Articles | Volume 13, issue 6
https://doi.org/10.5194/se-13-975-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-975-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Structural diagenesis in ultra-deep tight sandstones in the Kuqa Depression, Tarim Basin, China
State Key Laboratory of Petroleum Resources and Prospecting, China
University of Petroleum (Beijing), Beijing 102249, China
College of Geosciences, China University of Petroleum (Beijing), Beijing
102249, China
Dong Li
State Key Laboratory of Petroleum Resources and Prospecting, China
University of Petroleum (Beijing), Beijing 102249, China
Yong Ai
Research Institute of Petroleum Exploration and Development, Tarim
Oilfield Company, CNPC, Korla 841000, Xinjiang, China
Hongkun Liu
State Key Laboratory of Petroleum Resources and Prospecting, China
University of Petroleum (Beijing), Beijing 102249, China
Deyang Cai
Research Institute of Petroleum Exploration and Development, Tarim
Oilfield Company, CNPC, Korla 841000, Xinjiang, China
Kangjun Chen
State Key Laboratory of Petroleum Resources and Prospecting, China
University of Petroleum (Beijing), Beijing 102249, China
Yuqiang Xie
State Key Laboratory of Petroleum Resources and Prospecting, China
University of Petroleum (Beijing), Beijing 102249, China
Guiwen Wang
CORRESPONDING AUTHOR
State Key Laboratory of Petroleum Resources and Prospecting, China
University of Petroleum (Beijing), Beijing 102249, China
College of Geosciences, China University of Petroleum (Beijing), Beijing
102249, China
Related authors
No articles found.
Yang Su, Jin Lai, Wenle Dang, Xinjian Zhao, Chuang Han, Yongjia Zhang, Zhongrui Wang, Lei Wang, and Guiwen Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2749, https://doi.org/10.5194/egusphere-2025-2749, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
This study integrates geological and geophysical data to examine controls of sedimentary factors, earth stress (paleostress, in-situ stress), and tectonic structure on fracture distribution in deep and ultra-deep sandstones in Kuqa Depression. Key findings show fracture density increases with sandbody thickness and paleostress magnitude, is higher near faults and fold hinges, and is favored by thinner sand-mud interbeds. Increased in-situ stress contributes to reduced fracture apertures.
Cited articles
Ameen, M. S. and Hailwood, E. A.: A new technology for the characterization
of microfractured reservoirs (test case: Unayzah reservoir, Wudayhi field,
Saudi Arabia), AAPG Bull., 92, 31–52, https://doi.org/10.1306/08200706090, 2008.
Ameen, M. S., MacPherson, K., Al-Marhoon, M. I., and Rahim, Z.: Diverse
fracture properties and their impact on performance in conventional and
tight-gas reservoirs, Saudi Arabia: The Unayzah, South Haradh case study,
AAPG Bull., 96, 459–492, https://doi.org/10.1306/06011110148, 2012.
Baqués, V., Ukar, E., Laubach, S. E., Forstner, S. R., and Fall, A.:
Fracture, dissolution, and cementation events in Ordovician carbonate
reservoirs, Tarim basin, NW China, Geofluids, 2020, 9037429, https://doi.org/10.1155/2020/9037429, 2020.
Bell, J. S. and Gough, D. I.: Northeast-southwest compressive stress in
Alberta: evidence from oil wells, Earth Planet. Sci. Lett., 45, 475–482,
https://doi.org/10.1016/0012-821X(79)90146-8, 1979.
Bruna, V. L., Lamarche, J., Agosta, F., Rustichelli, A., Giuffrida, A.,
Salardon, R., and Marié, L.: Structural diagenesis of shallow platform
carbonates: Role of early embrittlement on fracture setting and
distribution, case study of Monte Alpi (Southern Apennines, Italy), J.
Struct. Geol., 131, 103940, https://doi.org/10.1016/j.jsg.2019.103940, 2020.
Chen, J. F., Xu, Y. C., and Huang, D. F.: Geochemical Characteristics and
Origin of Natural Gas in Tarim Basin, China, AAPG Bull., 84, 591–606,
https://doi.org/10.1306/C9EBCE5F-1735-11D7-8645000102C1865D, 2000.
Del Sole, L., Antonellini, M., Soliva, R., Ballas, G., Balsamo, F., and Viola, G.: Structural control on fluid flow and shallow diagenesis: insights from calcite cementation along deformation bands in porous sandstones, Solid Earth, 11, 2169–2195, https://doi.org/10.5194/se-11-2169-2020, 2020.
