Articles | Volume 14, issue 5
https://doi.org/10.5194/se-14-551-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-14-551-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Kinematics and time-resolved evolution of the main thrust-sense shear zone in the Eo-Alpine orogenic wedge (the Vinschgau Shear Zone, eastern Alps)
Chiara Montemagni
CORRESPONDING AUTHOR
Dipartimento di Scienze dell'Ambiente e della Terra, Università degli
Studi di Milano – Bicocca, 20126 Milan, Italy
Stefano Zanchetta
Dipartimento di Scienze dell'Ambiente e della Terra, Università degli
Studi di Milano – Bicocca, 20126 Milan, Italy
Martina Rocca
Dipartimento di Scienze dell'Ambiente e della Terra, Università degli
Studi di Milano – Bicocca, 20126 Milan, Italy
Igor M. Villa
Dipartimento di Scienze dell'Ambiente e della Terra, Università degli
Studi di Milano – Bicocca, 20126 Milan, Italy
Corrado Morelli
Ufficio Geologia e Prove Materiali, Provincia Autonoma di Bolzano Alto
Adige, 39053 Cardano, Italy
Volkmar Mair
Ufficio Geologia e Prove Materiali, Provincia Autonoma di Bolzano Alto
Adige, 39053 Cardano, Italy
Andrea Zanchi
Dipartimento di Scienze dell'Ambiente e della Terra, Università degli
Studi di Milano – Bicocca, 20126 Milan, Italy
Related authors
No articles found.
Chiara Crippa, Stefan Steger, Giovanni Cuozzo, Francesca Bearzot, Volkmar Mair, and Claudia Notarnicola
The Cryosphere, 19, 3493–3515, https://doi.org/10.5194/tc-19-3493-2025, https://doi.org/10.5194/tc-19-3493-2025, 2025
Short summary
Short summary
Our study, focused on South Tyrol (NE Italy), develops an updated and comprehensive activity classification system for all rock glaciers in the current regional inventory. Using multisource products, we integrate climatic, morphological, and differential interferometric synthetic aperture radar (DInSAR) data in replicable routines and multivariate statistical methods, producing a comprehensive classification based on the updated Rock Glacier Inventories and Kinematic (RGIK) 2023 guidelines. Results leave only 3.5 % of the features non-classified, as opposed to 13–18.5 % in previous studies.
Aldo Bertone, Nina Jones, Volkmar Mair, Riccardo Scotti, Tazio Strozzi, and Francesco Brardinoni
The Cryosphere, 18, 2335–2356, https://doi.org/10.5194/tc-18-2335-2024, https://doi.org/10.5194/tc-18-2335-2024, 2024
Short summary
Short summary
Traditional inventories display high uncertainty in discriminating between intact (permafrost-bearing) and relict (devoid) rock glaciers (RGs). Integration of InSAR-based kinematics in South Tyrol affords uncertainty reduction and depicts a broad elevation belt of relict–intact coexistence. RG velocity and moving area (MA) cover increase linearly with elevation up to an inflection at 2600–2800 m a.s.l., which we regard as a signature of sporadic-to-discontinuous permafrost transition.
Luca Carturan, Fabrizio De Blasi, Roberto Dinale, Gianfranco Dragà, Paolo Gabrielli, Volkmar Mair, Roberto Seppi, David Tonidandel, Thomas Zanoner, Tiziana Lazzarina Zendrini, and Giancarlo Dalla Fontana
Earth Syst. Sci. Data, 15, 4661–4688, https://doi.org/10.5194/essd-15-4661-2023, https://doi.org/10.5194/essd-15-4661-2023, 2023
Short summary
Short summary
This paper presents a new dataset of air, englacial, soil surface and rock wall temperatures collected between 2010 and 2016 on Mt Ortles, which is the highest summit of South Tyrol, Italy. Details are provided on instrument type and characteristics, field methods, and data quality control and assessment. The obtained data series are available through an open data repository. This is a rare dataset from a summit area lacking observations on permafrost and glaciers and their climatic response.
