Articles | Volume 14, issue 7
https://doi.org/10.5194/se-14-709-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-14-709-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Inversion of accommodation zones in salt-bearing extensional systems: insights from analog modeling
Elizabeth Parker Wilson
CORRESPONDING AUTHOR
Institut de Recera Geomodels, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, 08028, Barcelona, Spain
Pablo Granado
Institut de Recera Geomodels, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, 08028, Barcelona, Spain
Pablo Santolaria
Institut de Recera Geomodels, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, 08028, Barcelona, Spain
Oriol Ferrer
Institut de Recera Geomodels, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, 08028, Barcelona, Spain
Josep Anton Muñoz
Institut de Recera Geomodels, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, 08028, Barcelona, Spain
Related authors
No articles found.
Pablo Santolaria, Roi Silva-Casal, Núria Carrera, Josep A. Muñoz, Pau Arbués, and Pablo Granado
Solid Earth, 16, 899–927, https://doi.org/10.5194/se-16-899-2025, https://doi.org/10.5194/se-16-899-2025, 2025
Short summary
Short summary
Among sedimentary rocks, evaporites (as salt) have a particular behavior when deformed under geological forces: they flow while the others break. Such behavior controls the evolution of mountain building events. By mapping the distribution of rocks and interpreting the subsurface architecture of geological structures we were able to reconstruct the mountain building processes of an area in the Southern Pyrenees and how those evaporites flowed and accumulated.
Oriol Ferrer, Eloi Carola, and Ken McClay
Solid Earth, 14, 571–589, https://doi.org/10.5194/se-14-571-2023, https://doi.org/10.5194/se-14-571-2023, 2023
Short summary
Short summary
Using an experimental approach based on scaled sandbox models, this work aims to understand how salt above different rotational fault blocks influences the cover geometry and evolution, first during extension and then during inversion. The results show that inherited salt structures constrain contractional deformation. We show for the first time how welds and fault welds are reopened during contractional deformation, having direct implications for the subsurface exploration of natural resources.
Jordi Miró, Oriol Ferrer, Josep Anton Muñoz, and Gianreto Manastchal
Solid Earth, 14, 425–445, https://doi.org/10.5194/se-14-425-2023, https://doi.org/10.5194/se-14-425-2023, 2023
Short summary
Short summary
Using the Asturian–Basque–Cantabrian system and analogue (sandbox) models, this work focuses on the linkage between basement-controlled and salt-decoupled domains and how deformation is accommodated between the two during extension and subsequent inversion. Analogue models show significant structural variability in the transitional domain, with oblique structures that can be strongly modified by syn-contractional sedimentation. Experimental results are consistent with the case study.
Frank Zwaan, Guido Schreurs, Susanne J. H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf, and Ernst Willingshofer
Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022, https://doi.org/10.5194/se-13-1859-2022, 2022
Short summary
Short summary
When a sedimentary basin is subjected to compressional tectonic forces after its formation, it may be inverted. A thorough understanding of such
basin inversionis of great importance for scientific, societal, and economic reasons, and analogue tectonic models form a key part of our efforts to study these processes. We review the advances in the field of basin inversion modelling, showing how the modelling results can be applied, and we identify promising venues for future research.
Cited articles
Adam, J., Urai, J. L., Wieneke, B., Oncken, O., Pfeiffer, K., Kukowski, N.,
Lohrmann, J., Hoth, S., van der Zee, W., and Schmatz, J.: Shear localisation
and strain distribution during tectonic faulting—new insights from
granular-flow experiments and high-resolution optical image correlation
techniques, J. Struct. Geol., 27, 283–301,
https://doi.org/10.1016/J.JSG.2004.08.008, 2005.
Ahlrichs, N., Hübscher, C., Noack, V., Schnabel, M., Damm, V., and
Krawczyk, C. M.: Structural Evolution at the Northeast North German Basin
Margin: From Initial Triassic Salt Movement to Late Cretaceous-Cenozoic
Remobilization, Tectonics, 39, e2019TC005927, https://doi.org/10.1029/2019TC005927, 2020.
Alves, T. M., Gawthorpe, R. L., Hunt, D. W., and Monteiro, J. H.: Jurassic
tectono-sedimentary evolution of the Northern Lusitanian Basin (offshore
Portugal), Mar. Petrol. Geol., 19, 727–754,
https://doi.org/10.1016/S0264-8172(02)00036-3, 2002.
Alves, T. M., Mattos, N. H., Newnes, S., and Goodall, S.: Analysis of a
basement fault zone with geothermal potential in the Southern North Sea,
Geothermics, 102, 102398, https://doi.org/10.1016/J.GEOTHERMICS.2022.102398,
2022.
Amilibia, A., McClay, K. R., Sàbat, F., Muñoz, J. A., and Roca, E.:
Analogue modelling of inverted oblique rift systems, Geol. Acta, 3,
251–271, 2005.
Beauchamp, W.: Superposed folding resulting from inversion of a synrift
accommodation zone, Atlas Mountains; Morocco, in: Thrust tectonics and
hydrocarbon systems, edited by: McClay, K. R., American Association of
Petroleum Geologists, 635–646, https://doi.org/10.1306/m82813c33, 2004.
Bonini, M.: Deformation patterns and structural vergence in brittle–ductile
thrust wedges: An additional analogue modelling perspective, J. Struct. Geol.,
29, 141–158, https://doi.org/10.1016/J.JSG.2006.06.012, 2007.
Bonini, M., Sani, F., and Antonielli, B.: Basin inversion and contractional
reactivation of inherited normal faults: A review based on previous and new
experimental models, Tectonophysics, 522–523, 55–88,
https://doi.org/10.1016/j.tecto.2011.11.014, 2012.