Dixit, N. C., Hanks, C. L., Wallace, W. K., Ahmadi, M., and Awoleke, O.: In
situ stress variations associated with regional changes in tectonic setting,
northeastern Brooks Range and eastern North Slope of Alaska, AAPG Bull.,
101, 343–360, https://doi.org/10.1306/08051616013, 2017.
Eaton, B. A.: Fracture gradient prediction and its application in oilfield operations, J. Petrol. Techn., 246, 1353–60, 1969.
Feng, J., Ren, Q., and Xu, K.: Quantitative prediction of fracture
distribution using geomechanical method within Kuqa Depression, Tarim Basin,
NW China, J. Pet. Sci. Eng., 162, 22–34, https://doi.org/10.1016/j.petrol.2017.12.006,
2018.
Feng, Q. F., Xiao, Y. X., Hou, X. L., Chen, H. K., Wang, Z. C., Feng, Z.,
Tian, H., and Jiang, H.: Logging identification method of depositional facies in
Sinian Dengying formation of the Sichuan Basin, Pet. Sci., 18, 1086–1096,
https://doi.org/10.1016/j.petsci.2020.10.002, 2021.
Ferraro, F., Agosta, F., Ukar, E., Grieco, D. S., Cavalcante, F., Belviso,
C., and Prosser, G.: Structural diagenesis of carbonate fault rocks exhumed
from shallow crustal depths: An example from the central-southern Apennines,
Italy, J. Struct. Geol., 122, 58–80, https://doi.org/10.1016/j.jsg.2019.02.008, 2019.
Fu, Q.: Characterization and discrimination of paleokarst breccias and
pseudobreccias in carbonate rocks: Insight from Ordovician strata in the
northern Tarim Basin, China, Sediment. Geol., 382, 61–74, https://doi.org/10.1016/j.sedgeo.2019.01.007, 2019.
Gao, Z., Liu, Z., Gao, S., Ding, Q., Wu, S., and Liu, S.: Characteristics
and genetic models of Lower Ordovician carbonate reservoirs in southwest
Tarim Basin, NW China, J. Pet. Sci. Eng., 144, 99–112, https://doi.org/10.1016/j.petrol.2016.03.007, 2016.
Haile, B. G., Klausen, T. G. Czarniecka, U., Xi, K., Jahren, J., and
Hellevang, H.: How are diagenesis and reservoir quality linked to
depositional facies? A deltaic succession, Edgeøya, Svalbard, Mar. Pet.
Geol., 92, 519–546, https://doi.org/10.1016/j.marpetgeo.2017.11.019, 2018.
Hassani, A. H., Veyskarami, M., Al-Ajmi, A. M., and Masihi, M.: A modified
method for predicting the stresses around producing boreholes in an
isotropic in-situ stress field, Int. J. Rock Mech. Min. Sci., 96, 85–93,
https://doi.org/10.1016/j.ijrmms.2017.02.011, 2017.
Houseknecht, D. W.: Assessing the relative importance of compaction processes
and cementation to reduction of porosity in sandstones, AAPG Bull., 71,
633–642, https://doi.org/10.1306/9488787F-1704-11D7-8645000102C1865D, 1987.
Iqbal, O., Ahmad, M., and Kadir, A.: Effective evaluation of shale gas
reservoirs by means of an integrated approach to petrophysics and
geomechanics for the optimization of hydraulic fracturing: A case study of
the Permian Roseneath and Murteree Shale Gas reservoirs, Cooper Basin,
Australia, J. Nat. Gas Sci. Eng., 58, 34–58, https://doi.org/10.1016/j.jngse.2018.07.017, 2018.
Jia, C. Z. and Li, Q.: Petroleum geology of Kela–2, the most productive
gas field in China, Mar. Pet. Geol., 25, 335–343, https://doi.org/10.1016/j.marpetgeo.2008.01.002, 2008.
Jiang, L., Cai, C., Worden, R. H., Crowley, S. F., Jia, L., Zhang, K., and
Duncan, I. J.: Multiphase dolomitization of deeply buried Cambrian petroleum
reservoirs, Tarim Basin, north-west China, Sedimentology, 63, 2130–2157,
https://doi.org/10.1111/sed.12300, 2016.