Stefan Steger, Mateo Moreno, Alice Crespi, Peter James Zellner, Stefano Luigi Gariano, Maria Teresa Brunetti, Massimo Melillo, Silvia Peruccacci, Francesco Marra, Robin Kohrs, Jason Goetz, Volkmar Mair, and Massimiliano Pittore
Nat. Hazards Earth Syst. Sci., 23, 1483–1506, https://doi.org/10.5194/nhess-23-1483-2023, https://doi.org/10.5194/nhess-23-1483-2023, 2023
Short summary
Short summary
We present a novel data-driven modelling approach to determine season-specific critical precipitation conditions for landslide occurrence. It is shown that the amount of precipitation required to trigger a landslide in South Tyrol varies from season to season. In summer, a higher amount of preparatory precipitation is required to trigger a landslide, probably due to denser vegetation and higher temperatures. We derive dynamic thresholds that directly relate to hit rates and false-alarm rates.
Veronica Peverelli, Alfons Berger, Martin Wille, Thomas Pettke, Pierre Lanari, Igor Maria Villa, and Marco Herwegh
Solid Earth, 13, 1803–1821, https://doi.org/10.5194/se-13-1803-2022, https://doi.org/10.5194/se-13-1803-2022, 2022
Short summary
Short summary
This work studies the interplay of epidote dissolution–precipitation and quartz dynamic recrystallization during viscous granular flow in a deforming epidote–quartz vein. Pb and Sr isotope data indicate that epidote dissolution–precipitation is mediated by internal/recycled fluids with an additional external fluid component. Microstructures and geochemical data show that the epidote material is redistributed and chemically homogenized within the deforming vein via a dynamic granular fluid pump.
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne H. Christiansen, Margaret M. Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne S. Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022, https://doi.org/10.5194/tc-16-2769-2022, 2022
Short summary
Short summary
We present the guidelines developed by the IPA Action Group and within the ESA Permafrost CCI project to include InSAR-based kinematic information in rock glacier inventories. Nine operators applied these guidelines to 11 regions worldwide; more than 3600 rock glaciers are classified according to their kinematics. We test and demonstrate the feasibility of applying common rules to produce homogeneous kinematic inventories at global scale, useful for hydrological and climate change purposes.
Veronica Peverelli, Tanya Ewing, Daniela Rubatto, Martin Wille, Alfons Berger, Igor Maria Villa, Pierre Lanari, Thomas Pettke, and Marco Herwegh
Geochronology, 3, 123–147, https://doi.org/10.5194/gchron-3-123-2021, https://doi.org/10.5194/gchron-3-123-2021, 2021
Short summary
Short summary
This work presents LA-ICP-MS U–Pb geochronology of epidote in hydrothermal veins. The challenges of epidote dating are addressed, and a protocol is proposed allowing us to obtain epidote U–Pb ages with a precision as good as 5 % in addition to the initial Pb isotopic composition of the epidote-forming fluid. Epidote demonstrates its potential to be used as a U–Pb geochronometer and as a fluid tracer, allowing us to reconstruct the timing of hydrothermal activity and the origin of the fluid(s).
Cited articles
Bargossi, G. M., Bove, G., Cucato, M., Gregnanin, A., Morelli, C., Moretti,
A., Poli, S., Zanchetta, S., and Zanchi, A.: Note illustrative della Carta
Geologica d'Italia – Merano foglio 013, Servizio Geologica d'Italia –
ISPRA, 2010.
Brunel, M.: Quartz fabrics in shear-zone mylonites: evidence for a major
imprint due to late strain increments, Tectonophysics, 64, T33–T44,
1980.
Caby, R., Pêcher, A., and Le Fort, P.: Le grand chevauchement central
himalayen: Nouvelles données sur le métamorphisme inverse à la
base de la Dalle du Tibet, Rev. Géol. Dynam. Géograph. Phys., 24,
89–100, 1983.
Carosi, R., Montomoli, C., and Iaccarino, S.: 20 years of geological mapping
of the metamorphic core across Central and Eastern Himalayas, Earth-Sci.
Rev., 177, 124–138, 2018.
Conti, P.: La Falda Austroalpina dell'Ortles e l'evoluzione tettonica delle
Dolomiti dell'Engadina (Svizzera-Italia), Memorie Descrittive della Carta
Geologica D'Italia, Servizio Geologico d'Italia, Roma, 53, 102 pp., 1997.
D'Adda, P. and Zanchetta, S.: Geological-structural map of the Orobic and
Porcile thrust junction, central Southern Alps (N Italy), J. Maps, 11,
25–38, 2015.
Eisbacher, G. H. and Brandner, R.: Superposed fold-thrust structures and
high-angle faults, Northwestern Calcareous Alps, Austria, Eclogae Geol.