Brun, J. P. and Fort, X.: Compressional salt tectonics (Angolan margin), Tectonophysics, 382, 129–150, https://doi.org/10.1016/j.tecto.2003.11.014, 2004.
Brun, J. P. and Nalpas, T.: Graben inversion in nature and experiments, Tectonics, 15, 677–687, https://doi.org/10.1029/95TC03853, 1996.
Buchanan, P. G. and McClay, K. R.: Sandbox experiments of inverted listric
and planar fault systems, Tectonophysics, 188, 97–115,
https://doi.org/10.1016/0040-1951(91)90317-L, 1991.
Buchanan, P. G. and McClay, K. R.: Experiments on basin inversion above
reactivated domino faults, Mar. Petrol. Geol., 9, 486–500,
https://doi.org/10.1016/0264-8172(92)90061-I, 1992.
Burliga, S., Koyi, H. A., and Chemia, Z.: Analogue and numerical modelling of salt supply to a diapiric structure rising above an active basement fault, Geological Society, London, Special Publications, 363, 395–408, https://doi.org/10.1144/SP363.18, 2012.
Callot, J. P., Trocmé,V., Letouzey, J., Albouy, E., Jahani, S., and Sherkati, S.: Pre-existing salt structures and the folding of the Zagros Mountains, Geological Society, London, Special Publications, 363, 545–561,
https://doi.org/10.1144/SP363.27, 2012.
Cartwright, J. A., Trudgill, B. D., and Mansfield, C. S.: Fault growth by segment
linkage: an explanation for scatter in maximum displacement and trace length
data from the Canyonlands Grabens of SE Utah, J. Struct. Geol.,
17, 1319–1326, 1995.
Célini, N., Callot, J. P., Ringenbach, J. C., and Graham, R.: Jurassic
salt tectonics in the SW sub-Alpine fold-and-thrust belt, Tectonics, 39,
e2020TC006107, https://doi.org/10.1029/2020TC006107, 2020.
Chapple, W.: Mechanics of thin-skinned fold-and-thrust belts, Am. Assoc. Pet.
Geol. Bull., 89, 1189–1198, https://doi.org/10.1130/0016-7606(1978)89<1189:MOTFB>2.0.CO;2, 1978.
Cooper, M. A., Williams, G. D., de Graciansky, P. C., Murphy, R. W.,
Needham, T., de Paor, D., Stoneley, R., Todd, S. P., Turner, J. P., and
Ziegler, P. A.: Inversion tectonics – a discussion, Geol. Soc. Spec. Publ., 44,
335–347,
https://doi.org/10.1144/GSL.SP.1989.044.01.18,
1989.
Costa, E. and Vendeville, B. C.: Experimental insights on the geometry and
kinematics of fold-and-thrust belts above weak, viscous evaporitic
décollement, J. Struct. Geol., 24, 1729–1739, 2002.
Coward, M. P.: Structural and tectonic setting of the Permo-Triassic basins
of northwest Europe, Geol. Soc. Spec. Publ., 91, 7–39,
https://doi.org/10.1144/GSL.SP.1995.091.01.02, 1995.
Crameri, F.: Geodynamic diagnostics, scientific visualisation and StagLab 3.0, Geosci. Model Dev., 11, 2541–2562, https://doi.org/10.5194/gmd-11-2541-2018, 2018.
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in
science communication, Nat. Commun., 11, 5444,
https://doi.org/10.1038/s41467-020-19160-7, 2020.
Davis, D. M. and Engelder, T.: The role of salt in fold-and-thrust belts,
Tectonophysics, 119, 67–88, 1985.
Davy, P. and Cobbold, P. R.: Experiments on shortening of a 4-layer model of
the continental lithosphere, Tectonophysics, 188, 1–25,
https://doi.org/10.1016/0040-1951(91)90311-F, 1991.
Dell'Ertole, D. and Schellart, W. P.: The development of sheath folds in
viscously stratified materials in simple shear conditions: An analogue
approach, J. Struct. Geol., 56, 129–141, https://doi.org/10.1016/j.jsg.2013.09.002,
2013.
Dooley, T., McClay, K. R., and Pascoe, R.: 3D analogue models of variable
displacement extensional faults: Applications to the Revfallet Fault system,
offshore mid-Norway, Geol. Soc. Spec. Publ., 212, 151–167,
https://doi.org/10.1144/GSL.SP.2003.212.01.10, 2003.
Dooley, T., McClay, K. R., Hempton, M., and Smit, D.: Salt tectonics above complex basement extensional fault systems: results from analogue modelling. Geological Society, London, Petroleum Geology Conference Series, 6, 1631–1648, https://doi.org/10.1144/0061631, 2005.
Dooley, T. P. and Hudec, M. R.: Extension and inversion of salt-bearing rift systems, Solid Earth, 11, 1187–1204, https://doi.org/10.5194/se-11-1187-2020, 2020.
Dooley, T. P., Jackson, M. P. A., and Hudec, M. R.: Inflation and deflation of deeply buried salt stocks during lateral shortening, J. Struct. Geol., 31, 582–600, https://doi.org/10.1016/j.jsg.2009.03.013, 2009.
Duffy, O. B., Dooley, T. P., Hudec, M. R., Jackson, M. P. A., Fernandez, N.,
Jackson, C. A. L., and Soto, J. I.: Structural evolution of salt-influenced
fold-and-thrust belts: a synthesis and new insights from basins containing
isolated salt diapirs, J. Struct. Geol., 114, 206–221, https://doi.org/10.1016/j.jsg.2018.06.024, 2018.