Jin, Z. J., Yang M. H., Lu X. X., Sun D. S., Tang X., Peng G. X., and Lei G.
L.: The tectonics and petroleum system of the Qiulitagh fold and thrust
belt, northern Tarim basin, NW China, Mar. Pet. Geol., 25, 767–777, https://doi.org/10.1016/j.marpetgeo.2008.01.011, 2008.
Ju W. and Wang K.: A preliminary study of the present-day in-situ stress
state in the Ahe tight gas reservoir, Dibei Gasfield, Kuqa Depression, Mar.
Pet. Geol., 96, 154–165, https://doi.org/10.1016/j.marpetgeo.2018.05.036, 2018.
Ju, W., Shen, J., Qin, Y., Meng, S., Wu, C., Shen, Y., Yang Z., Li G., and
Li, C.: In-situ stress state in the Linxing region, eastern Ordos basin,
china: implications for unconventional gas exploration and production, Mar.
Pet. Geol., 86, 66–78, https://doi.org/10.1016/j.marpetgeo.2017.05.026, 2017.
Keeton, G., Pranter, M., Cole, R. D., and Gustason, E. R.: Stratigraphic
architecture of fluvial deposits from borehole images, spectral-gamma-ray
response, and outcrop analogs, Piceance Basin, Colorado, AAPG Bull., 99,
1929–1956, https://doi.org/10.1306/05071514025, 2015.
Khoshbakht, F., Memarian, H., and Mohammadnia, M.: Comparison of Asmari,
Pabdeh and Gurpi formation's fractures, derived from image log, J. Pet. Sci.
Eng., 67, 65–74, https://doi.org/10.1016/j.petrol.2009.02.011, 2009.
Khoshbakht, F., Azizzadeh, M., Memarian, H., Nourozi, G. H., and Moallemi,
S. A.: Comparison of electrical image log with core in a fractured carbonate
reservoir, J. Pet. Sci. Eng., 86–87, 289–296, https://doi.org/10.1016/j.petrol.2012.03.007, 2012.
Lai, J. and Wang, G.: Fractal analysis of tight gas sandstones using
High-Pressure Mercury Intrusion techniques, J. Nat. Gas Sci. Eng., 24,
185–196, https://doi.org/10.1016/j.jngse.2015.03.027, 2015.
Lai, J., Wang, G., Chai, Y., Ran, Y., and Zhang, X.: Depositional and
diagenetic controls on reservoir pore structure of tight gas sandstones:
Evidence from Lower Cretaceous Bashijiqike Formation in Kelasu Thrust Belts,
Kuqa Depression in Tarim Basin of West China, Resour. Geol., 65, 55–75,
https://doi.org/10.1111/rge.12061, 2015.
Lai, J., Wang, G., Chai, Y., Xin, Y., Wu, Q., Zhang, X., and Sun, Y.: Deep
burial diagenesis and reservoir quality evolution of high-temperature,
high-pressure sandstones: Examples from Lower Cretaceous Bashijiqike
Formation in Keshen area, Kuqa depression, Tarim basin of China, AAPG Bull.,
101, 829–862, https://doi.org/10.1306/08231614008, 2017a.
Lai, J., Wang, G., Fan, Z., Wang, Z., Chen, J., Zhou, Z., Wang, S., and
Xiao, C.: Fracture detection in oil-based drilling mud using a combination
of borehole image and sonic logs, Mar. Pet. Geol., 84, 195–214, https://doi.org/10.1016/j.marpetgeo.2017.03.035, 2017b.
Lai, J., Wang, G., Wang, S., Cao, J., Li, M., Pang, X., Han, C., Fan, X.,
Yang, L., He, Z., and Qin, Z.: A review on the applications of image logs in
structural analysis and sedimentary characterization, Mar. Pet. Geol., 95,
139–166, https://doi.org/10.1016/j.marpetgeo.2018.04.020, 2018.
Lai, J., Li, D., Wang, G., Xiao, C., Hao, X., Luo, Q., Lai, L., and Qin, Z.:
Earth stress and reservoir quality evaluation in high and steep structure:
The Lower Cretaceous in the Kuqa Depression, Tarim Basin, China, Mar. Pet.
Geol., 101, 43–54, https://doi.org/10.1016/j.marpetgeo.2018.11.036, 2019a.