Helv., 89, 553–571, 1996.
Ferrill, D. A., Morris, A. P., Evans, M. A., Burkhard, M., Groshong Jr., R.
H., and Onasch, C. M.: Calcite twin morphology: a low-temperature
deformation geothermometer, J. Struct. Geol., 26, 1521–1529, 2004.
Fossen, H.: Structural geology, Cambridge University Press, ISBN 9781107057647, 2016.
Fossen, H. and Cavalcante, G. C. G.: Shear zones – A review, Earth Sci. Rev.,
171, 434–455, https://doi.org/10.1016/j.earscirev.2017.05.002,
2017.
Froitzheim, N., Schmid, S. M., and Conti, P.: Repeated change from crustal
shortening to orogen-parallel extension in the Austroalpine units of
Graubünden, Eclogae Geol. Helv., 87, 559–612, 1994.
Froitzheim, N., Conti, P., and van Daalen, M.: Late Cretaceous, synorogenic,
low-angle normal faulting along the Schlinig fault (Switzerland, Italy,
Austria) and its significance for the tectonics of the Eastern Alps,
Tectonophysics, 280, 267–293, 1997.
Fügenschuh, B., Seward, D., Mancktelow, N., and Fumasoli, M.: Exhumation
in a convergent orogen: the western Tauern window, Terra Nova, 9, 213–217,
1997.
Gillam, B. G., Little, T. A., Smith, E., and Toy, V. G.: Extensional shear
band development on the outer margin of the Alpine mylonite zone, Tatare
Stream, Southern Alps, New Zealand, J. Struct. Geol., 54, 1–20, https://doi.org/10.1016/j.jsg.2013.06.010, 2013.
Godin, L., Grujic, D., Law, R. D., and Searle, M. P.: Channel flow, ductile
extrusion and exhumation in continental collision zones: an introduction,
in: Channel flow, ductile extrusion and exhumation in continental collision
zones, edited by: Law, R. D., Searle, M. P., and Godin, L., Geol. Soc. London Spec.
Pub., 268, 1–23, 2006.
Gregnanin, A. and Valle, M.: Deformation and metamorphism in the
Austroalpine Ötztal-Stubai complex (part II): Early Alpine evolution in
basement and cover, Boll. Soc. Geol. It., 114, 393–409, 1995.
Guidotti, C. V. and Sassi, F. P.: Miscellaneous isomorphous substitutions
in Na-K white micas: a review, with special emphasis to metamorphic micas,
Rend. Lincei. Sci. Fis. Nat., 9, 57–78, 1998.
Habler, G., Thöni, M., and Sölva, H.: Tracing the high pressure
stage in the polymetamorphic Texel Complex (Austroalpine basement unit,
Eastern Alps): P-T-t-d constraints, Miner. Petrol., 88, 269–296, 2006.
Habler, G., Thöni, M., and Grasemann, B.: Cretaceous metamorphism in the
Austroalpine Matsch Unit (Eastern Alps): the interrelation between
deformation and chemical equilibration processes, Miner. Petrol., 97,
149–171, 2009.
Handy, M., Schmid, S., Bousquet, R., Kissling, E., and Bernoulli, D.:
Reconciling plate-tectonic reconstructions of Alpine Tethys with the
geological–geophysical record of spreading and subduction in the Alps,
Earth-Sci. Rev., 102, 121–158, 2010.
Hanmer, S., Bowring, S., van Breemen, O., and Parrish, R.: Great Slave Lake
shear zone, NW Canada: mylonitic record of Early Proterozoic continental
convergence, collision and indentation, J. Struct. Geol., 14, 757–773,
1992.
Heim, A.: Geologie der Schweiz, Band II, Die Schweizer Alpen, Tauchnitz,
Leipzig, 1018 pp., 1922.
Hoinkes, G., Koller, F., Rantitsch, G., Dachs, E., Höck, V., Neubauer,
F., and Schuster, R.: Alpine metamorphism of the Eastern Alps, Schweiz.
Miner. Petrogr., 79, 155–181, 1999.
Hull, J.: Thickness-displacement relationships for deformation zone, J.
Struct. Geol., 10, 431–435, https://doi.org/10.1016/0191-8141(88)90020-X, 1988.
