Articles | Volume 14, issue 4
https://doi.org/10.5194/se-14-425-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-14-425-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Role of inheritance during tectonic inversion of a rift system in basement-involved to salt-decoupled transition: analogue modelling and application to the Pyrenean–Biscay system
Jordi Miró
Institut de Recerca GEOMODELS, Departament de Dinàmica de la Terra i de l'Oceà, Facultat de Ciències de la Terra, Universitat de
Barcelona, Barcelona, 08028, Spain
Institut de Recerca GEOMODELS, Departament de Dinàmica de la Terra i de l'Oceà, Facultat de Ciències de la Terra, Universitat de
Barcelona, Barcelona, 08028, Spain
Josep Anton Muñoz
Institut de Recerca GEOMODELS, Departament de Dinàmica de la Terra i de l'Oceà, Facultat de Ciències de la Terra, Universitat de
Barcelona, Barcelona, 08028, Spain
Gianreto Manastchal
Université de Strasbourg, CNRS, ITES UMR 7063, Strasbourg 67084, France
Related authors
No articles found.
Pablo Santolaria, Roi Silva-Casal, Núria Carrera, Josep A. Muñoz, Pau Arbués, and Pablo Granado
Solid Earth, 16, 899–927, https://doi.org/10.5194/se-16-899-2025, https://doi.org/10.5194/se-16-899-2025, 2025
Short summary
Short summary
Among sedimentary rocks, evaporites (as salt) have a particular behavior when deformed under geological forces: they flow while the others break. Such behavior controls the evolution of mountain building events. By mapping the distribution of rocks and interpreting the subsurface architecture of geological structures we were able to reconstruct the mountain building processes of an area in the Southern Pyrenees and how those evaporites flowed and accumulated.
Marlise C. Cassel, Nick Kusznir, Gianreto Manatschal, and Daniel Sauter
Solid Earth, 15, 1265–1279, https://doi.org/10.5194/se-15-1265-2024, https://doi.org/10.5194/se-15-1265-2024, 2024
Short summary
Short summary
We investigate the along-strike variation in volcanics on the Pelotas segment of the Brazilian margin created during continental breakup and formation of the southern South Atlantic. We show that the volume of volcanics strongly controls the amount of space available for post-breakup sedimentation. We also show that breakup varies along-strike from very magma-rich to magma-normal within a relatively short distance of less than 300 km. This is not as expected from a simple mantle plume model.
Elizabeth Parker Wilson, Pablo Granado, Pablo Santolaria, Oriol Ferrer, and Josep Anton Muñoz
Solid Earth, 14, 709–739, https://doi.org/10.5194/se-14-709-2023, https://doi.org/10.5194/se-14-709-2023, 2023
Short summary
Short summary
This work focuses on the control of accommodation zones on extensional and subsequent inversion in salt-detached domains using sandbox analogue models. During extension, the transfer zone acts as a pathway for the movement of salt, changing the expected geometries. When inverted, the salt layer and syn-inversion sedimentation control the deformation style in the salt-detached cover system. Three natural cases are compared to the model results and show similar inversion geometries.
Oriol Ferrer, Eloi Carola, and Ken McClay
Solid Earth, 14, 571–589, https://doi.org/10.5194/se-14-571-2023, https://doi.org/10.5194/se-14-571-2023, 2023
Short summary
Short summary
Using an experimental approach based on scaled sandbox models, this work aims to understand how salt above different rotational fault blocks influences the cover geometry and evolution, first during extension and then during inversion. The results show that inherited salt structures constrain contractional deformation. We show for the first time how welds and fault welds are reopened during contractional deformation, having direct implications for the subsurface exploration of natural resources.
Frank Zwaan, Guido Schreurs, Susanne J. H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf, and Ernst Willingshofer
Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022, https://doi.org/10.5194/se-13-1859-2022, 2022
Short summary
Short summary
When a sedimentary basin is subjected to compressional tectonic forces after its formation, it may be inverted. A thorough understanding of such
basin inversionis of great importance for scientific, societal, and economic reasons, and analogue tectonic models form a key part of our efforts to study these processes. We review the advances in the field of basin inversion modelling, showing how the modelling results can be applied, and we identify promising venues for future research.
Frank Zwaan, Pauline Chenin, Duncan Erratt, Gianreto Manatschal, and Guido Schreurs
Solid Earth, 12, 1473–1495, https://doi.org/10.5194/se-12-1473-2021, https://doi.org/10.5194/se-12-1473-2021, 2021
Short summary
Short summary
We used laboratory experiments to simulate the early evolution of rift systems, and the influence of structural weaknesses left over from previous tectonic events that can localize new deformation. We find that the orientation and type of such weaknesses can induce complex structures with different orientations during a single phase of rifting, instead of requiring multiple rifting phases. These findings provide a strong incentive to reassess the tectonic history of various natural examples.
