collettini, C.: The Role of Shear
Fabric in Controlling Breakdown Processes During Laboratory Slow-Slip
Events, J. Geophys. Res.-Sol. Ear., 125, e2020JB020405,
https://doi.org/10.1029/2020jb020405, 2020.
Sibson, R. H.: Fault rocks and fault mechanisms, J. Geol.
Soc., 133, 191–213, https://doi.org/10.1144/gsjgs.133.3.0191, 1977.
Smith, S. A. F. and Faulkner, D. R.: Laboratory measurements of the
frictional properties of the Zuccale low-angle normal fault, Elba Island,
Italy, J. Geophys. Res., 115, B02407, https://doi.org/10.1029/2008jb006274, 2010.
Smith, S. A. F., Holdsworth, R. E., and Collettini, C.: Interactions between
low-angle normal faults and plutonism in the upper crust: Insights from the
Island of Elba, Italy, Geol. Soc. Am. Bull., 123, 329–346,
https://doi.org/10.1130/b30200.1, 2011a.
Smith, S. A. F., Holdsworth, R. E., Collettini, C., and Pearce, M. A.: The
microstructural character and mechanical significance of fault rocks
associated with a continental low-angle normal fault: The Zuccale Fault,
Elba Island, Italy, in: Geological Society of London Special Publication:
Geology of the Earthquake Source: A Volume in Honour of Rick Sibson, edited
by: Fagereng, Å., Toy, V. G., and Rawland, J. V., Geol. Soc.
Lond., 359, 97–113, https://doi.org/10.1144/SP359.6, 2011b.
Spiess, R., Langone, A., Caggianelli, A., Stuart, F. M., Zucchi, M., Bianco, C., Brogi, A., and Liotta, D.:
Unveiling ductile deformation during fast exhumation of a granitic pluton in a transfer zone,
J. Struct. Geol., 147, 104326, https://doi.org/10.1016/j.jsg.2021.104326, 2021.
Steiger, R. and Jäger, E.: Subcommission on geochronology: convention on
the use of decay constants in geo-and cosmochronology, Earth Planet.
Sc. Lett., 36, 359–362, 1977.
Stober, I. and Bucher, K.: Hydraulic conductivity of fractured upper crust:
insights from hydraulic tests in boreholes and fluid-rock interaction in
crystalline basement rocks, Geofluids, 15, 161–178, https://doi.org/10.1111/gfl.12104, 2015.
Tartaglia, G., Viola, G., van der Lelij, R., Scheiber, T., Ceccato, A., and
Schönenberger, J.: “Brittle structural facies” analysis: A diagnostic
method to unravel and date multiple slip events of long-lived faults, Earth
Planet. Sc. Lett., 545, 116420, https://doi.org/10.1016/j.epsl.2020.116420, 2020.
Tesei, T., Collettini, C., Barchi, M. R., Carpenter, B. M., and Di Stefano,
G.: Heterogeneous strength and fault zone complexity of carbonate-bearing
thrusts with possible implications for seismicity, Earth Planet.
Sc. Lett., 408, 307–318, https://doi.org/10.1016/j.epsl.2014.10.021, 2014.
Torgersen, E. and Viola, G.: Structural and temporal evolution of a
reactivated brittle-ductile fault – Part I: Fault architecture, strain
localization mechanisms and deformation history, Earth Planet. Sc.
Lett., 407, 205–220, https://doi.org/10.1016/j.epsl.2014.09.019, 2014.
Torgersen, E., Viola, G., Zwingmann, H., and Harris, C.: Structural and
temporal evolution of a reactivated brittle-ductile fault – Part II: Timing
of fault initiation and reactivation by K-Ar dating of synkinematic
illite/muscovite, Earth Planet. Sc. Lett., 410, 212–224,
https://doi.org/10.1016/j.epsl.2014.11.013, 2015a.
Torgersen, E., Viola, G., Zwingmann, H., and Henderson, I. H. C.: Inclined
K-Ar illite age spectra in brittle fault gouges: effects of fault
reactivation and wall-rock contamination, Terra Nova, 27, 106–113,
https://doi.org/10.1111/ter.12136, 2015b.