Jamieson, R. A., Beaumont, C., Medvedev, S., and Nguyen, M. H.: Crustal
channel flows: 2. Numerical models with implications for metamorphism in the
Himalayan-Tibetan orogen, J. Geophys. Res.-Sol. Ea., 109, B06407, https://doi.org/10.1029/2003JB002811, 2004.
Janák, M., Cornell, D., Froitzheim, N., De Hoog, J. C. M., Broska, I.,
Vrabec, M., and Hurai, V.: Eclogite hosting metapelites from the Pohorje
Mountains (Eastern Alps): P-T evolution, zircon geochronology and tectonic
implications, Eur. J. Mineral., 21, 1191–1212, 2009.
Klug, L. and Froitzheim, N.: Reuniting the Ötztal Nappe: the tectonic
evolution of the Schneeberg Complex, Int. J. Earth Sci., 111, 525–542,
2022.
Koltai, G., Cheng, H., and Spötl, C.: Palaeoclimate significance of speleothems in crystalline rocks: a test case from the Late Glacial and early Holocene (Vinschgau, northern Italy), Clim. Past, 14, 369–381, https://doi.org/10.5194/cp-14-369-2018, 2018.
Konzett, J. and Hoinkes, G.: Paragonite-hornblende assemblages and their
petrological significance: an example from the Austroalpine Schneeberg
Complex, Southern Tyrol, Italy, J. Metamorph. Geol., 14, 85–101, 1996.
Krenn, K., Kurz, W., Fritz, H., and Hoinkes, G.: Eoalpine tectonics of the
Eastern Alps: implications from the evolution of monometamorphic
Austroalpine units (Schneeberg and Radenthein Complex), Swiss J. Geosci.,
104, 471–491, 2011.
Kurz, G. A. and Northrup, C. J.: Structural analysis of mylonitic
rocks in the Cougar Creek Complex, Oregon–Idaho using the porphyroclast
hyperbolic distribution method, and potential use of SC′-type extensional
shear bands as quantitative vorticity indicators, J. Struct. Geol., 30,
1005–1012, https://doi.org/10.1016/j.jsg.2008.04.003, 2008.
Law, R. D., Stahr, D. W., Francsis, M. K., Ashley, K. T., Grasemann, B., and
Ahmad, T.: Deformation temperatures and flow vorticities near the base of
the Greater Himalayan Series, Sutlej valley and Shimla Klippe, NW India, J.
Struct. Geol., 54, 21–53, https://doi.org/10.1016/j.jsg.2013.05.009, 2013.
Lünsdorf, N. K., Dunkl, I., Schmidt, B. C., Rantitsch, G., and Eynatten
H.: The thermal history of the Steinach Nappe (Eastern Alps) during
extension along the Brenner Normal Fault system indicated by organic
maturation and zircon (U-Th)/He thermochronology, Austr. J. Earth. Sci.,
105, 17–25, 2012.
Manatschal, G. and Bernoulli, D.: Architecture and tectonic evolution of
nonvolcanic margins: present-day Galicia and ancient Adria, Tectonics, 18,
1099–1119, 1999.
Mancktelow, N. S.: The Simplon Line: a major displacement zone in the
western Lepontine Alps, Eclogae Geol. Helv., 78, 73–96, 1985.
Means, W. D.: Shear zones and rock history, Tectonophysics, 247, 157–160, https://doi.org/10.1016/0040-1951(95)98214-H, 1995.
Miller, C., Mundil, R., Thöni, M., and Konzett, J.: Refining the timing
of eclogite facies metamorphism: a geochemical, petrological, Sm–Nd and
U–Pb case study from the Pohorje Mountain, Slovenia (Eastern Alps),
Contrib. Mineral. Petr., 150, 70–84, 2005.
Mitra, G.: Deformation of granitic basement rocks along fault zones at
shallow to intermediate crustal levels, in: Structural Geology of Fold and Thrust Belts, edited by: Mitra, S. and Fisher, G. W., Johns Hopkins
University Press, Baltimore, MD, 123–144, 1992.
Montemagni, C.: Geochronology and Kinematics of Crustal Scale Shear Zones in
the Himalayan Collisional Belt, PhD thesis, Università degli Studi di
Milano – Bicocca, https://hdl.handle.net/10281/269277 (last access: 18 May 2023), 2020.