Cited articles
Acocella, V., Salvini, F., Funiciello, R., and Faccenna, C.: The role of
transfer structures on volcanic activity at Campi Flegrei (Southern Italy),
J. Volcanol. Geoth. Res., 91, 123–139,
https://doi.org/10.1016/S3077-0273(99)00032-3, 1999.
Alonso, J., Pulgar, J., García-Ramos, J., and Barba, P.: Tertiary
basins and Alpine tectonics in the Cantabrian Mountains (NW Spain), in:
Tertiary Basins of Spain: The Stratigraphic Record of Crustal Kinematics,
edited by: Friend, P. F. and Dabrio, C. J., Cambrigde University Press, Cambridge,
UK, 214–227, https://doi.org/10.1017/CBO9780511524851, 1996.
Alonso, J., Pulgar, J., and Pedreira, D.: El relieve de la Cordillera
Cantábrica,
Enseñanza de las Ciencias de la Tierra, 15, 151–163, 2007.
Amilibia, A., McClay, K. R., Sàbat, F., Muñoz, J. A., and Roca, E.:
Analogue modelling of inverted oblique rift systems, Geol. Acta, 3,
251–271, https://doi.org/10.1344/105.000001395, 2005.
Angrand, P. and Mouthereau, F.: Evolution of the Alpine orogenic belts in
the Western Mediterranean region as resolved by the kinematics of the
Europe-Africa diffuse plate boundary, B. Soc. Geol. Fr., 192, 42 pp.,
https://doi.org/10.1051/bsgf/2021031, 2021.
Asti, R., Saspiturry, N., and Angrand, P.: The Mesozoic Iberia-Eurasia
diffuse plate boundary: A wide domain of distributed transtensional
deformation progressively focusing along the North Pyrenean Zone,
Earth-Sci. Rev., 230, 104040,
https://doi.org/10.1016/j.earscirev.2022.104040, 2022.
Bahroudi, A. and Koyi, H.: Effect of spatial distribution of Hormuz salt on
deformation style in the Zagros fold and thrust belt: an analogue modelling
approach, J. Geol. Soc. London, 160, 719–733,
https://doi.org/10.1144/0016-764902-135, 2003.
Beaumont, C., Muñoz, J. A., Hamilton, J., and Fullsack, P.: Factors
controlling the Alpine evolution of the central Pyrenees inferred from a
comparison of observations and geodynamical models, J. Geophys. Res-Sol.
Ea., 105, 8121–8145, https://doi.org/10.1029/1999JB900390, 2000.
Bonini, M., Sani, F., and Antonielli, B.: Basin inversion and contractional
reactivation of inherited normal faults: A review based on previous and new
experimental models, Tectonophysics, 522, 55–88,
https://doi.org/10.1016/j.tecto.2011.11.014, 2012.
Cadenas, P., Fernández-Viejo, G., Pulgar, J. A., Tugend, J., Manatschal,
G., and Minshull, T. A.: Constraints imposed by rift inheritance on the
compressional reactivation of a hyperextended margin: Mapping rift domains
in the North Iberian margin and in the Cantabrian Mountains, Tectonics,
37, 758–785, https://doi.org/10.1002/2016TC004454, 2018.
Cadenas, P., Manatschal, G., and Fernández-Viejo, G.: Unravelling the
architecture and evolution of the inverted multi-stage North Iberian-Bay of
Biscay rift, Gondwana Res., 88, 67–87,
https://doi.org/10.1016/j.gr.2020.06.026, 2020.
Cámara, P.: Inverted turtle salt anticlines in the eastern
Basque-Cantabrian basin, Spain, Mar. Petrol. Geol., 117, 104358,
https://doi.org/10.1016/j.marpetgeo.2020.104358, 2020.
Cámara, P. and Flinch, J. F.: The southern Pyrenees: A salt-based
fold-and-thrust belt, in: Permo-Triassic Salt Provinces of Europe, North
Africa and the Atlantic Margins, edited by: Soto, J. I., Flinch, J. F., and
Tari, G., Elsevier, Amsterdam, Netherland, 395–415,
https://doi.org/10.1016/B978-0-12-809417-4.00019-7, 2017.
Carola, E., Tavani, S., Ferrer, O., Granado, P., Quintà, A.,
Butillé, M., and Muñoz, J. A.: Along-strike extrusion at the
transition between thin- and thick-skinned domains in the Pyrenean Orogen
(northern Spain), in: Thick-skin-dominated orogens: From initial inversion
to full accretion, edited by: Nemčok, M., Mora, A., and Cosgrove, J. W., Geol.
Soc., London, Spec. Publ., 377, 119–140, https://doi.org/10.1144/SP377.3,
2013.