Trevisan, L.: L'Elba orientale e la sua tettonica di scivolamento per
gravità, Memorie Istituto Geologia Università Padova, 16, 5–39,
1950.
Vai, G. B. and Martini, I. P. (Eds.): Anatomy of an Orogen: The Apennines
and Adjacent Mediterranean Basins, 637 pp., Springer-Science + Business Media, B.V., ISBN 978-90-481-4020-6,
https://doi.org/10.1007/978-94-015-9829-3,
2001.
Vignaroli, G., Viola, G., Diamanti, R., Zuccari, C., Garofalo, P. S.,
Bonini, S., and Selli, L.: Multistage strain localisation and fluid-assisted
cataclasis in carbonate rocks during the seismic cycle: Insights from the
Belluno Thrust (eastern Southern Alps, Italy), J. Struct.
Geol., 141, 104216, https://doi.org/10.1016/j.jsg.2020.104216, 2020.
Viola, G., Zwingmann, H., Mattila, J., and Kapyaho, A.: K-Ar illite age
constraints on the Proterozoic formation and reactivation history of a
brittle fault in Fennoscandia, Terra Nova, 25, 236–244, https://doi.org/10.1111/ter.12031,
2013.
Viola, G., Scheiber, T., Fredin, O., Zwingmann, H., Margreth, A., and Knies,
J. M.: Deconvoluting complex structural histories archived in brittle fault
zones, Nat. Commun., 7, 13448, https://doi.org/10.1038/ncomms13448,
2016.
Viola, G., Torgersen, E., Mazzarini, F., Musumeci, G., van der Lelij, R.,
Schönenberger, J., and Garofalo, P. S.: New Constraints on the Evolution
of the Inner Northern Apennines by K-Ar Dating of Late Miocene-Early
Pliocene Compression on the Island of Elba, Italy, Tectonics, 37, 3229–3243,
https://doi.org/10.1029/2018tc005182, 2018.
Volpe, G., Pozzi, G., Carminati, E., Barchi, M. R., Scuderi, M. M., Tinti,
E., Aldega, L., Marone, C., and Collettini, C.: Frictional controls on the
seismogenic zone: Insights from the Apenninic basement, Central Italy, Earth
Planet. Sci. Lett., 583, 117444, https://doi.org/10.1016/j.epsl.2022.117444,
2022.
Wang, Y., Zwingmann, H., Zhou, L. Y., Lo, C. H., Viola, G., and Hao, J. H.:
Direct dating of folding events by Ar40 Ar39 analysis of
synkinematic muscovite from flexural-slip planes, J. Struct.
Geol., 83, 46–59, https://doi.org/10.1016/j.jsg.2015.12.003, 2016.
Westerman, D. S., Dini, A., Innocenti, F., and Rocchi, S.: Rise and fall of
a nested Christmas-tree laccolith complex, Elba Island, Italy, in: Physical
Geology of High-Level Magmatic Systems, edited by: Breitkreuz, C. and
Petford, N., Geol. Soc. Lond., 234, 195–213, 2004.
Wibberley, C. A. J. and Shimamoto, T.: Internal structure and permeability
of major strike-slip fault zones: the Median Tectonic Line in Mie
Prefecture, Southwest Japan, J. Struct. Geol., 25, 59–78,
https://doi.org/10.1016/S0191-8141(02)00014-7, 2003.
Wise, D. U., Dunn, D. E., Engelder, J. T., Geiser, P. A., Hatcher, R.D.,
Kish, S. A., Odom, A. L., and Schamel, S.: Fault-related rocks: Suggestions
for terminology, Geology, 12, 391–394,
https://doi.org/10.1130/0091-7613(1984)12<391:FRSFT>2.0.CO;2, 1984.
Short summary
A structural-geochronological approach helps to unravel the Zuccale Fault's architecture. By mapping its internal structure and dating some of its fault rocks, we constrained a deformation history lasting 20 Myr starting at ca. 22 Ma. Such long activity is recorded by now tightly juxtaposed brittle structural facies, i.e. different types of fault rocks. Our results also have implications on the regional evolution of the northern Apennines, of which the Zuccale Fault is an important structure.
A structural-geochronological approach helps to unravel the Zuccale Fault's architecture. By...