Lai, J., Li, D., Wang, G., Xiao, C., Cao, J., Wu, C., Han, C., Zhao, X., and
Qin, Z.: Can carbonate cementation be inhibited in continental red bed
sandstone?, J. Pet. Sci. Eng., 179, 1123–1135,
https://doi.org/10.1016/j.petrol.2019.05.015, 2019b.
Lai, J., Liu, S., Xin, Y., Wang, S., Xiao, C., Song, Q., Chen, X., Wang, G.,
Qin, Z., and Ding, X.: Geological-petrophysical insights in the deep Cambrian
dolostone reservoirs in Tarim Basin, China, AAPG Bull., 105, 2263–2296,
https://doi.org/10.1306/03122119135, 2021a.
Lai, J., Chen, K., Xin, Y., Wu, X., Chen, X., Yang, K., Song, Q., Wang, G.,
and Ding, X.: Fracture characterization and detection in the deep Cambrian
dolostones in the Tarim Basin, China: Insights from borehole image and sonic
logs, J. Pet. Sci. Eng., 196, 107659, https://doi.org/10.1016/j.petrol.2020.107659,
2021b.
Lai, J., Liu, B., Li, H., Pang, X., Liu, S., Bao, M., and Wang, G.: Bedding parallel fractures in fine-grained sedimentary rocks: Recognition, formation mechanisms, and prediction using well log, Petrol. Sci., 19, 554–569, https://doi.org/10.1016/j.petsci.2021.10.017, 2022.
Laubach, S. E., Olson, J. E., and Gale, J. F. W.: Are open fractures
necessarily aligned with maximum horizontal stress?, Earth Planet. Sci.
Lett., 222, 191–195, https://doi.org/10.1016/j.epsl.2004.02.019, 2004.
Laubach, S. E., Eichhubl, P., Hilgers, C., and Lander, R. H.: Structural
diagenesis. J. Struct. Geol., 32, 1866–1872, https://doi.org/10.1016/j.jsg.2010.10.001, 2010.
Laubach, S. E., Lamarche, J., Gauthier, B. D. M., Dunne, W. M., and
Sanderson, D. J.: Spatial arrangement of faults and opening-mode fractures,
J. Struct. Geol., 108, 2–15, https://doi.org/10.1016/j.jsg.2017.08.008, 2018.
Laubach, S. E., Lander, R. H., Criscenti, L. J., Anovitz, L. M., Urai, J.
L., Pollyea, R. M., Hooker, J. N., Narr, W., Evans, M. A., Kerisit, S. N.,
Olson, J. E., Dewers, T., Fisher, D., Bodnar, R., Evans, B., Dove, P.,
Bonnell, L. M., Marder, M. P., and Pyrak-Nolte L.: The role of chemistry in
fracture pattern development and opportunities to advance interpretations of
geological materials, Rev. Geophys., 57, 1065–1111, https://doi.org/10.1029/2019RG000671, 2019.
Lima, R. D. and DeRos, L. F.: The role of depositional setting and
diagenesis on the reservoir quality of Devonian sandstones from the
Solimões Basin, Brazilian Amazonia, Mar. Pet. Geol., 19, 1047–1071,
https://doi.org/10.1016/S0264-8172(03)00002-3, 2002.
Lyu, W., Zeng, L., Liu, Z., Liu, G., and Zu, K.: Fracture responses of
conventional logs in tight-oil sandstones: a case study of the Upper
Triassic Yanchang Formation in southwest Ordos Basin, China, AAPG Bull.,
100, 1399–1417, https://doi.org/10.1306/04041615129, 2016.
Lyu, W., Zeng, L., Zhang, B., Miao, F., Lyu, P., and Dong, S.: Influence of
natural fractures on gas accumulation in the Upper Triassic tight gas
sandstones in the northwestern Sichuan Basin, China, Mar. Pet. Geol., 83,
60–72, https://doi.org/10.1016/j.marpetgeo.2017.03.004, 2017.
Maleki, S., Moradzadeh, A., Riabi, R. G., and Sadaghzadeh, F.: Comparison of
several different methods of in situ stress determination, Int. J. Rock
Mech. Min. Sci., 71, 395–404, https://doi.org/10.1016/j.ijrmms.2014.07.010, 2014.
Mansurbeg, H., Morad, S., Salem, A., Marfil, R., El-ghali, M. A. K.,
Nystuen, J. P., Caja, M. A., Amorosi, A., Garcia, G., and Iglesia, A. L.:
Diagenesis and reservoir quality evolution of palaeocene deep–water, marine
sandstones, the Shetland–Faroes Basin, British continental shelf, Mar. Pet.