Carola, E., Muñoz, J. A., and Roca, E.: The transition from thick-skinned
to thin-skinned tectonics in the Basque-Cantabrian Pyrenees: The Burgalesa
Platform and surroundings, Int. J. Earth Sci., 104, 2215–2239,
https://doi.org/10.1007/s00531-015-1177-z, 2015.
Carrera, N. and Muñoz, J. A.: Thick-skinned tectonic style resulting from
the inversion of previous structures in the southern Cordillera Oriental (NW
Argentine Andes), in: Thick-skin-dominated orogens: From initial inversion
to full accretion, edited by: Nemčok, M., Mora, A., and Cosgrove,
J. W., Geol. Soc., London, Spec. Publ., 377, 77–100,
https://doi.org/10.1144/SP377.2, 2013.
Carrera, N., Muñoz, J. A., Sàbat, F., Mon, R., and Roca, E.: The role
of inversion tectonics in the structure of the Cordillera Oriental (NW
Argentinean Andes), J. Struct. Geol., 28, 1921–1932,
https://doi.org/10.1016/j.jsg.2006.07.006, 2006.
Célini, N., Callot, J.-P., Ringenbach, J.-C., and Graham, R.: Jurassic
Salt Tectonics in the SW Sub-Alpine Fold-and-Thrust Belt, Tectonics, 39,
e2020TC006107, https://doi.org/10.1029/2020TC006107, 2020.
Chenin, P., Manatschal, G., Picazo, S., Müntener, O., Karner, G.,
Johnson, C., and Ulrich, M.: Influence of the architecture of magma-poor
hyperextended rifted margins on orogens produced by the closure of narrow
versus wide oceans, Geosphere, 13, 559–576,
https://doi.org/10.1130/GES01363.1, 2017.
Chevrot, S., Sylvander, M., Díaz, J., Martin, R., Mouthereau, F.,
Manatschal, G., Masini, E., Calassou, S., Grimaud, F., Pauchet, H., and
Ruiz, M.: The non-cylindrical crustal architecture of the Pyrenees, Sci. Rep.,
8, 9591, https://doi.org/10.1038/s41598-018-27889-x, 2018.
Cooper, M. A., Williams, G. D., de Graciansky, P. C., Murphy, R. W., Needham,
T., de Paor, D., Stoneley, R., Todd, S. P., Turner, J. P., and Ziegler, P. A.:
Inversion tectonics – a discussion, in: Inversion Tectonics, edited by:
Copper, M. A. and Williams, G. D., Geol. Soc., London, Spec. Publ., 44,
335–347, https://doi.org/10.1144/GSL.SP.1989.044.01.18, 1989.
Costa, E. and Vendeville, B. B.: Experimental insights on the geometry and
kinematics of fold-and-thrust belt above weak, viscous evaporitic
décollement, J. Struct. Geol., 24, 1729–1739, 2002.
Cotton, J. and Koyi, H.: Modelling of thrust fronts above ductile and
frictional décollements; examples from The Salt Range and Potwar
Plateau, Pakistan, Geol. Soc. Am. Bull., 112, 351–363,
https://doi.org/10.1130/0016-7606(2000)112<351:MOTFAD>2.0.CO;2, 2000.
Dell'Ertole, D. and Schellart, W. P.: The development of sheath folds in
viscously stratified materials in simple shear conditions: An analogue
approach, J. Struct. Geol., 6, 129–141,
https://doi.org/10.1016/j.jsg.2013.09.002, 2013.
Del Ventissette, C., Montanari, D., Bonini, M., and Sani, F.: Basin
inversion and fault reactivation in laboratory experiments. J. Struct.
Geol., 28, 2067–2083, https://doi.org/10.1016/j.jsg.2006.07.012, 2006.
Dooley, T. P. and Hudec, M. R.: Extension and inversion of salt-bearing rift systems, Solid Earth, 11, 1187–1204, https://doi.org/10.5194/se-11-1187-2020, 2020.
Dooley, T., McClay, K. R., Hempton, M., and Smit, D.: Salt tectonics above
complex basement extensional fault systems: results from analogue modelling,
in: Petroleum Geology: North-West Europe and global perspectives –
Proceedings of the 6th Petroleum Geology Conference, edited by: Doré,
A. G. and Vining, B. A., Geological Society, London, 6, 1631–1648,
https://doi.org/10.1144/0061631, 2005.
Espina, R. G.: Extensión mesozoica y acortamiento alpino en el borde
occidental de la Cuenca Vasco Cantábrica, Cad. Lab. Xeol. Laxe, 19,
137–150, 1994.
Espina, R. G.: Tectónica extensional en el borde occidental de la Cuenca
Vasco-Cantábrica (Cordillera Cantábrica, NO de España),
Geogaceta, 20, 890–892, 1996.