Montemagni, C. and Villa, I. M.: Geochronology of Himalayan shear zones:
unravelling the timing of thrusting from structurally complex fault rocks,
J. Geol. Soc. London, 178, 1–13, https://doi.org/10.1144/jgs2020-235, 2021.
Montemagni, C. and Zanchetta, S.: Constraining kinematic and temporal
evolution of a normal-sense shear zone: Insights into the Simplon Shear Zone
(Western Alps), J. Struct. Geol., 156, 104557, https://doi.org/10.1016/j.jsg.2022.104557, 2022.
Montomoli, C., Iaccarino, S., Carosi, R., Langone, A., and Visonà, D.:
Tectonometamorphic discontinuities within the Greater Himalayan Sequence in
Western Nepal (Central Himalaya): Insights on the exhumation of crystalline
rocks, Tectonophysics, 608, 1349–1370, 2013.
Montomoli, C., Carosi, R., and Iaccarino, S.: Tectonometamorphic
discontinuities in the Greater Himalayan Sequence: a local or a regional
feature?, in: Tectonics of the Himalaya, edited by: Mukherjee S., van der Beek, P., and
Mukherjee, P. K., Geol. Soc. London Spec. Publ., 412, 21–41, 2015.
Neubauer, F., Genser, J., and Handler, R.: The Eastern Alps: Result of a two
stage collision process, Mitt. Österr. Geol. Ges., 92, 117–134, 2000.
Oriolo, S., Oyhantçabal, P., Wemmer, K., Heidelbach, F., Pfander, J.,
Basei, M. A. S., Hueck, M., Hannich, F., Sperner, B., and Siegesmund, S.:
Shear zone evolution and timing of deformation in the Neoproterozoic
transpressional Dom Feliciano Belt, Uruguay, J. Struct. Geol., 92, 59–78,
https://doi.org/10.1016/j.jsg.2016.09.010, 2016.
Oriolo, S., Wemmer, K., Oyhantçabal, P., Fossen, H., Schulz, B., and
Siegesmund, S.: Geochronology of shear zones – a review, Earth Sci. Rev.,
185, 665–683, https://doi.org/10.1016/j.earscirev.2018.07.007,
2018.
Passchier, C. W. and Trouw, R. A. J.: Microtectonics, Springer Verlag, Berlin, ISBN 978-3-540-64003-5, https://doi.org/10.1007/3-540-29359-0,
2005.
Petroccia, A., Carosi, R., Montomoli, C., Iaccarino, S., and Brovarone, A.
V.: Deformation and temperature variation along thrust-sense shear zones in
the hinterland-foreland transition zone of collisional settings: A case
study from the Barbagia Thrust (Sardinia, Italy), J. Struct. Geol., 161, 104640, https://doi.org/10.1016/j.jsg.2022.104640,
2022.
Poli, S.: Reaction spaces and P–T paths: from the amphibole eclogite to the
greenschist facies in the Austroalpine domain (Oetztal Complex), Contrib.
Mineral. Petr., 106, 399–416, 1991.
Pomella, H., Flöss, D., Speckbacher, R., Tropper, P., and
Fügenschuh, B.: The western end of the Eoalpine High-Pressure Belt
(Texel unit, South Tyrol/Italy), Terra Nova, 28, 60–69, https://doi.org/10.1111/ter.12191, 2016.
Purtscheller, F. and Rammlmair, D.: Alpine metamorphism of diabase dikes in
the Ötztal-Stubai metamorphic complex, Tschermaks Mineral.
Petrogr. Mitt., 29, 205–221, 1982.
Ratschbacher, L.: Kinematics of Austro-Alpine cover nappes; changing
translation path due to transpression, Tectonophysics, 125, 335–356,
1986.
Ratschbacher, L., Neubauer, F., Frisch, W., Schmid, S. M., and Neugebauer,
J.: Extension in compressional orogenic belts: The eastern Alps, Geology,
17, 404–407, 1989.
Rockenschaub, M. (Ed.), Kolenprat, B., and Frank, W.: Geochronologische Daten aus dem
Brennergebiet: Steinacher Decke, Brennermesozoikum, Ötz-Stubai-Kristallin, Innsbrucker
Quarzphyllitkomplex, Tarntaler Mesozoikum, in: R Arbeitstagung 2003
der Geologischen Bundesanstalt, Geologische Kartehblätter 148 Brenner, 175 Sterzing, 117–124,
Geologische Bundesanstalt, Wien, 2003
Rosenberg, C. L., Schneider, S., Scharf, A., Bertrand, A., Hammerschmidt,
K., Rabaute, A., and Brun, J. P.: Relating collisional kinematics to
exhumation processes in the Eastern Alps, Earth Sci. Rev. 176, 311–344,
https://doi.org/10.1016/j.earscirev.2017.10.013, 2018.
