Articles | Volume 14, issue 9
https://doi.org/10.5194/se-14-961-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-14-961-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analogue experiments on releasing and restraining bends and their application to the study of the Barents Shear Margin
Roy Helge Gabrielsen
CORRESPONDING AUTHOR
Department of Geosciences, University of Oslo, Oslo, Norway
Panagiotis Athanasios Giannenas
Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes,
France
Dimitrios Sokoutis
Department of Geosciences, University of Oslo, Oslo, Norway
Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
Ernst Willingshofer
Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
Muhammad Hassaan
Department of Geosciences, University of Oslo, Oslo, Norway
Vår Energi AS, Grundingen 3, 0250 Oslo, Norway
Jan Inge Faleide
Department of Geosciences, University of Oslo, Oslo, Norway
Related authors
No articles found.
Aleksandra Smyrak-Sikora, Peter Betlem, Victoria S. Engelschiøn, William J. Foster, Sten-Andreas Grundvåg, Mads E. Jelby, Morgan T. Jones, Grace E. Shephard, Kasia K. Śliwińska, Madeleine L. Vickers, Valentin Zuchuat, Lars Eivind Augland, Jan Inge Faleide, Jennifer M. Galloway, William Helland-Hansen, Maria A. Jensen, Erik P. Johannessen, Maayke Koevoets, Denise Kulhanek, Gareth S. Lord, Tereza Mosociova, Snorre Olaussen, Sverre Planke, Gregory D. Price, Lars Stemmerik, and Kim Senger
Clim. Past, 21, 2133–2187, https://doi.org/10.5194/cp-21-2133-2025, https://doi.org/10.5194/cp-21-2133-2025, 2025
Short summary
Short summary
In this review article we present Svalbard’s unique geological archive, revealing its climate history over the last 540 million years. We uncover how this Arctic region recorded key global events, including the End-Permian Mass Extinction, and climate crises like the Paleocene–Eocene Thermal Maximum. The overall climate trend recorded in sedimentary successions in Svalbard is discussed in the context of global climate fluctuations and continuous drift of Svalbard from near equatorial to Arctic latitudes.
Kim Senger, Grace Shephard, Fenna Ammerlaan, Owen Anfinson, Pascal Audet, Bernard Coakley, Victoria Ershova, Jan Inge Faleide, Sten-Andreas Grundvåg, Rafael Kenji Horota, Karthik Iyer, Julian Janocha, Morgan Jones, Alexander Minakov, Margaret Odlum, Anna Sartell, Andrew Schaeffer, Daniel Stockli, Marie Annette Vander Kloet, and Carmen Gaina
Geosci. Commun., 7, 267–295, https://doi.org/10.5194/gc-7-267-2024, https://doi.org/10.5194/gc-7-267-2024, 2024
Short summary
Short summary
The article describes a course that we have developed at the University Centre in Svalbard that covers many aspects of Arctic geology. The students experience this course through a wide range of lecturers, focussing both on the small and larger scales and covering many geoscientific disciplines.
Willemijn Sarah Maria Theresia van Kooten, Hugo Ortner, Ernst Willingshofer, Dimitrios Sokoutis, Alfred Gruber, and Thomas Sausgruber
Solid Earth, 15, 91–120, https://doi.org/10.5194/se-15-91-2024, https://doi.org/10.5194/se-15-91-2024, 2024
Short summary
Short summary
Extensional deformation creates structures that may be reactivated during subsequent shortening. The Achental structure within the Northern Calcareous Alps fold-and-thrust belt is a natural example of a basin margin that was inverted during Alpine orogeny. We have studied the influence of such inherited inhomogeneities in the field and as an analogue model. We find that oblique shortening can create structures outlining pre-existing faults within a single deformation event.
Anna-Katharina Sieberer, Ernst Willingshofer, Thomas Klotz, Hugo Ortner, and Hannah Pomella
Solid Earth, 14, 647–681, https://doi.org/10.5194/se-14-647-2023, https://doi.org/10.5194/se-14-647-2023, 2023
Short summary
Short summary
Through analogue models and field observations, we investigate how inherited platform–basin geometries control strain localisation, style, and orientation of reactivated and new structures during inversion. Our study shows that the style of evolving thrusts and their changes along-strike are controlled by pre-existing rheological discontinuities. The results of this study are relevant for understanding inversion structures in general and for the European eastern Southern Alps in particular.
Frank Zwaan, Guido Schreurs, Susanne J. H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf, and Ernst Willingshofer
Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022, https://doi.org/10.5194/se-13-1859-2022, 2022
Short summary
Short summary
When a sedimentary basin is subjected to compressional tectonic forces after its formation, it may be inverted. A thorough understanding of such
basin inversionis of great importance for scientific, societal, and economic reasons, and analogue tectonic models form a key part of our efforts to study these processes. We review the advances in the field of basin inversion modelling, showing how the modelling results can be applied, and we identify promising venues for future research.
Cited articles
Allemand, P. and Brun, J. P.: Width of continental rifts and rheological
layering of the lithosphere, Tectonophysics, 188, 63–69, 1991.
Allmendinger, R. W.: : Inverse and forward numerical modeling of threeshear
fault-propagation folds, Tectonics, 17, 640–656, 1998.