Ferrer, O., Roca, E., Benjumea, B., Munoz, J., Ellouz, N., and MARCONI, T.:
The deep seismic reflection MARCONI-3 profile: Role of extensional Mesozoic
structure during the Pyrenean contractional deformation at the eastern part
of the Bay of Biscay, Mar. Petrol. Geol., 25, 714–730, 2008.
Ferrer, O., McClay, K. R., and Sellier, N. C.: Influence of fault geometries and
mechanical anisotropies on the growth and inversion of hanging-wall
synclinal basins: insights from sandbox models and natural examples, in: The
Geometry and Growth of Normal Faults, edited by: Child, C., Holdsworth,
R. E., Jackson, C. A. L., Manzocchi, T., Walsh, J. J., and Yieldings, G., Geol.
Soc., London, Spec. Publ., 439, 487–509, https://doi.org/10.1144/SP439.8,
2016.
Ferrer, O., Carola, E., and McClay, K.: Structural control of inherited salt structures during inversion of a domino basement-fault system from an analogue modelling approach, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1183, 2022.
Ferrer, O., Carola, E., McClay, K., and Bufaliza, N.: Analogue modeling of
domino-style extensional fault basement fault systems with precinematic
salt, AAPG Bull., 107, 23–47, https://doi.org/10.1306/08072221188, 2023.
Frasca, G., Manatschal, G., Cadenas, P., Miró, J., and Lescoutre, R.: A
kinematic reconstruction of Iberia using intracontinental strike-slip
corridors, Terra Nova, 33, 573–581, https://doi.org/10.1111/ter.12549, 2021.
Gallastegui, J.: Estructura cortical de la cordillera y margen continental
cantábricos: perfiles ESCI-N, Trabajos de Geología, 22, 3–234,
https://doi.org/10.17811/tdg.22.2000.3-234, 2000.
Gallastegui, J., Pulgar, J. A., and Gallart, J.: Alpine tectonic wedging and crustal delamination in the Cantabrian Mountains (NW Spain), Solid Earth, 7, 1043–1057, https://doi.org/10.5194/se-7-1043-2016, 2016.
García de Cortázar, A. and Pujalte, V.: Litoestratigrafia y facies
del Grupo Cabuérniga (Malm-Valanginiense inferior?) al S de Cantabria-NE
de Palencia, Cuadernos de Geología Ibérica, 8, 5–21, 1982.
García-Senz, J., Pedrera, A., Ayala, C., Ruiz-Constán, A., Robador,
A., and Rodríguez-Fernández, L. R.: Inversion of the north Iberian
hyperextended margin: the role of exhumed mantle indentation during
continental collision, in: Fold and thrust belts: Structural style,
evolution and exploration, edited by: Hammerstein, J. A., Di Cuia, R.,
Cottam, M. A., Zamora, G., and Butler, R. W. H., Geol. Soc., London, Spec. Publ.,
490, 177–198, https://doi.org/10.1144/SP490-2019-112, 2019.
Ghani, H., Zeilinger, G., Sobel, E. R., and, Heidarzadeh, G.: Structural
variation within the Himalayan fold and thrust belt: A case study from the
Kohat-Potwar Fold Thrust Belt of Pakistan. J. Struct. Geol., 116, 34–46,
https.//doi.org/10.1016/j.jsg.2018.07.022, 2018.
Gómez, J. J., Goy, A., and Barrón, E.: Events around the
Triassic–Jurassic boundary in northern and eastern Spain: a review,
Palaeogeogr. Palaeocl., 244, 89–110,
https://doi.org/10.1016/j.palaeo.2006.06.025, 2007.
Granado, P., Ferrer, O., Muñoz, J. A., Thöny, W., and Strauss, P.:
Basin inversion in tectonic wedges: Insights from analogue modelling and the
Alpine-Carpathian fold-and-thrust belt, Tectonophysics, 703–704, 50–68,
https://doi.org/10.1016/j.tecto.2017.02.022, 2017.
Granado, P., Roca, E., Strauss, P., Pelz, K., and Munoz, J. A.: Structural
styles in fold-and-thrust belts involving early salt structures: The
Northern Calcareous Alps (Austria), Geology, 47, 51–54,
https://doi.org/10.1130/G45281.1, 2018.
Hardy, S., McClay, K., and Muñoz, J. A.: Deformation and fault activity
in space and time in high-resolution numerical models of doubly vergent
thrust wedges, Mar. Petrol. Geol., 26, 232–248,
https://doi.org/10.1016/j.marpetgeo.2007.12.003, 2009.
Hubbert, M. K.: Mechanical basis for certain familiar geologic structures,
Geol. Soc. Am. Bull., 62, 355–372,
https://doi.org/10.1130/0016-7606(1951)62[355:MBFCFG]2.0.CO;2, 1951.