Schmid, S. M. and Haas, R.: Transition from near-surface thrusting to
intrabasement decollement, Schlinig Thrust, Eastern Alps, Tectonics, 8,
697–718, https://doi.org/10.1029/TC008i004p00697, 1989.
Schmid, S. M., Zingg, A., and Handy, M.: The kinematics of movements along
the Insubric Line and the emplacement of the Ivrea Zone, Tectonophysics, 135,
47–66, 1987.
Schmid, S. M., Aebli, H. R., Heller, F., Zingg, A., Coward, M. P., Dietrich,
D., and Park, R. G.: The role of the Periadriatic Line in the tectonic
evolution of the Alps Alpine Tectonics, Geol. Soc. London Spec. Pub., 45,
153–171, 1989.
Schmid, S. M., Fügenschuh, B., Kissling, E., and Schuster, R.: Tectonic
map and overall architecture of the Alpine orogen, Eclogae Geol. Helv., 97,
93–117, 2004.
Schoene, B. and Bowring, S. A.: U–Pb systematics of the McClure Mountain
syenite: thermochronological constraints on the age of the
standard MMhb, Contrib. Mineral. Petr., 151, 615–630,
https://doi.org/10.1007/s00410-006-0077-4, 2006.
Schulz, B. and Krause, J.: Electron probe petrochronology of polymetamorphic
garnet micaschists in the lower nappe units of the Austroalpine Saualpe
basement (Carinthia, Austria), Z. Dtsc. Ges. Geowiss., 172, 19–46, https://doi.org/10.1127/zdgg/2021/0247, 2021.
Searle, M. P., Law, R. D., Godin, L., Larson, K. P., Streule, M. J., Cottle,
J. M., and Jessup, M. J.: Defining the Himalayan Main Central Thrust
in Nepal, J. Geol. Soc. London, 165, 523–534, 2008.
Simpson, C. and De Paor, D. G.: Strain and kinematic analysis in general
shear zones, J. Struct. Geol., 15, 1–20, 1993.
Sölva, H., Grasemann, B., Thöni, M., Thiede, R., and Habler, G.: The
Schneeberg normal fault zone: normal faulting associated with Cretaceous
SE-directed extrusion in the Eastern Alps (Italy/Austria), Tectonophysics,
410, 143–166, 2005.
Spitz, A. and Dyrenfurth, G.: Monographie der Engadiner Dolomiten zwischen
Schuls, Scanfs und der Stilfserjoch, Beitr. Geol. Karte Schweiz (NF), XLIV, Lief,
1914.
Staub, R.: Geologische Probleme zwischen Engadin und Ortler,
Denkschr. Schweiz. Naturf. Ges., 72, 1–115, 1937.
Steiger, R. and Jäger, E.: Subcommission on geochronology: convention
on the use of decay constants in geo-and cosmochronology, Earth Planet. Sc.
Lett., 36, 359–362, 1977.
Stipp, M., Stunitz, H., Heilbronner, R., and Schmid, S. M.: The eastern
Tonale fault zone: A natural laboratory for crystal plastic deformation over
a temperature range from 250 to 700 ∘C, J. Struct. Geol., 24,
1861–1884, 2002.
Stübner, K., Ratschbacher, L., Weise, C., Chow, J., Hofmann, J., Khan,
J., and Project TIPAGE members: The giant Shakhdara migmatitic gneiss
dome, Pamir, India-Asia collision zone: 2. Timing of dome
formation, Tectonics, 32, 1404–1431, 2013.
Thöni, M.: Distribution of pre-Alpine and Alpine metamorphism of the
southern Ötztal Mass and the Scarl Unit, based on K/Ar age
determinations, Mitt. Österr. Geol. Ges., 71, 139–165, 1980.
Thöni, M.: Degree and Evolution of the Alpine Metamorphism in the Austroalpine Unit W of the Hohe Tauern in the light of K/Ar and Rb/Sr Age Determinations on Micas, Jahrbuch der Geologischen Bundesanstalt, 124, 111174, 1981.