Auzemery, A., Willingshofer, E., Sokoutis, D., Brun, J. P., and Cloetingh
S. A. P. L.: Passive margin inversion controlled by stability of the mantle
lithosphere, Tectonophysics, 817, 229042,
https://doi.org/10.1016/j.tecto.2021.229042, 2021.
Aydin, A. and Nur, A.: Evolution of pull-apart basins and their scale
independence, Tectonics, 1, 91–105, 1982.
Ballard, J.-F., Brun, J.-P., and Van Ven Driessche, J.: Propagation des
chevauchements au-dessus des zones de décollement: modèles
expérimentaux, CR Acad. Sci., 11,
305, 1249–1253, 1987.
Basile, C.: Transform continental margins – Part 1: Concepts and models.
Tectonophysics, 661, 1–10, https://doi.org/10.1016/j.tecto.2015.08.034, 2015.
Basile, C. and Brun, J.-P.: Transtensional faulting patterns ranging from
pull-apart basins to transform continental margins: an experimental
investigation, J. Struct. Geol., 21, 23–37, 1997.
Beauchamp, W., Barazangi, M., Demnati, A., and El Alji, M.: Intracontinental
rifting and inversion: Missour Basin and Atlas Mountains, Morocco, AAPG Bull., 80, 1455–1482, 1996.
Bergh, S. G. and Grogan, P.: Tertiary structure of the Sørkapp-Hornsund
Region, South Spitsbergen, and implications for the offshore southern
extension of the fold-thrust-belt, Norw. J. Geol., 83, 43–60,
2003.
Bergh, S. G., Braathen, A. and Andresen, A.: Interaction of basement-involved
and thin-skinned tectonism in the Tertiary fold-and-thrust belt of Central
Spitsbergen, Svalbard, APPG Bull., 81, 637–661, 1997.
Biddle, K. T. and Christie-Blick, N.: Strike-Slip Deformation, Basin
Formation, and Sedimentation, Soc. Econ. Pa., 37, 386 pp., 1985a.
Biddle, K. T. and Christie-Blick, N.: Glossary – Strike-slip deformation,
basin formation, and sedimentation, in: Biddle, K.T., and Christie-Blick, N.
(eds.): Strike-Slip Deformation, Basin Formation, and Sedimentation, Soc. Econ. Pa., 37,
375–386, 1985b.
Blaich, O. A., Tsikalas, F., and Faleide, J. I.: New insights into the
tectono-stratigraphic evolution of the southern Stappen High and the
transition to Bjørnøya Basin, SW Barents Sea, Mar. Petrol.
Geol., 85, 89–105, https://doi.org/10.1016/j.marpetgeo.2017.04.015, 2017.
Breivik, A. J., Faleide, J. I., and Gudlaugsson, S. T.: Southwestern Barents Sea
margin: late Mesozoic sedimentary basins and crustal extension,
Tectonophysics, 293, 21–44, 1998.
Breivik, A. J., Mjelde, R., Grogan, P., Shinamura, H., Murai, Y., and Nishimura, Y.:
Crustal structure and transform margin development south of Svalbard based
on ocean bottom seismometer data, Tectonophysics, 369, 37–70, 2003.
Brekke, H.: The tectonic evolution of the Norwegian Sea continen- tal margin
with emphasis on the Vøring and Møre basins, Geol. Soc. Eng. Geol. Sp., 136, 327–378, 2000.
Brekke, H. and Riis, F.: Mesozoic tectonics and basin evolution of the
Norwegian Shelf between 60∘ N and 72∘ N, Norsk Geol.
Tidsskr., 67, 295–322, 1987.
Burchfiel, B. C. and Stewart, J. H.: “Pull-apart” origin of the central segment
of Death Valley, California, Geol. Soc. Am. Bull., 77,
439–442, 1966.
Campbell, J. D.: En échelon folding, Economical Geology, 53, 448–472,
1958.
Cartwright, J. A.: The kinematics of inversion in the Danish Central Graben,
in: Inversion Tectonics, edited by: Cooper, M. A. and Williams, G. D., Geol.
Soc. Spec. Publ., 44, 153–175, 1989.
Casas, A. M., Gapals, D., Nalpas, T., Besnard, K., and Román-Berdiel, T.:
Analogue models of transpressive systems, J. Struct. Geol.,
23, 733–743, 2001.
Christie-Blick, N. and Biddle, K. T.: Deformation and basin formation along
strike-slip faults, in: Strike-slip deformation, basin formation and sedimentation, edited by: Biddle, K. T. and Christie-Blick, N., Society of
Economic Mineralogists and Palaeontologists (Tulsa Oklahoma), Special
Publication, 37, 1–34, 1985.
Cloos, H.: Experimenten zur inneren Tectonick, Zentralblatt für
Mineralogie, Geologie und Palaentologie, 1928B, 609–621, 1928.
Cloos, H.: Experimental analysis of fracture patterns, Geol. Soc. Am. Bull., 66, 241–256, 1955.
Cooper, M. and Warren, M. J.: The geometric characteristics, genesis and
petroleum significance of inversion structures, in: Continental
Tectonics and Mountain Building: The Lagacy of Peache and Horne, edited by: Law, R. D., Butler, R. W. H.,
Holdsworth, R. E., Krabbendam, M., and Strachan, R. A., Geol.
Soc. Spec. Publ., 335, 827–846, 2010.