Duffy, O. B., Dooley, T. P., Hudec, M. R., Fernandez, N., Jackson, C. A. L., and Soto, J. I.: Principles of shortening in salt basins containing isolated minibasins, Basin Res., 33, 2089–2117, https://doi.org/10.1111/bre.12550, 2021.
Duffy, O., Hudec, M., Peel, F., Apps, G., Bump, A., Moscardelli, L., Dooley, T., Bhattacharya, S., Wisian, K., and Shuster, M.: The Role of Salt Tectonics in the Energy Transition: An Overview and Future Challenges, Tektonika, 1, 18–48, https://doi.org/10.55575/TEKTONIKA2023.1.1.11, 2023.
European Commission, Directorate-General for Research and Innovation: Europe’s 2030 climate and energy targets – Research & innovation actions, Publications Office, https://data.europa.eu/doi/10.2777/0948 (last access: 21 November 2022), 2021.
Eisenstadt, G. and Sims,
D.: Evaluating sand and clay models: Do rheological differences matter?, J. Struct. Geol., 27, 1399–1412, https://doi.org/10.1016/j.jsg.2005.04.010,
2005.
Ferrer, O., Roca, E., and Vendeville, B. C.: The role of salt layers in the
hangingwall deformation of kinked-planar extensional faults: insights from
3D analogue models and comparison with the Parentis Basin, Tectonophysics,
636, 338–350, 2014.
Ferrer, O., McClay, K., and Sellier, N. C.: Influence of fault geometries
and mechanical anisotropies on the growth and inversion of hanging-wall
synclinal basins: Insights from sandbox models and natural examples,
Geological Society, London, Special Publications, 439, 487–509,
https://doi.org/10.1144/SP439.8, 2016.
Ferrer, O., Carola, E., McClay, K., and Bufaliza, N.: Analog modeling of
domino-style extensional basement fault systems with pre-kinematic salt,
AAPG Bull., 107, 23–47, https://doi.org/10.1306/08072221188, 2022a.
Ferrer, O., Carola, E., and McClay, K.: Structural control of inherited salt structures during inversion of a domino basement-fault system from an analogue modelling approach, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1183, 2022b.
Fillon, C., Huismans, R. S., and van der Beek, P. P.: Syntectonic
sedimentation effects on the growth of fold-and-thrust belts, Geology, 41,
83–86, https://doi.org/10.1130/G33531.1, 2013.
García-Senz, J.: Cuenca extensiva del cretácico inferior en los Pirineos centrales, formación y subsecuente inversión, PhD thesis, Universitat de Barcelona, 307 pp., 2002.
García-Senz, J., and Ramírez, I.: Mapa geológico de España
1:50.000 (2a serie), Instituto Geológico y Minero de
España, Madrid, Hoja 213, Pont de Suert, 1997.
Gartrell, A., Hudson, C., and Evans, B.: The influence of basement faults
during extension and oblique inversion of the Makassar Straits rift system:
Insights from analog models, Am. Assoc. Pet. Geol. Bull., 89, 495–506,
https://doi.org/10.1306/12010404018, 2005.
Gasanzade, F., Pfeiffer, W. T., Witte, F., Tuschy, I., and Bauer, S.:
Subsurface renewable energy storage capacity for hydrogen, methane and
compressed air – A performance assessment study from the North German
Basin, Renewable and Sustainable Energy Reviews, 149, 111422,
https://doi.org/10.1016/J.RSER.2021.111422, 2021.
Gawthorpe, R. L. and Hurst, J. M.: Transfer zones in extensional basins:
their structural style and influence on drainage development and
stratigraphy, Journal of the Geological Society, 150, 1137–1152,
https://doi.org/10.1144/gsjgs.150.6.1137, 1993.
Gibbs, A. D.: Structural evolution of extensional basin margins, J. Geol. Soc.
London, 141, 609–620, https://doi.org/10.1144/gsjgs.141.4.0609, 1984.
Granado, P., Ferrer, O., Muñoz, J. A., Thöny, W., and Strauss, P.:
Basin inversion in tectonic wedges: Insights from analogue modelling and the
Alpine-Carpathian fold-and-thrust belt, Tectonophysics, 703–704, 50–68,
https://doi.org/10.1016/j.tecto.2017.02.022, 2017.
Granado, P., Roca, E., Strauss, P., Pelz, K., and Muñoz, J. A.: Structural styles in fold-and-thrust belts involving early salt structures:
The Northern Calcareous Alps (Austria), Geology, 47, 51–54, https://doi.org/10.1130/G45281.1, 2019.
Granado, P., Ruh, J. B., Santolaria, P., Strauss, P., and Muñoz, J. A.:
Stretching and Contraction of Extensional Basins With Pre-Rift Salt: A
Numerical Modeling Approach, Front. Earth Sci. (Lausanne), 9,
https://doi.org/10.3389/feart.2021.648937, 2021.
Graveleau, F., Malavieille, J., and Dominguez, S.: Experimental modelling of orogenic wedges: A review, Tectonophysics, 538, 1–66, https://doi.org/10.1016/j.tecto.2012.01.027, 2012.
Hansen, T. H., Clausen, O. R., and Andresen, K. J.: Thick- and thin-skinned basin inversion in the Danish Central Graben, North Sea – the role of deep evaporites and basement kinematics, Solid Earth, 12, 1719–1747, https://doi.org/10.5194/se-12-1719-2021, 2021.
Hudec, M. R. and Jackson, M. P. A.: Terra infirma: Understanding salt tectonics, Earth-Sci. Rev., 82, 1–28, https://doi.org/10.1016/j.earscirev.2007.01.001, 2007.