Huiqi, L., McClay, K. R., and Powell, D.: Physical models of thrust wedges, in: Thrust Tectonics, edited by: McClay, K. R., Chapman and Hall, London, 71–81, https://doi.org/10.1007/978-94-011-3066-0_6, 1992.
Iaffa, D. N., Sàbat, F., Bello, D., Ferrer, O., Monn, R., and Gutierrez,
A. A.: Tectonic inversion in a segmented foreland basin from extensional to
piggy back settings: The Tucumán Basin in NW Argentina, J. S. Am. Earth
Sci., 31, 457–474, https://doi.org/10.1016/j.jsames.2011.02.009, 2011a.
Iaffa, D. N., Sàbat, F., Muñoz, J. A., Mon, R., and Gutierrez, A. A.:
The role of inherited structures in a foreland basin evolution. The
Metán Basin in NW Argentina, J. Struct. Geol., 33, 1816–1828,
https://doi.org/10.1016/j.jsg.2011.09.005, 2011b.
Jackson, M. P., Vendeville, B. C., and Schultz-Ela, D. D.: Structural dynamics
of salt systems, Annu. Rev. Earth Pl. Sc., 22, 93–117,
https://doi.org/10.1146/annurev.ea.22.050194.000521, 1994.
Jaumé, S. C. and Lillie, R. J.: Mechanics of the Salt Range-Potwar
Plateau, Pakistan: a fold-and-thrust belt underlain by evaporites,
Tectonics, 7, 57–71, https://doi.org/10.1029/TC007i001p00057, 1988.
Jourdon, A., Mouthereau, F., Pourhiet, L. L., and Callot, J.-P.: Topographic
and Tectonic Evolution of Mountain Belts Controlled by Salt Thickness and
Rift Architecture, Tectonics, 39, e2019TC005903,
https://doi.org/10.1029/2019TC005903, 2020.
Lagabrielle, Y., Asti, R., Duretz, T., Clerc, C., Fourcade, S., Teixell, A.,
Labaume, P, Corre, B., and Saspiturry, N.: A review of cretaceous
smooth-slopes extensional basins along the Iberia-Eurasia plate boundary:
How pre-rift salt controls the modes of continental rifting and mantle
exhumation, Earth-Sci. Rev., 201, 103071,
https://doi.org/10.1016/j.earscirev.2019.103071, 2020.
Lescoutre, R. and Manatschal, G.: Role of rift-inheritance and segmentation
for orogenic evolution: example from the Pyrenean-Cantabrian system, B. Soc.
Geol. Fr., 191, 18, https://doi.org/10.1051/bsgf/2020021, 2020.
Lescoutre, R., Manatschal, G., and Muñoz, J. A.: Nature, Origin, and
Evolution of the Pyrenean-Cantabrian Junction, Tectonics, 40,
e2020TC006134, https://doi.org/10.1029/2020TC006134, 2021.
López-Gómez, J., Martín-González, F., Heredia, N., Horra,
R. de la, Barrenechea, J. F., Cadenas, P., Juncal, M., Diez, J. B.,
Borruel-Abadía, V., Pedreira, D., García-Sansegundo, J., Farias,
P., Galé, C., Lago, M., Ubide, T., Fernández-Viejo, G., and Gand,
G.: New lithostratigraphy for the Cantabrian Mountains: A common
tectono-stratigraphic evolution for the onset of the Alpine cycle in the W
Pyrenean realm, N Spain, Earth-Sci. Rev., 188, 249–271,
https://doi.org/10.1016/j.earscirev.2018.11.008, 2019.
Manatschal, G., Chenin, P., Lescoutre, R., Miró, J., Cadenas, P.,
Saspiturry, N., Masini, E., Chevrot, S., Ford, M., Jolivet, L., Mouthereau,
F., Thinon, I., Issautier, B., and Calassou, S.: The role of inheritance in
forming rifts and rifted margins and building collisional orogens: a
Biscay-Pyrenean perspective, B. Soc. Geol. Fr., 192, 55,
https://doi.org/10.1051/bsgf/2021042, 2021.
Mandl, G., De Jong, L. N. J., and Maltha, A.: Shear zones in granular
material, Rock Mech., 9, 95–144, https://doi.org/10.1007/BF01237876,
1977.
Marrett, R. and Aranda-García, M.: Regional structure of the Sierra
Madre Oriental fold-thrust belt, Mexico, in: Genesis and controls of reservoir-scale carbonate deformation, Monterrey salient, Mexico, edited by: Marrett, R.,
Mexico: Bureau of Economic Geology, Austin, Guidebook 28, 31–55, ISSN: 0363-4132, 2001.