Cooper, M. A., Williams, G. D., de Graciansky, P. C., Murphy, R. W., Needham, T., de
Paor, D., Stoneley, R., Todd, S. P., Turner, J. P., and Ziegler, P. A.: Inversion
tectonics – a discussion, Geol.
Soc. Spec. Publ.,
44, 335–347, 1989.
Coward, M.: Inversion tectonics, in: Continental
Deformation, edited by: Hancock, P. L., Pergamon Press, 289–304, https://doi.org/10.1017/S0016756800011602, 1994.
Coward, M. P., Gillcrist, R., and Trudgill, B.: Extensional structures and
their tectonic inversion in the Western Alps, in: The Geometry of Normal Faults, Roberts, A. M., Yielding, G.,
and Freeman, B., Geol.
Soc. Spec. Publ., 56, 93–112, 1991.
Crowell, J. C.: Displacement along the San Andreas Fault, California,
Geol. S. Am. S., 71, 59 pp., 1962.
Crowell, J. C.: Origin of late Cenozoic basins in southern California, in: Modern and ancient geosynclinal
sedimentation, edited by:
Dorr, R. H. and Shaver, R. H., SEPM Spec. P., 19, 292–303, 1974a.
Crowell, J. C.: Implications of crustal stretching and shortening of
coastal Ventura Basin, in: Aspects of the geological
history of the Calefornia continental Borderland, edited by: Howell, D. G., AAPG Bull., 24, 365–382, 1974b.
Cunningham, W. D. and Mann, P.: Tectonics of Strike-Slip Restraining
and Releasing Bends, Geol. Soc. Spec. Publ., 290,
482 pp., 2007a.
Cunningham, W. D. and Mann, P.: Tectonics of Strike-Slip Restraining and
Releasing Bends, in: Tectonics of
Strike-Slip Restraining and Releasing Bends, edited by: Cunningham, W. D. and Mann, P., Geol. Soc. Spec. Publ., 290, 1–12, 2007b.
Dauteuil, O. and Mart, Y.: Analogue modeling of faulting pattern, ductile
deformation, and vertical motion in strike-slip fault zones, Tectonics,
17, 303–310, 1998.
Del Ventisette, C., Montanari, D., Sani, F., Bonini, M., and Corti, G.: Reply
to comment by J. Wickham on “Basin inversion and fault reactivation in
laboratory experiments”, J. Struct. Geol., 29, 1417–1418, 2007.
DISKOS: The Norwegian National Data Repository for petroleum data, DISKOS [data set], https://www.npd.no/en/diskos/seismic/ (last access: 25 November 2021), 2021.
Dooley, T. and McClay, K.: Analog modeling of pull-apart basins, Am. Assoc. Petr. Geol. B., 81, 1804–1826, 1997.
Dooley, T. P. and Schreurs, G.: Analogue modelling of intraplate strike-slip
tectonics: A review and new experimental results, Tectonophysics, 574–575,
1–71, 2012.
Doré, A. G. and Lundin, E. R.: Cenozoic compressional structures on the NE
Atlantic margin: nature, origin and potential significance for hydrocarbon
exploration, Petrol. Geosci., 2, 299–311, 1996.
Doré, A. G., Lundin, E. R., Jensen, L. N., Birkeland, Ø., Eliassen, P. E.,
and Fichler, C.: Principal tectonic events in the evolution of the northwest
European Atlantic margin, in: Petroleum
Geology of Northwest Europe: Proceedings of the Fifth Conference, edited by: Fleet, A. J. and Boldy, S. A. R., Geological
Society of London, 41–61, https://doi.org/10.1144/0050041, 1999.
Doré, A. G., Lundin, E. R., Gibbons, A., Sømme, T. O., and
Tørudbakken, B. O.: Transform margins of the Arctic: a synthesis and
re-evaluation in: Transform Margins,: Development, Control and
Petroleum Systems, edited by: Nemcok, M., Rybár, S., Sinha, S. T., Hermeston, S. A., and
Ledvényiová, L., Geol. Soc. Spec. Publ., 431,
63–94, 2016.
Eidvin, T., Goll, R. M., Grogan, P., Smelror, M., and Ulleberg, K.: The
Pleistocene to Middle Eocene stratigraphy and geological evolution of the
western Barents Sea continental margin ta well site 731675-1 (Bjørnøya
West area), Norsk Geol. Tidsskr., 78, 99–123, 1988.
Eidvin, T., Jansen, E., and Riis, F.: Chronology of Tertiary fan deposits off
the western Barents Sea: Implications for the uplift and erosion history of
the Barents Shelf, Mar. Geol., 112, 109–131, 1993.
Eldholm, O., Faleide, J. I., and Myhre, A. M.: Continent-ocean transition at
the western Barents Sea/Svalbard continental margin, Geology, 15, 1118–1122,
1987.
Eldholm, O., Tsikalas, F., and Faleide, J. I.: Continental margin off Norway
62–75∘ N: Paleogene tectono-magmatic segmentation and sedimentation,
Geol. Soc. Spec. Publ., 197, 39–68, 2002.
Emmons, R. C.: Strike-slip rupture patterns in sand models, Tectonophysics,
7, 71–87, 1969.
Faleide, J. I., Myhre, A. M., and Eldholm, O.: Early Tertiary volcanism at the
western Barents Sea margin, in: Early
Tertiary volcanism and the opening of the NE Atlantic, edited by: Morton, A. C. and Parsons, L. M., Geol. Soc.