Jara, P., Likerman, J., Winocur, D., Ghiglione, M. C., Cristallini, E. O.,
Pinto, L., and Charrier, R.: Role of basin width variation in tectonic
inversion: Insight from analogue modelling and implications for the tectonic
inversion of the Abanico Basin, 32∘–34∘ S, Central
Andes, Geol. Soc. Spec. Publ., 399, 83–107, https://doi.org/10.1144/SP399.7,
2015.
Kehle, R. O.: The Origin of Salt Structures, in: Evaporites and
Hydrocarbons, edited by: Schreiber, B. C., Columbia University Press, New
York Chichester, West Sussex, 345–404,
https://doi.org/10.7312/schr91060-008, 1988.
Konstantinovskaya, E. A., Harris, L. B., Poulin, J., and Ivanov, G. M.:
Transfer zones and fault reactivation in inverted rift basins: Insights from
physical modelling, Tectonophysics, 441, 1–26,
https://doi.org/10.1016/j.tecto.2007.06.002, 2007.
Koopman, A., Speksnijder, A., and Horsfield, W. T.: Sandbox model studies of
inversion tectonics, Tectonophysics, 137, 379–388,
https://doi.org/10.1016/0040-1951(87)90329-5, 1987.
Koyi, H., Jenyon, M. K., and Petersen, K.: The effect of basement faulting
on diapirism, J. Petrol. Geol., 16, 285–312,
https://doi.org/10.1111/j.1747-5457.1993.tb00339.x, 1993.
Lacombe, O., Mazzoli, S., von Hagke, C., Rosenau, M., Fillon, C., and
Granado, P.: Style of deformation and tectono-sedimentary evolution of
fold-and-thrust belts and foreland basins: From nature to models,
Tectonophysics, 767, 228163, https://doi.org/10.1016/j.tecto.2019.228163, 2019.
Le Calvez, J. H. and Vendeville, B. C.: Experimental designs to model along-
strike fault interaction, Journal of the Virtual Explorer, 7, 2,
https://doi.org/10.3809/JVIRTEX.2002.00043, 2002.
Lescoutre, R., Tugend, J., Brune, S., Masini, E., and Manatschal, G.:
Thermal Evolution of Asymmetric Hyperextended Magma-Poor Rift Systems:
Results From Numerical Modeling and Pyrenean Field Observations,
Geochem. Geophy. Geosy., 20, 4567–4587,
https://doi.org/10.1029/2019GC008600, 2019.
Letouzey, J., Colleta, B., Vially, R., and Chermette, J. C.: Evolution of salt-related structures in compressional settings, AAPG Memoir., 65, 41–60, https://doi.org/10.1306/M65604C3, 1995.
Lohrmann, J., Kukowski, N., Adam, J., and Oncken, O.: The impact of analogue
material properties on the geometry, kinematics, and dynamics of convergent
sand wedges, J. Struct. Geol., 25, 1691–1711,
https://doi.org/10.1016/S0191-8141(03)00005-1, 2003.
López-Mir, B., Muñoz, J. A., and García-Senz, J.: Extensional salt tectonics in the partially inverted Cotiella post-rift basin (south-central Pyrenees): structure and evolution, Int. J. Earth Sci. (Geol. Rundsch.), 104, 419–434, https://doi.org/10.1007/s00531-014-1091-9, 2015.
Manatschal, G., Chenin, P., Lescoutre, R., Miró, J., Cadenas, P.,
Saspiturry, N., Masini, E., Chevrot, S., Ford, M., Jolivet, L., Mouthereau,
F., Thinon, I., Issautier, B., and Calassou, S.: The role of inheritance in
forming rifts and rifted margins and building collisional orogens: a
Biscay-Pyrenean perspective, BSGF – Earth Sci. Bull., 192, 55,
https://doi.org/10.1051/bsgf/2021042, 2021.
Martín-Chivelet, J., López-Gómez, J., Aguado, R., Arias, C., Arribas, J., Arribas, M. E., Aurell, M., Bádenas, B., Benito, M. I., Bover-Arnal, T., Casas-Sainz, A., Castro, J. M., Coruña, F., de Gea, G. A., Fornós, J. J., Fregenal-Martínez, M., García-Senz, J., Garófano, D., Gelabert, B., Giménez, J., González-Acebrón, L., Guimerà, J., Liesa, C. L., Mas, R., Meléndez, N., Molina, J. M., Muñoz, J. A., Navarrete, R., Nebot, M., Nieto, L. M., Omodeo-Salé, S., Pedrera, A., Peropadre, C., Quijada, I. E., Quijano, M. L., Reolid, M., Robador, A., Rodríguez-López, J. P., Rodríguez-Perea, A,, Rosales, I., Ruiz-Ortiz, P. A., Sàbat, F., Salas, R., Soria, A. R., Suarez-Gonzalez, P., and Vilas, L.: The
Late Jurassic–Early Cretaceous Rifting, in: The Geology of Iberia A
Geodynamic Approach, edited by: Quesada, C. and Oliveira, J. T., Regional
Geological Reviews, Springer Nature, 169–249,
https://doi.org/10.1007/978-3-030-11295-0_5, 2019a.
Martín-Chivelet, J., Floquet, M., García-Senz, J., Callapez, P. M.,
López-Mir, B., Muñoz, J. A., Barroso-Barcenilla, F., Segura, M.,
Ferreira Soares, A., Morgado Dinis, P., Fonseca Marques, J., and Arbués,
P.: Late Cretaceous Post-Rift to Convergence, in: The Geology of Iberia A
Geodynamic Approach, edited by: Quesada, C. and Oliveira, J. T., Regional
Geological Reviews, Springer Nature, 285–376,
https://doi.org/10.1007/978-3-030-11295-0_7, 2019b.