Martínez Catalán, J. R., Arenas, R., García, F. D., Cuadra,
P. G., Gómez-Barreiro, J., Abati, J., Castiñeiras, P., Fernández,
J., Sánchez, S., Andonaegui, P., González, E., Díez, A., Rubio,
F. J., and Valle, B.: Space and time in the tectonic evolution of the
northwestern Iberian Massif: Implications for the Variscan belt, in: 4-D
Framework of Continental Crust, edited by: Hatcher Jr., R. D., Carlson, M. P.,
McBride, J. H., and Martínez-Catalán, J. R., Geol. Soc. Am. Mem.,
200, 403–423, https://doi.org/10.1130/2007.1200(21), 2007.
Matte, P.: Accretionary history and crustal evolution of the Variscan belt
in Western Europe, Tectonophysics, 196, 309–337,
https://doi.org/10.1016/0040-1951(91)90328-P, 1991.
Mazur, S., Scheck-Wenderoth, M., and Krzywiec, P.: Different modes of the
Late Cretaceous–Early Tertiary inversion in the North German and Polish
basins, Int. J. Earth Sci., 94, 782–798,
https://doi.org/10.1007/s00531-005-0016-z, 2005.
McClay, K. R.: Analogue models of inversion tectonics, in: Inversion
Tectonics, edited by: Cooper, M. A. and Williams, G. D., Geol. Soc., London,
Spec. Publ., 44, 41–59, https://doi.org/10.1144/GSL.SP.1989.044.01.04, 1989.
McClay, K. R. and Buchanan, P. G.: Thrust faults in inverted extensional
basins, in: Thrust tectonics, edited by: McClay, K. R., Springer,
Dordrecht, Netherland, 93–104,
https://doi.org/10.1007/978-94-011-3066-0_8, 1992.
McClay, K. R. and White, M. J.: Analogue modelling of orthogonal and oblique
rifting, Mar. Petrol. Geol., 12, 137–151,
https://doi.org/10.1016/0264-8172(95)92835-K, 1995.
Miró, J., Muñoz, J. A., Manatschal, G., and Roca, E.: The
Basque–Cantabrian Pyrenees: report of data analysis, B. Soc. Geol. Fr.,
191, 22, https://doi.org/10.1051/bsgf/2020024, 2020.
Miró, J., Manatschal, G., Cadenas, P., and Muñoz, J. A.: Reactivation
of a hyperextended rift system: the Basque-Cantabrian Pyrenees case, Basin
Res., 33, 3077–3101, https://doi.org/10.1111/bre.12595, 2021.
Molinaro, M., Leturmy, P., Guezou, J. C., Frizon de Lamotte, D., and
Eshraghi, S. A.: The structure and kinematics of the southeastern Zagros
fold-thrust belt, Iran: From thin-skinned to thick-skinned
tectonics, Tectonics, 24, TC3007, https://doi.org/10.1029/2004TC001633,
2005.
Mouthereau, F., Tensi, J., Bellahsen, N., Lacombe, O., De Boisgrollier, T.,
and Kargar, S.: Tertiary sequence of deformation in a
thin-skinned/thick-skinned collision belt: The Zagros Folded Belt (Fars,
Iran), Tectonics, 26, TC5006, https://doi.org/10.1029/2007TC002098, 2007.
Muñoz, J. A.: Evolution of a continental collision belt: ECORS-Pyrenees
crustal balanced cross-section, in: Thrust tectonics, edited by: McClay,
K. R., Springer, Dordrecht, Netherland, 235–246,
https://doi.org/10.1007/978-94-011-3066-0_21, 1992.
Muñoz, J. A.: Alpine Orogeny: Deformation and Structure in the Northern
Iberian Margin (Pyrenees sl), in: The Geology of Iberia: A Geodynamic
Approach, Volume 5: Active processes: seismicity, active faulting and
relief, edited by: Quesada, C. and Oliveira, J. T., Springer,
Amsterdam, Netherlands, 433–451, https://doi.org/10.1007/978-3-030-11295-0_9, 2019.
Muñoz, J., Beamud, E., Fernández, O., Arbués, P.,
Dinarès-Turell, J., and Poblet, J.: The Ainsa Fold and thrust oblique
zone of the central Pyrenees: Kinematics of a curved contractional system
from paleomagnetic and structural data, Tectonics, 32, 1142–1175,
https://doi.org/10.1002/tect.20070, 2013.
Muñoz, J. A., Mencos, J., Roca, E., Carrera, N., Gratacós, Ò.,
Ferrer, O., and Fernández, O.: The structure of the
South-Central-Pyrenean fold and thrust belt as constrained by subsurface
data, Geol. Acta, 16, 439–460,
https://doi.org/10.1344/GeologicaActa2018.16.4.7, 2018.