Spec. Publ., 39, 135–146, 1988.
Faleide, J. I., Vågnes, E., and Gudlaugsson, S. T.: Late Mesozoic –
Cenozoic evolution of the south-western Barents Sea in a regional rift-shear
tectonic setting, Mar. Petrol. Geol., 10, 186–214, 1993.
Faleide, J. I., Tsikalas, F., Breivik, A. J., Mjelde, R., Ritzmann, O., Engen,
Ø., Wilson, J., and Eldholm, O.: Structure and evolution of the
continental margin off Norway and the Barents Sea, Episodes, 31, 82–91,
2008.
Faleide, J. I., Bjørlykke, K., and Gabrielsen, R. H.: Geology of the
Norwegian Shelf, in: Petroleum Geoscience: From Sedimentary
Environments to Rock Physics, edited by: Bjørlykke, K., 2nd edn., Springer-Verlag, Berlin
Heidelberg, Chap. 25, 603–637, https://doi.org/10.1007/978-3-642-34132-8_25, 2015.
Faugère, E., Brun, J.-P., and Van Den Driessche, J.: Bassins
asymmétriques en extension pure et en détachements: Modèles
expérimentaux, Bulletin Centre Recherche Exploration et Production Elf
Aquitaine, 10, 13–21, 1986.
Fichler, C. and Pastore, Z.: Petrology and crystalline crust in the
southwestern Barents Sea inferred from geophysical data, Norw. J.
Geol., 102, 1–41, https://doi.org/10.17850/njg102-2-2, 2022.
Freund, R.: The Hope Fault, a strike-slip fault in New Zealand, New Zealand
Geological Survey Bulletin, 86, 1–49, 1971.
Gabrielsen, R. H.: Structural elements in graben systems and their influence
on hydrocarbon trap types, in: Habitat of Hydrocarbons
on the Norwegian Continental Shelf, edited by: Spencer, A. M., Norw. Petrol. Soc., 55–60, 1986.
Gabrielsen, R. H., Færseth, R. B., Jensen, L. N., Kalheim, J. E., and Riis,
F.: Structural elements of the Norwegian Continental Shelf. Part I: The
Barents Sea Region, Norwegian Petroleum Directorate, Bulletin, 6, 1–33,
1990.
Gabrielsen, R. H., Grunnaleite, I., and Rasmussen, E.: Cretaceous and Tertiary
inversion in the Bjørnøyrenna Fault Complex, south-western Barents
Sea, Mar. Petrol. Geol., 142, 165–178, 1997.
Gac, S., Klitzke, P., Minakov, A., Faleide, J. I., and Scheck-Wenderoth, M.:
Lithospheric strength and eleastic thickness of the Barents Sea and Kara Sea
region, Tectonophysics, 691, 120–132, https://doi.org/10.1016/j.tecto.2016.04.028, 2016.
Gaina, C., Gernigon, L., and Ball, P.: Palaeocene – Recent plate boundaries
in the NE Atlantic and the formation of the Jan Mayen microcontinent,
J. Geol. Soc., London, 166, 601–616, 2009.
Ganerød, M., Smethurst, M. A., Torsvik, T. H., Prestvik, T., Rousse, S.,
McKenna, C., van Hinsberen, D. J. J., and Hendriks, W. W. H.: The North Atlantic
Igneous Province reconstructed and its relation to the Plume Generation
Zone: the Antrim Lava Group revisited, Geophys. J. Int.,
182, 183–202, https://doi.org/10.1111/j.1365-246X.2010.04620.x, 2010.
Giannenas, P. A.: The Structural Development of the Vestbakken Volcanic
Province, Western Barents Sea. Relation between Faults and Folds,
unpublished Ms.Sci.thesis, University of Oslo, 89 pp., http://urn.nb.no/URN:NBN:no-66933 (last access: 29 August 2023), 2018.
Gibson, G. M., Totterdell, J. M., White, N., Mitchell, C. H., Stacey, A. R., M. P.
Morse, M. P., and Whitaker, A.: Preexisting basement structures and its
influence on continental rifting and fracture development along Australia's
southern rifted margin, J. Geol. Soc. London, 170,
365–377, 2013.
Graymer, R. W., Langenheim, V. E., Simpson, R. W., Jachens, R. C. and Ponce,
D. A.: Relative simple through-going fault planes at large-earthquake depth
may be concealed by surface complexity of strike-slip faults, in: Tectonics of Strike-Slip Restraining
and Releasing Bends, edited by:
Cunningham, W. D. and Mann, P., Geol. Soc. Spec. Publ., 290,
189–201, 2007.
Griera, A., Gomez Rivas, E., and Llorens, M.-G.: The influence of
layer-interface geometry of single-layer folding, Geol. Soc.
Spec. Publ. 487, 59–79, https://doi.org/10.1144/SP487.4, 2018.
Grogan, P., Østvedt-Ghazi, A.-M., Larssen, G. B., Fotland, B., Nyberg, K.,
Dahlgren, S., and Eidvin, T.: Structural elements and petroleum geology of
the Norwegian sector of the northern Barents sea, in: Petroleum Geology of Northwest Europe: Proceedings of
the 5th Conference, edited by: Fleet, A. J. and
Boldry, S. A. R., Geological Society of London, 247–259, https://doi.org/10.1144/0050247, 1999.