Geol., 25, 514–543, https://doi.org/10.1016/j.marpetgeo.2007.07.012, 2008.
Massiot, C., Mcnamara, D. D., and Lewis, B.: Processing and analysis of high
temperature geothermal acoustic borehole image logs in the Taupo volcanic
zone, New Zealand, Geothermics, 53, 190–201, https://doi.org/10.1016/j.geothermics.2014.05.010, 2015.
Matonti, C., Guglielmi, Y., Viseur, S., Garambois, S., and Marié, L.:
P-wave velocity anisotropy related to sealed fractures reactivation tracing
the structural diagenesis in carbonates, Tectonophysics, 705, 80–92, https://doi.org/10.1016/j.tecto.2017.03.019, 2017.
Neng, Y., Xie, H., Yin, H., Li, Y., and Wang, W.: Effect of basement
structure and salt tectonics on deformation styles along strike: An example
from the Kuqa fold–thrust belt, West China, Tectonophysics, 730, 114–131,
https://doi.org/10.1016/j.tecto.2018.02.006, 2018.
Nian, T., Wang, G., Xiao, C., Zhou, L., Deng, L., and Li, R.: The in situ
stress determination from borehole image logs in the Kuqa Depression, J.
Nat. Gas Sci. Eng., 34, 1077–1084, https://doi.org/10.1016/j.jngse.2016.08.005, 2016.
Nian, T., Jiang, Z., Wang, G., Xiao, C., He, W., Fei, L., and He, Z.:
Characterization of braided river-delta facies in the Tarim Basin Lower
Cretaceous: Application of borehole image logs with comparative outcrops and
cores, Mar. Pet. Geol., 97, 1–23, https://doi.org/10.1016/j.marpetgeo.2018.06.024,
2018.
Nian, T., Wang, G., Tan, C., Fei, L., He, W., and Wang, S.: Hydraulic
apertures of barren fractures in tight-gas sandstones at depth: Image-core
calibration in the lower cretaceous Bashijiqike Formation, Tarim Basin, J.
Pet. Sci. Eng., 196, 108016, https://doi.org/10.1016/j.petrol.2020.108016, 2021.
Nie, X., Zou, C., Pan, L., Huang, Z., and Liu, D.: Fracture analysis and
determination of in-situ stress direction from resistivity and acoustic
image logs and core data in the Wenchuan Earthquake Fault Scientific
Drilling Borehole-2 (50–1370 m), Tectonophysics, 593, 161–171, https://doi.org/10.1016/j.tecto.2013.03.005, 2013.
Ozkan, A., Cumella, S. P., Milliken, K. L., and Laubach, S. E.: Prediction of
lithofacies and reservoir quality using well logs, Late Cretaceous Williams
Fork Formation, Mamm Creek field, Piceance Basin, Colorado, AAPG Bull.,
95, 1699–1723, https://doi.org/10.1306/01191109143, 2011.
Qiu, N. S., Chang, J., Zuo, Y. H., Wang, J. Y, and Li, H. L.: Thermal evolution
and maturation of lower Paleozoic source rocks in the Tarim Basin, northwest
China, AAPG Bull., 96, 789–821, https://doi.org/10.1306/09071111029, 2012.
Rajabi, M., Sherkati, S., Bohloli, B., and Tingay, M.: Subsurface fracture analysis and determination of in-situ stress direction using FMI logs: An example from the Santonian carbonates (Ilam Formation) in the Abadan Plain, Iran, Tectonophysics, 492, 192–200, 2010.
Rodrigues, R. S., Alves da Silva, F. C., and Córdoba, V. C.: Evolution of
deformation bands, insights from structural diagenesis, J. Struct. Geol.,
143, 104257, https://doi.org/10.1016/j.jsg.2020.104257, 2021.
Shen, Y., Lü, X., Guo, S., Song, X., and Zhao, J.: Effective evaluation
of gas migration in deep and ultra-deep tight sandstone reservoirs of Keshen
structural belt, Kuqa depression, J. Nat. Gas Sci. Eng., 46, 119–131, https://doi.org/10.1016/j.jngse.2017.06.033, 2017.
Tingay, M. R. P., Hillis, R. R., Morley, C. K., King, R. C., Swarbrick, R.