Martin-Roberts, E., Scott, V., Flude, S., Johnson, G., Haszeldine, R. S.,
and Gilfillan, S.: Carbon capture and storage at the end of a lost decade,
One Earth, 4, 1569–1584, https://doi.org/10.1016/j.oneear.2021.10.002,
2021.
McClay, K. R.: Analogue models of inversion tectonics, Geol. Soc. Spec. Publ.,
44, 41–59, https://doi.org/10.1144/GSL.SP.1989.044.01.04, 1989.
McClay, K. R.: The geometries and kinematics of inverted fault systems: A
review of analogue model studies, Geol. Soc. Spec. Publ., 88, 97–118,
https://doi.org/10.1144/GSL.SP.1995.088.01.07, 1995.
McClay, K. R.: Recent advances in analogue modelling: Uses in section
interpretation and validation, Geol. Soc. Spec. Publ., 99, 201–225,
https://doi.org/10.1144/GSL.SP.1996.099.01.16, 1996.
McClay, K. R.: Analogue Models of Contractional Thrust Wedges – The Dynamic
Effects of Syntectonic Sedimentation and Syntectonic Erosion, in: International Conference and Exhibition, Melbourne, Australia, 13–16 September 2015,
https://doi.org/10.1190/ice2015-2209023, 2015.
McClay, K. R., Dooley, T., Whitehouse, P., and Mills, M.: 4-D evolution of
rift systems: Insights from scaled physical models, Am. Assoc. Pet. Geol. Bull.,
86, 935–959, https://doi.org/10.1306/61eedbf2-173e-11d7-8645000102c1865d,
2002.
Mencós, J., Carrera, N., and Muñoz, J. A.: Influence of rift basin
geometry on the subsequent postrift sedimentation and basin inversion: The
Organyà Basin and the Bóixols thrust sheet (south central Pyrenees),
Tectonics, 34, 1452–1474, https://doi.org/10.1002/2014TC003692, 2015.
Miocic, J. M., Alcalde, J., Heinemann, N., Marzan, I., and Hangx, S.: Toward
Energy-Independence and Net-Zero: The Inevitability of Subsurface Storage in
Europe, ACS Energy Lett., 7, 2486–2489,
https://doi.org/10.1021/acsenergylett.2c01303, 2022.
Miró, J., Manatschal, G., Cadenas, P., and Muñoz, J. A.:
Reactivation of a hyperextended rift system: The Basque–Cantabrian Pyrenees
case, Basin Res., 33, 3077–3101, https://doi.org/10.1111/bre.12595,
2021.
Miró, J., Ferrer, O., Muñoz, J. A., and Manastchal, G.: Role of inheritance during tectonic inversion of a rift system in a thick- to thin-skin transition: Analogue modelling and application to the Pyrenean – Biscay System, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1175, 2022.
Moragas, M., Vergés,
J., Nalpas, T., Saura, E., Martín-Martín, J. D., Messager, G., and
Hunt, D. W.: The impact of syn- and post-extension prograding sedimentation
on the development of salt-related rift basins and their inversion: Clues
from analogue modelling, Mar. Petrol. Geol., 88,
985–1003, https://doi.org/10.1016/j.marpetgeo.2017.10.001, 2017.
Moragas, M., Vergés, J., Saura, E., Martín-Martín, J. D.,
Messager, G., Merino-Tomé, Ó., Suárez-Ruiz, I., Razin, P.,
Grélaud, C., Malaval, M., Joussiaume, R., and Hunt, D. W.: Jurassic
rifting to post-rift subsidence analysis in the Central High Atlas and its
relation to salt diapirism, Basin Res., 30, 336–362,
https://doi.org/10.1111/bre.12223, 2018.
Morley, C. K., Nelson, R. A., Patton, T. L., and Munn, S. G.: Transfer Zones
in the East African Rift System and Their Relevance Hydrocarbon Eploration
Rifts, Am. Assoc. Petr. Geol. B., 74,
1234–1253, 1990.
Mugnier, J. L., Baby, P., Coletta, B., Vinour, P., Bale, P., and Leturmy, P.:
Thrust geometry controlled by erosion and sedimentation: A view from
analogue models, Geology, 25, 427–430, 1997.
Muñoz, J. A.: Evolution of a continental collision belt: ECORS-Pyrenees
crustal balanced cross-section, in: Thrust Tectonics, edited by: McClay, K. R.,
London, Chapman and Hall, 235–246, 1992.
Muñoz, J. A., Mencos, J., Roca, E., Carrera, N., Gratacós, O.,
Ferrer, O., and Fernández, O.: The structure of the
South-Central-Pyrenean fold and thrust belt as constrained by subsurface
data, Geol. Acta, 16, 439–460,
https://doi.org/10.1344/GeologicaActa2018.16.4.7, 2018.
Panien, M., Schreurs, G., and Pfiffner, A.: Sandbox experiments on basin
inversion: testing the influence of basin orientation and basin fill, J. Struct. Geol., 27, 433–445, https://doi.org/10.1016/J.JSG.2004.11.001, 2005.
Peacock, D. C. P. and Sanderson, D. J.: Displacements, segment linkage and
relay ramps in normal fault zones, J. Struct. Geol., 13,
721–733, https://doi.org/10.1016/0191-8141(91)90033-F, 1991.