Groshong, R. H.: Half-graben structures: balanced models of extensional fault
bend folds, Geol. Soc. Am. Bull., 101, 96–195, 1989.
Gudlaugsson, S. T., Faleide, J. I., Johansen, S. E., and Breivik, A. J.: Late
Palaeozoic structural development of the south-western Barents Sea, Mar. Petrol. Geol., 15, 73–102, 1998.
Hamblin, W. K.: Origin of “reverse drag” on the down-thrown side of normal
faults, Geol. Soc. Am. Bull., 76, 1145–1164, 1965.
Hanisch, J.: The Cretaceous opening of the Northeast Atlantic,
Tectonophysics, 101, 1–23, 1984.
Harding, T. P.: Petroleum traps associated with wrench faults, AAPG Bull., 58, 1290–1304, 1974.
Harding, T. P. and Lowell, J. D.: Structural styles, their plate tectonic
habitats, and hydrocarbon traps in petroleum provinces, AAPG Bull., 63, 1016–1058, 1979.
Harland, W. B.: The tectonic evolution of the Arctic-North Atlantic Region,
in: Discussion, A Symposium on Continental Drift, edited by: Taylor, J. H., Rutten, M. G., Hales, A. L., Shackelton, R. M., Nairn, A. E., and
Harland, W. B., Philos.
T. R. Soc. S.-A, 258, 59–75,
1965.
Harland, W. B.: Contributions of Spitsbergen to understanding of tectonic
evolution of North Atlantic Region, AAPG Bull., 12, 817–851, 1969.
Harland, W. B.: Tectonic transpression in Caledonian Spitsbergen, Geol.
Mag., 108, 27–42, 1971.
Henk, A. and Nemcok, M.: Stress and fracture prediction in inverted
half-graben structures, J. Struct. Geol., 30, 81–97, 2008.
Horni, J.Á., Hopper, J. R., Blischke, A., Geisler, W. H., Stewart, M.,
Mcdermott, K., Judge, M., Erlendsson, Ö., and Árting, U. E.: Regional
Distribution of Volcanism within the North Atlantic Igneous Province. The NE
Atlantic Region: A Reappraisal of Crustal Structure, Tectonostratigraphy and
Magmatic Evolution, Geol. Soc. Spec. Publ., 447,
105–125, https://doi.org/10.1144/SP447.18, 2017.
Horsfield, W. T.: An experimental approach to basement-controlled
faulting, Geol. Mijbouw, 56, 363–370, 1977.
Hubbert, M. K.: Theory of scale models as applied to the study of geologic
structures, Bull. Geol. Soc. Am., 48, 1459–1520, 1937.
Jebsen, C. and Faleide, J. I.: Tertiary rifting and magmatism at the western
Barents Sea margin (Vestbakken volcanic province), III international
conference on Arctic margins, ICAM III, abstracts, plenary lectures, talks
and posters, p. 92, 1998.
Khalil, S. M. and McClay, K. R.: 3D geometry and kinematic evolution of
extensional fault-related folds, NW Red Sea, Egypt, in: The Geometry and Growth of Normal Faults, edited by: Childs, C.,
Holdswort, R. E., Jackson, C. A. L., Manzocchi, T., Walsh, J. J., and Yielding, G., Geol. Soc. Spec. Publ., 439, 409–430, https://doi.org/10.1144/SP439.11, 2017.
Klinkmüller, M., Schreurs, G., Rosenau, M., and Kemnitz,
H.: Properties of granular analogue model materials: a community wide survey, Tectonophysics, 684, 23–38, https://doi.org/10.1016/j.tecto.2016.01.017, 2016.
Knutsen, S.-M. and Larsen, K. I.: The late Mesozoic and Cenozoic evolution of
the Sørvestsnaget Basin: A tectonostratigraphic mirror for regional
events along the Southwestern Barents Sea Margin?, Mar. Petrol. Geol., 14, 27–54, 1997.
Kristensen, T. B., Rotevatn, A., Marvik, M., Henstra, G. A., Gawthorpe, R. L.,
and Ravnås, R.: Structural evolution of sheared basin margins: the role
of strain partitioning. Sørvestsnaget Basin, Norwegian Barents Sea, Basin
Res., 2017, 1–23, https://doi.org/10.1111/bre.12235, 2017.
Le Calvez, J.-H. and Vendeville, B. C.: Experimental designs to mode along
strike-slip fault interaction, in: Analogue Modeling of large-scale Tectonic Processes, edited by: Scellart, W. P. and Passcheir, C., Journal of Virtual
Explorer, 7, 7–23, 2002.
Leever, K. A., Gabrielsen, R. H., Sokoutis, D., and Willingshofer, E.: The
effect of convergence angle on the kinematic evolution of strain
partitioning in transpressional brittle wedges: insight from analog modeling
and high resolution digital image analysis, Tectonics, 30, 1–25,
https://doi.org/10.1029/2009TC002649, 2011a.
Leever, K. A., Gabrielsen, R. H., Faleide, J. I., and Braathen, A.: A
transpressional origin for the West Spitsbergen Fold and Thrust Belt –
insight from analog modeling, Tectonics, 30, 1–24, https://doi.org/10.1029/2010TC002753, 2011b.