E., and Damit, A. R.: Present-day stress and neotectonics of Brunei:
implications for petroleum exploration and production, AAPG Bull., 93,
75–100, https://doi.org/10.1306/08080808031, 2009.
Ukar, E. and Laubach, S. E.: Syn- and postkinematic cement textures in
fractured carbonate rocks: Insights from advanced cathodoluminescence
imaging, Tectonophysics, 690, 190–205, https://doi.org/10.1016/j.tecto.2016.05.001, 2016.
Ukar, E., Baqués, V., Laubach, S. E., and Marrett, R.: The nature and
origins of decameter-scale porosity in Ordovician carbonate rocks,
Halahatang oilfield, Tarim Basin, China, J. Geol. Soc., 177, 1074–1091,
https://doi.org/10.1144/jgs2019-156, 2020.
Vandeginste, V., Swennen, R., Allaeys, M., Ellam, R. M., Osadetz, K., and Roure,
F.: Challenges of structural diagenesis in foreland fold-and-thrust belts: A
case study on paleofluid flow in the Canadian Rocky Mountains West of
Calgary, Mar. Pet. Geol., 35, 235–251, https://doi.org/10.1016/j.marpetgeo.2012.02.014,
2012.
Verweij, J. M., Boxem, T. A. P., and Nelskamp, S.: 3D spatial variation in
vertical stress in on- and offshore Netherlands; integration of density log
measurements and basin modeling results, Mar. Pet. Geol., 78, 870–882, https://doi.org/10.1016/j.marpetgeo.2016.06.016, 2016.
Wang, J., Wang, H., Chen, H., Jiang, S., and Zhao, S.: Responses of two
lithosomes of Lower Cretaceous coarse clastic rocks to tectonism in Kuqa
foreland sub–basin, Northern Tarim Basin, Northwest China, Sediment. Geol.,
289, 182–193, https://doi.org/10.1016/j.sedgeo.2013.03.001, 2013.
Wang, J., Zeng, L., Yang, X., Liu, C., Wang, K., Zhang, R., Chen, X., Qu,
Y., Laubach, S. E., and Wang, Q.: Fold-related fracture distribution in
Neogene, Triassic, and Jurassic sandstone outcrops, northern margin of the
Tarim Basin, China: Guides to deformation in ultradeep tight sandstone
reservoirs, Lithosphere, 8330561, https://doi.org/10.2113/2021/8330561, 2021.
Wei, G., Wang, J., Zeng, L., Tang, Y., Wang, K., Liu, T., and Yang, Y.:
Structural reworking effects and new exploration discoveries of subsalt
ultra-deep reservoirs in the Kelasu tectonic zone, Natural Gas Industry,
40, 20–30, https://doi.org/10.3787/j.issn.1000-0976.2020.01.003, 2020 (in Chinese).
Wilson, T. H., Smith, V., and Brown, A.: Developing a model discrete
fracture network, drilling, and enhanced oil recovery strategy in an
unconventional naturally fractured reservoir using integrated field, image
log, and three-dimensional seismic data, AAPG Bull., 99, 735–762, https://doi.org/10.1306/10031414015, 2015.
Wu, G. H., Xie, E., Zhang, Y. F., Qing, H. R., Luo, X. S., and Sun, C.:
Structural diagenesis in carbonate rocks as identified in fault damage zones
in the Northern Tarim Basin, NW China, Minerals, 9, 360, https://doi.org/10.3390/min9060360, 2019.
Xin, Y., Wang, G., Liu, B., Ai, Y., Cai, D., Yang, S., Liu, H., Xie, Y., and Chen, K.: Pore structure evaluation in ultra-deep tight sandstones using NMR measurements and fractal analysis, J. Pet. Sci. Eng., 211, 110180, https://doi.org/10.1016/j.petrol.2022.110180, 2022.
Yeltsov, I. N., Nazarova, L. A., Nazarov, L. A., Nesterova, G. V., Sobolev,
A. Y., and Epov, M. I.: Geomechanics and fluid flow effects on electric well
logs: multiphysics modeling, Russ. Geol. Geophys., 55, 775–783, https://doi.org/10.1016/j.rgg.2014.05.020, 2014.
Zhang, H., Yin, G., Wang, Z., and Wang, H.: Fracability Evaluation of
Deep? Burial Fractured Sandstone Gas Reservoir in Kuqa Depression, Xinjiang
Petroleum Geology, 40, 108–115, 2019.