Pinheiro, L. M., Wilson, R. C. L., Pena dos Reis, R., Whitmarsh, R. B., and
Ribeiro, A.: The western Iberia Margin: a geophysical and geological
overview, in: Proceedings of the Ocean Drilling Program, Scientific Results,
vol. 149, edited by: Whitmarsh, R. B., Sawyer, D. S., Klaus, A., and Masson,
D. G., Ocean Drilling Program, 1–23,
https://doi.org/10.2973/odp.proc.sr.149.246.1996, 1996.
Pla, O., Roca, E., Xie, H., Izquierdo-Llavall, E., Muñoz, J. A., Rowan,
M. G., Ferrer, O., Gratacós, Ò., Yuan, N., and Huang, S.: Influence
of Syntectonic Sedimentation and Décollement Rheology on the Geometry
and Evolution of Orogenic Wedges: Analog Modeling of the Kuqa
Fold-and-Thrust Belt (NW China), Tectonics, 38, 2727–2755,
https://doi.org/10.1029/2018TC005386, 2019.
Puigdefàbregas, C., Muñoz, J. A., and Vergés, J.: Thrusting and
foreland basin evolution in the Southern Pyrenees, Thrust Tectonics,
247–254, https://doi.org/10.1007/978-94-011-3066-0_22, 1992.
Ramos, A., Lopez-Mir, B., Wilson, E. P., Granado, P., and Muñoz, J. A.: 3D
reconstruction of syn-tectonic strata in a salt-related orogen: learnings
from the Llert syncline (South-central Pyrenees), Geol. Acta, 18, 1–19, https://doi.org/10.1344/GeologicaActa2020.18.20,
2020.
Rasmussen, E. S., Lomholt, S., Andersen, C., and Vejbæk, O. V.: Aspects
of the structural evolution of the Lusitanian Basin in Portugal and the
shelf and slope area offshore Portugal, Tectonophysics, 300, 199–225,
https://doi.org/10.1016/S0040-1951(98)00241-8, 1998.
Ribeiro, A., Kullberg, M. C., Kullberg, J. C., Manuppella, G., and Phipps,
S.: A review of Alpine tectonics in Portugal: Foreland detachment in
basement and cover rocks, Tectonophysics, 184, 357–366,
https://doi.org/10.1016/0040-1951(90)90448-H, 1990.
Richardson, N. J., Underhill, J. R., and Lewis, G.: The role of evaporite
mobility in modifying subsidence patterns during normal fault growth and
linkage, Halten Terrace, Mid-Norway, Basin Res., 17, 203–223,
https://doi.org/10.1111/j.1365-2117.2005.00250.x, 2005.
Rime, V., Sommaruga, A., Schori, M., and Mosar, J.: Tectonics of the
Neuchâtel Jura Mountains: insights from mapping and forward modelling,
Swiss J. Geosci., 112, 563–578, https://doi.org/10.1007/S00015-019-00349-Y,
2019.
Robador, A. and Zamorano, M.: Mapa geológico de España 1:50.000
(2a serie), Hoja 212, Campo, Instituto Geológico y Minero
de España, Madrid, 1999.
Roma, M., Ferrer, O., Roca, E., Pla, O., Escosa, F. O., and Butillé, M.:
Formation and inversion of salt-detached ramp-syncline basins. Results from
analog modeling and application to the Columbrets Basin (Western
Mediterranean), Tectonophysics, 745, 214–228,
https://doi.org/10.1016/J.TECTO.2018.08.012, 2018a.
Roma, M., Vidal-Royo, O., McClay, K., Ferrer, O., and Muñoz, J. A.:
Tectonic inversion of salt-detached ramp-syncline basins as illustrated by
analog modeling and kinematic restoration, Interpretation, 6, T127–T144,
https://doi.org/10.1190/INT-2017-0073.1, 2018b.
Roma, M., Ferrer, O., McClay, K. R., Muñoz, J. A., Roca, E.,
Gratacós, O., and Cabello, P.: Weld kinematics of syn-rift salt during
basement-involved extension and subsequent inversion: Results from analog
models, Geol. Acta, 16, 391–410,
https://doi.org/10.1344/GeologicaActa2018.16.4.4, 2018c.
Rowan, M. G., and Vendeville, B. C.:
Foldbelts with early salt withdrawal and diapirism: Physical model and examples from the northern Gulf of Mexico and the Flinders Ranges, Australia, Mar. Petrol. Geol., 23, 871–891,
https://doi.org/10.1016/j.marpetgeo.2006.08.003, 2006.
Saïd, A., Baby, P., Chardon, D., and Ouali, J.: Structure,
paleogeographic inheritance, and deformation history of the Southern Atlas
foreland fold and thrust belt of Tunisia, Tectonics, 30, TC6004,
https://doi.org/10.1029/2011TC002862, 2011.
Sala, P., Pfiffner, O. A., and Frehner, M.: The Alpstein in three
dimensions: fold-and-thrust belt visualization in the Helvetic zone, eastern
Switzerland, Swiss J. Geosci., 107, 177–195, https://doi.org/10.1007/s00015-014-0168-6,
2014.
Santolaria, P., Granado, P., Carrera, N., Schneider, C. L., Ferrer, O.,
Snidero, M., Strauss, P., Pelz, K., Roca, E., and Muñoz, J. A.: From
downbuilding to contractional reactivation of salt-sediment systems:
Insights from analog modeling, Tectonophysics, 819, 229078,
https://doi.org/10.1016/j.tecto.2021.229078, 2021a.