Libak, A., Mjelde, R., Keers, H., Faleide, J. I., and Murai, Y.: An intergrated
geophysical study of Vestbakken Volcanic Province, western Barents Sea
continental margin, and adjacent oceanic crust, Mar. Geophys. Res.,
33, 187–207, 2012.
Lorenzo, J. M.: Sheared continental margins: an overview, Geo-Mar. Lett.,
17, 1–3, 1997
Lowell, J. D.: Spitsbergen Tertiary orogenic belt and the Spitsbergen
fracture zone, Geol. Soc. Am. Bull., 83, 3091–3102, https://doi.org/10.1130/0016-7606(1972)83[3091:STOBAT]2.0.CO;2, 1972.
Lundin, E. R. and Doré, A. G.: A tectonic model for the Norwegian passive
margin with implications for the NE Atlantic: Early Cretaceous to break-up,
J. Geol. Soc. London, 154, 545–550, 1997.
Lundin, E. R., Doré, A. G., Rønning, K., and Kyrkjebø, R.: Repeated
inversion in the Late Cretaceous-Cenozoic northern Vøring Basin, offshore
Norway, Petrol. Geosci., 19, 329–341, 2013.
Luth, S., Willingshofer, E., Sokoutis, D., and Cloetingh, S.: Analogue
modelling of continental collision: Influence of plate coupling on manle
lithosphere subduction, crustal deformation and surface topography,
Tectonophysics, 4184, 87–102, https://doi.org/10.1016/j.tecto.2009.08.043, 2010.
Maher Jr., H. D., Bergh, S., Braathen, A., and Ohta, Y.: Svartfjella,
Eidembukta, and Daudmannsodden lineament: Tertiary orogen-parallel motion in
the crystalline hinterland of Spitsbergen's fold-thrust belt, Tectonics,
16, 88–106, https://doi.org/10.1029/96TC02616, 1997.
Mandl, G., de Jong, L. N. J., and Maltha, A.: Shear zones in granular material,
Rock Mech., 9, 95–144, 1977.
Manduit, T. and Dauteuil, O.: Small scale modeling of oceanic transform
zones, J. Geophys. Res., 101, 20195–20209, 1996.
Mann, P.: Global catalogue, classification and tectonic origins o
frestraining and releasing bends on active and ancient strike-slip fault
systems, in: Tectonics of
Strike-Slip Restraining and Releasing Bends, edited by: Cunningham, W. D. and Mann, P., Geol. Soc. Spec. Publ., 290, 13–142, 2007.
Mann, P., Hempton, M. R., Bradley, D. C., and Burke, K.: Development of
pull-apart basins, J. Geol., 91, 529–554, 1983.
Mascle, J. and Blarez, E.: Evidence for transform margin evolution from the
Ivory Coast Ghana continental margin, Nature, 326, 378–381, 1987.
McClay, K. R.: Extensional fault systems in sedimentary basins. A
review of analogue model studies, Mar. Petrol. Geol., 7, 206–233,
1990.
Mitra, S.: Geometry and kinematic evolution of inversion structures,
American Assiciation of Petroleum Geologists Bulletin, 77, 1159–1191, 1993.
Mitra, S. and Paul, D.: Structural geology and evolution of releasing and
constratrining bends: Insights from laser-scanned experimental models,
AAPG Bull., 95, 1147–1180,
2011.
Morgenstern, N. R. and Tchalenko, J. S.: Microscopic structures in kaolin
subjected to direct shear, Géotechnique, 17, 309–328, 1967.
Mosar, J., Torsvik, T. H., and the BAT Team: Opening of the Norwegian and
Greenland Seas: Plate tectonics in mid Norway since the late Permian, in: BATLAS. Mid Norwegian plate reconstruction atlas with global
and Atlantic perspectives, edited by:
Eide, E., Geological Survey of Norway, 48–59, 2002.
Mouslopoulou, V., Nicol, A., Little, T. A., and Walsh, J.J.: Terminations of
large-strike-slip faults: an alternative model from New Zealand, in: Tectonics of Strike-Slip Restraining
and Releasing Bends, edited by:
Cunningham, W. D. and Mann, P., Geol. Soc. Spec. Publ., 290,
387–415, 2007.
Mouslopoulou, V., Nicol, A., Walsh, J. J., Beetham, D., and Stagpoole, V.:
Quaternary temporal stability of a regional strike-slip and rift fault
interaction, J. Struct. Geol., 30, 451–463, 2008.
Myhre, A. M. and Eldholm, O.: The western Svalbard margin (74–80∘ N), Mar. Petrol. Geol., 5, 134–156, 1988.
Myhre, A. M., Eldholm, O., and Sundvor, E.: The margin between Senja and
Spitsbergen Fracture Zones: Implications from plate tectonics,
Tectonophysics, 89, 33–50, 1982.
Naylor, M. A., Mandl, G., and Sijpestijn, C. H. K.: Fault geometries in
basement-induced wrench faulting under different initial stress states,
J. Struct. Geol., 8, 737–752, 1986.
Nemcok, M., Rybár, S., Sinha, S. T., Hermeston, S. A., and
Ledvényioviá, L.: Transform margins: development, controls and
petroeum systems – an introduction, in: Transform
Margins,: Development, Control and Petroleum Systems, edited by: Nemcok, M., Rybár, S., Sinha,
S. T., Hermeston, S. A., and Ledvényiová, L., Geol. Soc. Spec. Publ., 431, 1–38, 2016.
Odonne, F. and Vialon, P.: Analogue models of folds above a wrench fault,
Tectonophysics, 990, 31–46, 1983.