Zhang, J. C.: Pore pressure prediction from well logs: Methods,
modifications, and new approaches, Earth-Sci. Rev., 108, 50–63, https://doi.org/10.1016/j.earscirev.2011.06.001, 2011.
Zhang, J., Qin, L., and Zhang, Z.: Depositional facies, diagenesis and their
impact on the reservoir quality of Silurian sandstones from Tazhong area in
central Tarim Basin, western China, J. Asian Earth Sci., 33, 42–60, https://doi.org/10.1016/j.jseaes.2007.10.021, 2008.
Zhang, R. H., Wang, K., Zeng, Q. L., Yu, C. F., and Wang, J. P.:
Effectiveness and petroleum geological significance of tectonic fractures in
the ultra-deep zone of the Kuqa foreland thrust belt: a case study of the
Cretaceous Bashijiqike Formation in the Keshen gasfield, Pet. Sci., 18,
728–741, https://doi.org/10.1007/s12182-021-00567-w, 2021.
Zhang, S. C. and Huang, H. P.: Geochemistry of Palaeozoic marine petroleum from the Tarim Basin, NW China: Part 1. Oil family classification, Org. Geochem., 36, 1204–1214, 2005.
Zhang, Y. and Zhang, J.: Lithology-dependent minimum horizontal stress and
in-situ stress estimate, Tectonophysics, 703–704, 1–8, https://doi.org/10.1016/j.tecto.2017.03.002, 2017.
Zhao, W. Z., Zhang, S. C., Wang, F. Y., Cramer, B., Chen, J. P., Sun, Y. G.,
Zhang, B. M., and Zhao, M. J.: Gas systems in the Kuche Depression of the Tarim
Basin: Source rock distributions, generation kinetics and gas accumulation
history, Org. Geochem., 36, 1583–1601, https://doi.org/10.1016/j.orggeochem.2005.08.016, 2005.
Zeng, L. B.: Microfracturing in the Upper Triassic Sichuan Basin tight-gas
sandstones: Tectonic, overpressure, and diagenetic origins, AAPG Bull.,
94, 1811–1825, https://doi.org/10.1306/06301009191, 2010.
Zeng, L. B. and Li, X. Y.: Fractures in sandstone reservoirs with ultra-low
permeability: A case study of the Upper Triassic Yanchang Formation in the
Ordos Basin, China, AAPG Bull., 93, 461–477, https://doi.org/10.1306/09240808047,
2009.
Zeng, L. B., Wang, H. J., Gong, L., and Liu, B. M.: Impacts of the tectonic
stress field on natural gas migration and accumulation: A case study of the
Kuqa Depression in the Tarim Basin, China, Mar. Pet. Geol., 27, 1616–1627,
https://doi.org/10.1016/j.marpetgeo.2010.04.010, 2010.
Zeng, Q., Mo, T., Zhao, J., Tang, Y., Zhang, R., Xia, J., Hu, C., and Shi,
L.: Characteristics, genetic mechanism and oil & gas exploration
significance of high-quality sandstone reservoirs deeper than 7000 m: A
case study of the Bashijiqike Formation of Lower Cretaceous in the Kuqa
Depression, Natural Gas Industry, 40, 38–47, https://doi.org/10.3787/j.issn.1000-0976.2020.01.005, 2020 (in Chinese).
Zoback, M., Barton, C., Brudy, M., Castillo, D., Finkbeiner, T., Grollimund,
B., Moos, D., Peska, P., Ward, C., and Wiprut, D.: Determination of stress
orientation and magnitude in deep wells, Int. J. Rock Mech. Min. Sci., 40,
1049–1076, https://doi.org/10.1016/j.ijrmms.2003.07.001, 2003.
Zou, Y., Zhao, C., Wang, Y., Zhao, W., Peng, P., and Shuai, Y.:
Characteristics and origin of natural gases in the Kuqa depression of Tarim
basin, NW China, Org. Geochem., 37, 280–290, https://doi.org/10.1016/j.orggeochem.2005.11.002, 2006.
Short summary
(1) Structural diagenesis analysis is performed on the ultra-deep tight sandstone. (2) Fracture and intergranular pores are related to the low in situ stress magnitudes. (3) Dissolution is associated with the presence of fracture.
(1) Structural diagenesis analysis is performed on the ultra-deep tight sandstone. (2) Fracture...