Pedreira, D., Afonso, J. C., Pulgar, J. A., Gallastegui, J., Carballo, A.,
Fernández, M., García-Castellanos, D., Jiménez-Munt, I.,
Semprich, J., and García-Moreno, O.: Geophysical-petrological modeling
of the lithosphere beneath the Cantabrian Mountains and the North-Iberian
margin: Geodynamic implications, Lithos, 230, 46–68,
https://doi.org/10.1016/j.lithos.2015.04.018, 2015.
Pedrera, A., García-Senz, J., Ayala, C., Ruiz-Constán, A.,
Rodríguez-Fernández, L. R., Robador, A., and González
Menéndez, L.: Reconstruction of the exhumed mantle across the North
Iberian Margin by crustal-scale 3-D gravity inversion and geological cross
section, Tectonics, 36, 3155–3177, https://doi.org/10.1002/2017TC004716,
2017.
Pedrera, A., García-Senz, J., Peropadre, C., Robador, A.,
López-Mir, B., Díaz-Alvarado, J., and Rodríguez-Fernández,
L. R.: The Getxo crustal-scale cross-section: Testing tectonic models in the
Bay of Biscay-Pyrenean rift system, Earth-Sci. Rev., 212, 103429,
https://doi.org/10.1016/j.earscirev.2020.103429, 2020.
Pinto, L., Muñoz, C., Nalpas, T., and Charrier, R.: Role of
sedimentation during basin inversion in analogue modelling, J. Struct.
Geol., 32, 554–565, https://doi.org/10.1016/j.jsg.2010.03.001, 2010.
Pulgar, J. A., Alonso, J. L., Espina, R. G., and Marín, J. A.: La
deformación alpina en el basamento varisco de la Zona Cantábrica,
Trabajos De Geología, 21, 283–295,
https://doi.org/10.17811/tdg.21.1999.283-295, 1999.
Quintana, L., Pulgar, J. A., and Alonso, J. L.: Displacement transfer from
borders to interior of a plate: A crustal transect of
Iberia, Tectonophysics, 663, 378–398,
https://doi.org/10.1016/j.tecto.2015.08.046, 2015.
Quirk, D. G. and Pilcher, R. S.: Flip-flop salt tectonics, in: Salt
tectonics, sediments and prospectivity, edited by: Alsop, G. I., Archer,
S. G., Hartley, A. J., Grant, N. T., and Hodgkinson, R., Geol. Soc., London, Spec.
Publ., 363, 245–264, https://doi.org/10.1144/SP363.11, 2012.
Riba, O. and Jurado, M. J.: Reflexiones sobre la geologia de la parte occidental
de la Depresión del Ebro, Acta Geológica Hispánica, 27, 177–193, 1992.
Roca, E., Muñoz, J. A., Ferrer, O., and Ellouz, N.: The role of the Bay
of Biscay Mesozoic extensional structure in the configuration of the
Pyrenean orogen: Constraints from the MARCONI deep seismic reflection
survey, Tectonics, 30, TC2001, https://doi.org/10.1029/2010TC002735, 2011.
Roest, W. R. and Srivastava, S. P.: Kinematics of the plate boundaries
between Eurasia, Iberia, and Africa in the North Atlantic from the Late
Cretaceous to the present, Geology, 19, 613–616,
https://doi.org/10.1130/0091-7613(1991)019<0613:KOTPBB>2.3.CO;2, 1991.
Roma, M., Ferrer, O., Roca, E., Pla, O., Escosa, F. O., and Butillé, M.:
Formation and inversion of salt-detached ramp-syncline basins. Results from
analog modeling and application to the Columbrets Basin (Western
Mediterranean), Tectonophysics, 745, 214–228,
https://doi.org/10.1016/j.tecto.2018.08.012, 2018a.
Roma, M., Vidal-Royo, O., McClay, K., Ferrer, O., and Muñoz, J. A.:
Tectonic inversion of salt-detached ramp-syncline basins as illustrated by
analog modeling and kinematic restoration, Interpretation, 6, T127–T144,
https://doi.org/10.1190/INT-2017-0073.1, 2018b.
Rowan, M. G.: Passive-margin salt basins: Hyperextension, evaporite
deposition, and salt tectonics, Basin Res., 26, 154–182,
https://doi.org/10.1111/bre.12043, 2014.
Rowan, M. G. and Giles, K. A.: Passive versus active salt diapirism, AAPG
Bull., 105, 53–63, https://doi.org/10.1306/05212020001, 2020.
Sani, F., Del Ventisette, C., Montanari, D., Bendkik, A., Chenakeb, M.:
Structural evolution of the Rides Prerifaines (Morocco): structural and
seismic interpretation and analogue modelling experiments, Int. J. Earth
Sci., 96, 685–706,
htpps://doi.org/10.1007/s00531-006-0118-2, 2007.