Santolaria, P., Ferrer, O., Rowan, M. G., Snidero, M., Carrera, N., Granado,
P., Muñoz, J. A., Roca, E., Schneider, C. L., Piña, A., and Zamora,
G.: Influence of preexisting salt diapirs during thrust wedge evolution and
secondary welding: Insights from analog modeling, J. Struct. Geol., 149, 104374,
https://doi.org/10.1016/j.jsg.2021.104374, 2021b.
Santolaria, P., Granado, P., Wilson, E. P., de Matteis, M., Ferrer, O., M.,
Strauss, P., Pelz, K., König, M., Oteleanu, A. E., Roca, E., Muñoz,
J. A.: From salt-bearing rifted margins to fold-and-thrust belts. Insights
from analogue modelling and Northern Calcareous Alps case study, Tectonics, 41, e2022TC007503, https://doi.org/10.1029/2022TC007503,
2022.
Saria, E., Calais, E., Stamps, D. S., Delvaux, D., and Hartnady, C. J. H.:
Present-day kinematics of the East African Rift, J. Geophys. Res.-Sol. Ea.,
119, 3584–3600, https://doi.org/10.1002/2013JB010901, 2014.
Schellart, W. P.: Shear test results for cohesion and friction coefficients
for different granular materials: Scaling implications for their usage in
analogue modelling, Tectonophysics, 324, 1–16,
https://doi.org/10.1016/S0040-1951(00)00111-6, 2000.
Schori, M., Zwaan, F., Schreurs, G., and Mosar, J.: Pre-existing Basement
Faults Controlling Deformation in the Jura Mountains Fold-and-Thrust Belt:
Insights from Analogue Models, Tectonophysics, 814, 228980,
https://doi.org/10.1016/J.TECTO.2021.228980, 2021.
Schreurs, G., Buiter, S. J. H., Boutelier, D., Corti, G., Costa, E., Cruden,
A. R., Daniel, J. M., Hoth, S., Koyi, H. A., Kukowski, N., Lohrmann, J.,
Ravaglia, A., Schlische, R. W., Withjack, M. O., Yamada, Y., Cavozzi, C.,
del Ventisette, C., Elder Brady, J. A., Hoffmann-Rothe, A., Mengus, J. M.,
Montanari, D., and Nilforoushan, F.: Analogue benchmarks of shortening and
extension experiments, Geol. Soc. Spec. Publ., 253, 1–27,
https://doi.org/10.1144/GSL.SP.2006.253.01.01, 2006.
Séguret, M.: Étude tectonique des nappes et séries décollees de la partie centrale du versant sud des Pyrénées, Publications de l’Université de Sciences et Techniques de Languedoc, Montpellier, série Géologie Structurale, 2, 1–155, 1972.
Snidero, M., Muñoz, J.A., Carrera, N., Butillé, M., Mencos, J.,
Motamedi, H., Piryaei, A., Sàbat, F.: Temporal evolution of the Darmadan
salt diapir, eastern Fars region, Iran, Tectonophysics 766, 115–130,
https://doi.org/10.1016/j.tecto.2019.06.006.
Sommaruga, A.: Décollement tectonics in the Jura foreland
fold-and-thrust belt, Mar. Petrol. Geol., 16, 111–134, 1999.
Soto, J. I., Flinch, J., and Tari, G. (Eds.): Permo-Triassic Salt Provinces of Europe,
North Africa and the Atlantic Margins. Tectonics and Hydrocarbon Potential,
Elsevier, 608 pp., https://doi.org/10.1016/C2015-0-05796-3, 2017.
Stapel, G., Cloetingh, S., and Pronk, B.: Quantitative subsidence analysis
of the Mesozoic evolution of the Lusitanian basin (western Iberian margin),
Tectonophysics, 266, 493–507,
https://doi.org/10.1016/S0040-1951(96)00203-X, 1996.
Stewart, S. A.: Salt tectonics in the North Sea Basin: A structural style
template for seismic interpreters, Geol. Soc. Spec. Publ., 272, 361–396,
https://doi.org/10.1144/GSL.SP.2007.272.01.19, 2007.
Stewart, S. A.: Detachment-controlled triangle zones in extension and inversion tectonics, Interpretation 2, SM29–SM38,
https://doi.org/10.1190/INT-2014-0026.1, 2014.
Stewart, S. A. and Coward, M. P.: Synthesis of salt tectonics in the
southern North Sea, UK, Mar. Petrol. Geol., 12, 457–475,
https://doi.org/10.1016/0264-8172(95)91502-G, 1995.
Stewart, S. A., Harvey, M. J., Otto, S. C., and Weston, P. J.: Influence of
salt on fault geometry: Examples from the UK salt basins, Geol. Soc. Spec. Publ., 100, 175–202, https://doi.org/10.1144/GSL.SP.1996.100.01.12, 1996.
Stewart, S. A., Ruffell, A. H., and Harvey, M. J.: Relationship between
basement-linked and gravity-driven fault systems in the UKCS salt basins,
Mar. Petrol. Geol., 14, 581–604, https://doi.org/10.1016/S0264-8172(97)00008-1,
1997.
Storti, F. and McClay, K.R.: Influence of syntectonic sedimentation on
thrust wedges in analogue models, Geology, 23, 999–1002, 1995.
Strauss, P., Granado, P., and Muñoz, J. A.: Subsidence analysis of salt
tectonics-driven carbonate minibasins (Northern Calcareous Alps, Austria),
Basin Res., 33, 968–990, https://doi.org/10.1111/BRE.12500, 2021.
Tavani, S. and Granado, P.: Along-strike evolution of folding, stretching
and breaching of post-salt strata in the Plataforma Burgalesa extensional
forced fold system (northern Spain), Basin Res., 27,
573–585, https://doi.org/10.1111/bre.12089, 2015.