Thöni, M.: The Rb-Sr thin slab isochron Method-an Unreliable
Geochronologic Method for Dating Geologic Events in Polymetamorphic
Terrains?: Evidence from the Austroalpine Basement Nappe, the Eastern Alps,
Mem. Soc. Geol., 38, 283–352, 1986.
Thöni, M.: A review of geochronological data from the Eastern Alps,
Schweiz. Mineral. Petrogr. Mitt., 79, 209–230, 1999.
Thöni, M.: Sm–Nd isotope systematics in garnet from different
lithologies (Eastern Alps): age results, and an evaluation of potential
problems for garnet Sm–Nd chronometry, Chem. Geol., 185, 255–281, https://doi.org/10.1016/S0009-2541(02)00419-9, 2002.
Thöni, M., Miller, C., Blichert-Toft, J., Whitehouse, M. J., Konzett,
J., and Zanetti, A.: Timing of high-pressure metamorphism and exhumation of
the eclogite-type locality (Klupperbrunn-Prickler Halt, south-eastern
Austria): constraints from the correlation of the Sm-Nd, Lu-Hf, U-Pb and
Rb-Sr isotopic systems, J. Metamorph. Geol., 26, 561–581, 2008.
Tropper, P. and Reiches, A.: Garnet zoning as a window into the metamorphic
evolution of a crystalline complex: the northern and central Austroalpine
Ötztal-Complex as a polymetamorphic example, Mitt. Österr. Geol. Ges.,
94, 27–53, 2003.
Vitale, S. and Mazzoli, S.: Heterogeneous shear zone evolution: the role of
shear strain hardening/softening, J. Struct. Geol., 30, 1383–1395, https://doi.org/10.1016/j.jsg.2008.07.006, 2008.
Vitale, S. and Mazzoli, S.: Strain analysis of heterogeneous ductile shear
zones based on the attitudes of planar markers, J. Struct. Geol., 32,
321–329, 2010.
Xypolias, P.: Vorticity analysis in shear zones: a review of methods and
applications, J. Struct. Geol., 32, 2072–2092, https://doi.org/10.1016/j.jsg.2010.08.009, 2010.
Xypolias, P. and Koukouvelas, I. K.: Kinematic vorticity and strain rate
patterns associated with ductile extrusion in the Chelmos Shear Zone
(External Hellenides, Greece), Tectonophysics, 338, 59–77, 2001.
Wiesinger, M., Neubauer, F., and Handler, R.: Exhumation of the Saualpe eclogite
unit, Eastern Alps: constraints from ages, Miner.
Petrol., 88, 149–180, 2006.
Zanchetta, S., D'Adda, P., Zanchi, A., Barberini, V., and Villa, I. M.:
Cretaceous-Eocene compression in the central Southern Alps (N Italy)
inferred from dating of pseudotachylytes along regional
thrust faults, J. Geodyn., 51, 245–263, 2011.
Zanchetta, S., Garzanti, E., Doglioni, C., and Zanchi, A.: The Alps in the
Cretaceous: a doubly vergent pre-collisional orogen, Terra Nova, 24,
351–356, 2012.
Zanchetta, S., Poli, S., Rubatto, D., Zanchi, A., and Bove, G.: Evidence for
deep subduction of Austroalpine crust (Texel Complex, NE Italy), Rend. Fis.
Acc. Lincei., 24, 163–176, https://doi.org/10.1007/s12210-013-0239-z,
2013.
Zanchetta, S., Malusà, M. G., and Zanchi, A.: Precollisional development
and Cenozoic evolution of the Southalpine retrobelt (European Alps),
Lithosphere, 7, 662–681, 2015.
Zantedeschi, C.: Geocronologia Rb–Sr sugli gneiss granitoidi del Complesso
di Parcines (Alto Adige Occidentale), Mem. Sci. Geol., 43, 319–329, 1991.
Short summary
The Vinschgau Shear Zone (VSZ) is one of the largest and most significant shear zones developed within the Late Cretaceous thrust stack in the Austroalpine domain of the eastern Alps. 40Ar / 39Ar geochronology constrains the activity of the VSZ between 97 and 80 Ma. The decreasing vorticity towards the core of the shear zone, coupled with the younging of mylonites, points to a shear thinning behavior. The deepest units of the Eo-Alpine orogenic wedge were exhumed along the VSZ.
The Vinschgau Shear Zone (VSZ) is one of the largest and most significant shear zones developed...