Pace, P. and Calamita, F.: Push-up inversion structures v. fault-bend
reactivation anticlines along oblique thrust ramps: examples from the
Apennines fold-and-thrust-belt, Italy, J. Geol. Soc. London,
171, 227–238, 2014.
Pascal, C. and Gabrielsen, R. H.: Numerical modelling of Cenozoic stress
patterns in the mid Norwegian Margin and the northern North Sea, Tectonics,
20, 585–599, 2001.
Pascal, C., Roberts, D., and Gabrielsen, R. H.: Quantification of neotectonic
stress orientations and magnitudes from field observations in Finnmark,
northern Norway, J. Struct. Geol., 27, 859–870, 2005.
Peacock, D. C. P., Nixon, C. W., Rotevatn, A., Sanderson, D. J., and Zuluaga,
L. F.: Glossary of fault and other fracture networks, J. Struct. Geol., 92, 12–29, https://doi.org/10.1016/j.jsg.2016.09.008, 2016.
Perez-Garcia, C., Safranova, P. A., Mienert, J., Berndt, C., and Andreassen,
K.: Extensional rise and fall of a salt diapir in the Sørvestsnaget
Basin, SW Barents Sea, Mar. Petrol. Geol., 46, 129–134, 2013.
Ramberg, H.: Gravity, deformation and the Earth's crust, Academic Press, New
York, 214 pp., ISBN 978-0125768603, 1967.
Ramberg, H.: Gravity, deformation and the Earth's crust, 2nd edn.,
Academic Press, New York 452 pp., ISBN 9780125768603, 1981.
Ramsay, J. G. and Huber, M. I.: The techniques of modern structural
geology. Vol. 2: Folds and fractures, Academic Press, London, 309–700, ISBN 0-12-576922-9, 1987.
Richard, P. and Krantz, R. W.: Experiments on fault reactivation in
strike-slip mode, Tectonophysics, 188, 117–131, 1991.
Richard, P. D. and Cobbold, P. R.: Structures et fleur positives et
décrochements crustaux: mdélisation analogiuque et interpretation
mechanique, C. R. Acad. Sci. Paris, 308, 553–560, 1989.
Richard, P., Mocquet, B., and Cobbold, P. R.: Experiments on
simultaneous faulting and folding above a basement wrench fault,
Tectonophysics, 188, 133–141, 1991.
Riedel, W.: Zur Mechanik geologischer Brucherscheinungen. Centralblatt
für Mineralogie, Geologie und Palentologie, 1929B, 354–368, 1929.
Riis, F., Vollset, J., and Sand, M.: Tectonic development of the western
margin of the Barents Sea and adjacent areas, in: Future
petroleum provinces of the World, edited by: Halbouty, M. T., AAPG Bull., 40, 661–667, 1986.
Roberts, D. G.: Basin inversion in and around the British Isles, in: Inversion Tectonics, edited by: Cooper, M. A. and Williams, G. D., Geol. Soc.
Spec. Publ., 44, 131–150, 1989.
Ryseth, A., Augustson, J. H., Charnock, M., Haugsrud, O., Knutsen., S.-M.,
Midbøe, P. S., Opsal, J. G., and Sundsbø, G.: Cenozoic stratigraphy and
evolution of the Sørvestsnaget Basin, southwestern Barents Sea, Norw.
J. Geol., 83, 107–130, 2003.
Saunders, A. D., Fitton, J. G., Kerr, A. C., Norry, M. J., and Kent, R. W.: The
North Atlantic Igneous Province: Geophysical Monograph 100, American
Geophysical Union, 45–93, 1997.
Scheurs, G.: Experiments on strike-slip faulting and block rotation,
Geology, 22, 567–570, 1990.
Schreurs, G.: Fault development and interaction in distributed strike-slip
shear zones: an experimental approach, in: Intraplate Strike-slip Deformation Belts, edited by: Storti, F., Holdsworth, R. E., and
Salvini, F., Geol.
Soc. Spec. Publ., 210, 35–82, 2003.
Schreurs, G. and Colletta, B.: Analogue modelling of faulting in zones of
continental transpression and transtension, in: Continental Transpressional and Transtensional
Tectonics, edited by: Holdsworth, R. E., Strachan,
R. A., and Dewey, J. F., Geol. Soc. Spec. Publ., 135,
59–79, 1998.
Schreurs, G. and Colletta, B.: Analogue modelling of continental
transpression and transtension, in: Analogue Modelling of Large-scale Tectonic Processes, edited by: Scellart, W. P. and Passchier, C., Journal of the Virtual
Explorer, 7, 103–114, 2003.
Seiler, C., Fletcher, J. M., Quigley, M. C., Gleadow, A. J., and Kohn, B. P.:
Neogene structural evolution of the Sierra San Felipe, Baja California:
evidence of proto-gulf transtension in the Gulf Extensional Province?,
Tectonophysics, 488, 87–109, 2010.
Sibuet, J. C. and Mascle, J.: Plate kinematic implications of Atlantic
equatorial fracture zone trends, J. Geophys. Res., 85,
3401–3421, 1978.