Tavani, S., Bertok, C., Granado, P., Piana, F., Salas, R., Vigna, B., and
Muñoz, J. A.: The Iberia-Eurasia plate boundary east of the Pyrenees,
Earth-Sci. Rev., 187, 314–337,
https://doi.org/10.1016/j.earscirev.2018.10.008, 2018.
Teixell, A.: The Ansó transect of the southern Pyrenees: Basement and
cover thrust geometries, J. Geol. Soc. London, 153, 301–310,
https://doi.org/10.1144/gsjgs.153.2.0301, 1996.
Tugend, J., Manatschal, G., Kusznir, N. J., Masini, E., Mohn, G., and
Thinon, I.: Formation and deformation of hyperextended rift systems:
Insights from rift domain mapping in the Bay of Biscay-Pyrenees, Tectonics,
33, 1239–1276, https://doi.org/10.1002/2014TC003529, 2014.
Velaj, T., Davison, I., Serjani, A., and Alsop, I.: Thrust tectonic and the role
of evaporites in the Ionian zone of the Albanides, AAPG Bull.,
83, 1408–1425, 1999.
Vendeville, B. C. and Jackson, M. P. A.:
The fall of diapirs during thin-skinned extension, Mar. Petrol. Geol.,
9, 354–371, https://doi.org/10.1016/0264-8172(92)90048-J, 1992.
Vendeville, B. C. and Nilsen, K. T.: Episodic growth of salt diapirs driven by horizontal shortening, in: Salt, Sediment, and Hydrocarbons, edited by: Travis, C. J., Harrison, H., Hudec, M. R., Vendeville, B. C., Peel, F. J., Perkins, B. F., SEPM Gulf Coast Section 16th Annual Research Foundation Conference, Houston, Texas, 285–295, 1995.
Vendeville, B. C., Hongxing Ge, and Jackson, M. P. A.: Scale models of salt
tectonics during basement-involved extension, Petrol. Geosci., 1,
179–183, https://doi.org/10.1144/petgeo.1.2.179, 1995.
Weijermars, R. and Schmeling, H.: Scaling of Newtonian and non-Newtonian
fluid dynamics without inertia for quantitative modelling of rock flow due
to gravity (including the concept of rheological similarity), Phys.
Earth Planet. Int., 43, 316–330,
https://doi.org/10.1016/0031-9201(86)90021-X, 1986.
White, N. J., Jackson, J. A., and McKenzie, D. P.: The relationship between
the geometry of normal faults and that of the sedimentary layers in their
hanging walls, J. Struct. Geol., 8, 897–909,
https://doi.org/10.1016/0191-8141(86)90035-0, 1986.
Williams, G. D., Powell, C. M., and Cooper, M. A.: Geometry and kinematics
of inversion tectonics, Geol. Soc. Spec. Publ., 44, 3–15,
https://doi.org/10.1144/GSL.SP.1989.044.01.02, 1989.
Wilson, E. P.: Inversion of Transfer Zones – Model 01 Extension, TIB AV-Portal [video], https://doi.org/10.5446/60620, 2023a.
Wilson, E. P.: Inversion of Transfer Zones – Model 02 shortening, no surface processes, TIB AV-Portal [video], https://doi.org/10.5446/60621, 2023b.
Wilson, E. P.: Inversion of Transfer Zones - Model 03 shortening with syn-contractional sedimentation, TIB AV-Portal [video], https://doi.org/10.5446/60622, 2023c.
Withjack, M. O. and Callaway, S.: Active normal faulting beneath a salt
layer: An experimental study of deformation patterns in the cover sequence,
Am. Assoc. Pet. Geol. Bull., 84, 627–651,
https://doi.org/10.1306/c9ebce73-1735-11d7-8645000102c1865d, 2000.
Withjack, M. O., Olson, J., and Peterson, E.: Experimental Models of
Extensional Forced Folds, Am. Assoc. Pet. Geol. Bull., 74, 1038–1054,
https://doi.org/10.1306/0C9B23FD-1710-11D7-8645000102C1865D, 1990.
Yang, H., Yang, X., Zhang, H., Huang, X., Huang, W., and Zhang, N.: Active
fold deformation and crustal shortening rates of the Qilian Shan Foreland
Thrust Belt, NE Tibet, since the Late Pleistocene, Tectonophysics, 742–743,
84–100, https://doi.org/10.1016/J.TECTO.2018.05.019, 2018.
Ziegler, P. A. and van Hoorn, B.: Evolution of North Sea Rift System,
Extensional tectonics and stratigraphy of the North Atlantic margins, AAPG Memoir, 46,
471–500, https://doi.org/10.1306/M46497C31, 1989.
Zwaan, F. and Schreurs, G.: How oblique extension and structural inheritance
influence rift segment interaction: Insights from 4D analog models,
Interpretation, 5, SD119–SD138, https://doi.org/10.1190/int-2016-0063.1,
2017.
Zwaan, F., Schreurs, G., Buiter, S. J. H., Ferrer, O., Reitano, R., Rudolf, M., and Willingshofer, E.: Analogue modelling of basin inversion: a review and future perspectives, Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022, 2022.
Short summary
This work focuses on the control of accommodation zones on extensional and subsequent inversion in salt-detached domains using sandbox analogue models. During extension, the transfer zone acts as a pathway for the movement of salt, changing the expected geometries. When inverted, the salt layer and syn-inversion sedimentation control the deformation style in the salt-detached cover system. Three natural cases are compared to the model results and show similar inversion geometries.
This work focuses on the control of accommodation zones on extensional and subsequent inversion...
Special issue