Saspiturry, N., Allanic, C., Razin, P., Issautier, B., Baudin, T., Lasseur,
E., Serrano, O., and Leleu, S.: Closure of a hyperextended system in an
orogenic lithospheric pop-up, Western Pyrenees: The role of mantle
buttressing and rift structural inheritance, Terra Nova, 32, 253–260,
https://doi.org/10.1111/ter.12457, 2020.
Schellart, W. P.: Shear test results for cohesion and friction coefficients
for different granular materials: scaling implications for their usage in
analogue modelling, Tectonophysics, 324, 1–16,
https://doi.org/10.1016/S0040-1951(00)00111-6, 2000.
Sherkati, S., Letouzey, J., and de Lamotte, D. F.: Central Zagros fold-thrust
belt (Iran): New insights from seismic data, field observation, and sandbox
modelling, Tectonics, 25, TC4007, https://doi.org/10.1029/2004TC001766, 2006.
Tavani, S., Carola, E., Granado, P., Quintà, A., and Muñoz, J. A.:
Transpressive inversion of a Mesozoic extensional forced fold system with an
intermediate décollement level in the Basque-Cantabrian Basin
(Spain), Tectonics, 32, 146–158, https://doi.org/10.1002/tect.20019,
2013.
Tavani, S., Bertok, C., Granado, P., Piana, F., Salas, R., Vigna, B., and
Muñoz, J. A.: The Iberia-Eurasia plate boundary east of the Pyrenees,
Earth-Sci. Rev., 187, 314–337,
https://doi.org/10.1016/j.earscirev.2018.10.008, 2018.
Teixell, A.: Crustal structure and orogenic material budget in the west
central Pyrenees, Tectonics, 17, 395–406,
https://doi.org/10.1029/98TC00561, 1998.
Tugend, J., Manatschal, G., Kusznir, N. J., Masini, E., Mohn, G., and Thinon,
I.: Formation and deformation of hyperextended rift systems: Insights from
rift domain mapping in the Bay of Biscay-Pyrenees, Tectonics, 33,
1239–1276, https://doi.org/10.1002/2014TC003529, 2014.
Tugend, J., Manatschal, G., and Kusznir, N. J.: Spatial and temporal
evolution of hyperextended rift systems: Implication for the nature,
kinematics, and timing of the Iberian-European plate boundary, Geology,
43, 15–18, https://doi.org/10.1130/G36072.1, 2015.
Vendeville, B. C. and Jackson, M. P.: The rise of diapirs during thin-skinned
extension, Mar. Petrol. Geol., 9, 331–354,
https://doi.org/10.1016/0264-8172(92)90047-I, 1992a.
Vendeville, B. C. and Jackson, M. P. A.: The fall of diapirs during
thin-skinned extension, Mar. Petrol. Geol., 9, 354–371,
https://doi.org/10.1016/0264-8172(92)90048-J, 1992b.
Weijermars, R.: Flow behaviour and physical chemistry of bouncing putties
and related polymers in view of tectonic laboratory
applications, Tectonophysics, 124, 325–358,
https://doi.org/10.1016/0040-1951(86)90208-8, 1986.
Wilson, E. P., Granado, P., Santolaria, P., Ferrer, O., and Muñoz, J. A.: Inversion of transfer zones in salt-bearing extensional systems: insights from analogue modeling, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1461, 2023.
Withjack, M. O. and Callaway, S.: Active normal faulting beneath a salt
layer: an experimental study of deformation patterns in the cover
sequence, AAPG Bull., 84, 627–651,
https://doi.org/10.1306/C9EBCE73-1735-11D7-8645000102C1865D, 2000.
Wolf, S. G., Huismans, R. S., Munoz, J. A., Curry, M. E., and van
der Beek, P.: Growth of Collisional Orogens From Small and Cold to Large and
Hot – Inferences From Geodynamic Models, J. Geophys. Res.-Sol. Ea., 126,
e2020JB021168, https://doi.org/10.1029/2020jb021168, 2021.
Wu, J. E., McClay, K., Whitehouse, P., and Dooley, T.: 4D analogue modelling
of transtensional pull-apart basins, Mar. Petrol. Geol., 26, 1608–1623,
https://doi.org/10.1016/j.marpetgeo.2008.06.007, 2009.
Short summary
Using the Asturian–Basque–Cantabrian system and analogue (sandbox) models, this work focuses on the linkage between basement-controlled and salt-decoupled domains and how deformation is accommodated between the two during extension and subsequent inversion. Analogue models show significant structural variability in the transitional domain, with oblique structures that can be strongly modified by syn-contractional sedimentation. Experimental results are consistent with the case study.
Using the Asturian–Basque–Cantabrian system and analogue (sandbox) models, this work focuses on...
Special issue