Sims, D., Ferrill, D. A., and Stamatakos, J. A.: Role of a brittle
décollement in the development of pull-apart basins: experimental
results and natural examples, J. Struct. Geol., 21, 533–554,
1999.
Sokoutis, D.: Finite strain effects in experimental mullions, J. Struct. Geol., 9, 233–249, 1987.
Stearns, D. W.: Faulting and forced folding in the Rocky Mountains
Foreland, Geol. Soc. Am. Mem., 151, 1–38, 1978
Sylvester, A. G.: Wrench Fault Tectonics, Selected papers
reprinted from the AAPG Bulletin and other geological journals, AAPG Bull., 28, 374 pp., ISBN 978-0891815501, 1985.
Sylvester, A. G.: Strike-slip faults, Geol. Soc. Am. Bull.,
100, 1666–1703, 1988.
Taylor, B., Goodlife, A., and Martinez, F.: Intiation of transform faults at
rifted continental margins, C. R. Geosci., 341, 428–438, 2009.
Talwani, M. and Eldholm, O.: Evolution of the Norwegian-Greenland Sea,
Geol. Soc. Am. Bull., 88, 969–999, 1977.
Tchalenko, J. S: Similarities between shear zones of different magnitudes,
Geol. Soc. Am. Bull., 81, 1625–1640, 1970.
Tron, V. and Brun J.-P.: Experiments on oblique rifting in brittle-ductile
systems, Tectonophysics, 188, 71–84, 1991.
Twiss, R. J. and Moores, E. M.: Structural Geology, 2nd edn., Freedman and Co., New York, 736 pp., ISBN 978-0716749516 2007.
Ueta, K., Tani, K., and Kato, T.: Computerized X-ray tomography analysis of
three-dimensional fault geometries in basement-induced wrench faulting,
Eng. Geol., 56, 197–210, 2000.
Uliana, M. A., Arteaga, M. E., Legarreta, L., Cerdan, J. J., and Peroni, G. O.:
Inversion structures and hydrocarbon occurrence in Argentia, in: Basin Inversion, edited by:
Buchanan, J. G. and Buchanan, P. G., Geol. Soc. Spec. Publ., 88, 211–233, 1995.
Vågnes, E.: Uplift at thermo-mechanically coupled ocean-continent
transforms: modeled at the Senja Fracture Zone, southwestern Barents Sea,
Geo-Mar. Lett., 17, 100–109, 1997.
Vågnes, E., Gabrielsen, R. H., and Haremo. P.: Late Cretaceous-Cenozoic
intraplate contractional deformation at the Norwegian continental shelf:
timing, magnitude and regional implications, Tectonophysics, 300, 29–46,
1998.
Weijermars, R. and Schmeling, H.:. Scaling of Newtonian and non-Newtonian
fluid dynamics without inertia for quantitative modelling of rock flow due
to gravity (including the concept of rheological similarity, Phys.
Earth Planet. In., 43, 316–330, 1986.
Wilcox, R. E., Harding, T. P., and Selly, D. R.: Basic wrench tectonics, Am. Assoc. Petr. Geol. B, 57, 74–69, 1973.
Williams, G. D., Powell, C. M., and Cooper, M. A.: Geometry and kinematics of
inversion tectonics, in: Inversion
Tectonics, edited by: Cooper, M. A. and Williams, G. D., Geol. Soc. London Spec. Publ., 44, 3–16, 1989.
Willingshofer, E., Sokoutis, D., and Burg, J.-P.: Lithosprer-scale analogue
modelling of collsion zones with a pre-existing weak zone, in: DeformatiomMechanisms, Rhology and
Tectonics: from Minerals to the Litohsphere, edited by: Gapais, D.,
Brun, J. P., and Cobbold, P. R., Geol. Soc. Spec. Publ., 43, 277–294, 2005.
Willingshofer, E., Sokoutis, D., Beekman, F., Schönebeck, F., Warsitzka,
J.-M., Michael, M., and Rosenau, M.: Ring shear test data of feldspar sand
and quartz sand used in the Tectonic Laboratory (TecLab) at Utrecht
University for experimental Earth Science applications, V1, GFZ Data
Service, https://doi.org/10.5880/fidgeo.2018.072, 2018.
Woodcock, N. H. and Fisher, M.: Strike-slip duplexes, J. Struct. Geol., 8, 725–735, 1986.
Woodcock, N. H. and Schubert, C.: Continental strike-slip tectonics, in: Continental Deformation, edited by: Hancock, P. L., Pergamon Press, 251–263, ISBN 0 08 037931 1, 1994.
Yamada, Y. and McClay, K. R.: Analog modeling of inversion thrust structures,
experiments of 3D inversion structures above listric fault systems, in: Thrust Tectonics and Petroleum Systems, edited by:
McClay, K. R., AAPG Memoir., 82, 276–302, 2004.
Short summary
The Barents Shear Margin defines the border between the relatively shallow Barents Sea that is situated on a continental plate and the deep ocean. This margin's evolution history was probably influenced by plate tectonic reorganizations. From scaled experiments, we deduced several types of structures (faults, folds, and sedimentary basins) that help us to improve the understanding of the history of the opening of the North Atlantic.
The Barents Shear Margin defines the border between the relatively shallow Barents Sea that is...
Special issue