Articles | Volume 15, issue 5
https://doi.org/10.5194/se-15-589-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-589-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multiscalar 3D temporal structural characterisation of Smøla island, mid-Norwegian passive margin: an analogue for unravelling the tectonic history of offshore basement highs
Matthew S. Hodge
CORRESPONDING AUTHOR
Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
Guri Venvik
Geological Survey of Norway (NGU), Trondheim, Norway
Jochen Knies
Geological Survey of Norway (NGU), Trondheim, Norway
Roelant van der Lelij
Geological Survey of Norway (NGU), Trondheim, Norway
Jasmin Schönenberger
Geological Survey of Norway (NGU), Trondheim, Norway
Øystein Nordgulen
Geological Survey of Norway (NGU), Trondheim, Norway
Marco Brönner
Geological Survey of Norway (NGU), Trondheim, Norway
Aziz Nasuti
Geological Survey of Norway (NGU), Trondheim, Norway
Giulio Viola
Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
Related authors
No articles found.
Selina Bonini, Riccardo Asti, Giulio Viola, Giulia Tartaglia, Stefano Rodani, Gianluca Benedetti, Massimo Comedini, and Gianluca Vignaroli
Nat. Hazards Earth Syst. Sci., 25, 2981–2998, https://doi.org/10.5194/nhess-25-2981-2025, https://doi.org/10.5194/nhess-25-2981-2025, 2025
Short summary
Short summary
Considering the structural complexity related to the internal architecture of active and capable faults, seismic hazard may be linked to different fault attributes depending on the fault domain crossed by a linear infrastructure. We propose a structural geology-based approach for the preliminary study of the area potentially affected by earthquake-induced surface ruptures during infrastructural design, based on the geometric relationships between the active fault and the infrastructure itself.
Riccardo Asti, Selina Bonini, Giulio Viola, and Gianluca Vignaroli
Solid Earth, 15, 1525–1551, https://doi.org/10.5194/se-15-1525-2024, https://doi.org/10.5194/se-15-1525-2024, 2024
Short summary
Short summary
This study addresses the tectonic evolution of the seismogenic Monti Martani Fault System (northern Apennines, Italy). By applying a field-based structural geology approach, we reconstruct the evolution of the stress field and we challenge the current interpretation of the fault system in terms of both geometry and state of activity. We stress that the peculiar behavior of this system during post-orogenic extension is still significantly influenced by the pre-orogenic structural template.
Alberto Ceccato, Giulia Tartaglia, Marco Antonellini, and Giulio Viola
Solid Earth, 13, 1431–1453, https://doi.org/10.5194/se-13-1431-2022, https://doi.org/10.5194/se-13-1431-2022, 2022
Short summary
Short summary
The Earth's surface is commonly characterized by the occurrence of fractures, which can be mapped, and their can be geometry quantified on digital representations of the surface at different scales of observation. Here we present a series of analytical and statistical tools, which can aid the quantification of fracture spatial distribution at different scales. In doing so, we can improve our understanding of how fracture geometry and geology affect fluid flow within the fractured Earth crust.
Giulio Viola, Giovanni Musumeci, Francesco Mazzarini, Lorenzo Tavazzani, Manuel Curzi, Espen Torgersen, Roelant van der Lelij, and Luca Aldega
Solid Earth, 13, 1327–1351, https://doi.org/10.5194/se-13-1327-2022, https://doi.org/10.5194/se-13-1327-2022, 2022
Short summary
Short summary
A structural-geochronological approach helps to unravel the Zuccale Fault's architecture. By mapping its internal structure and dating some of its fault rocks, we constrained a deformation history lasting 20 Myr starting at ca. 22 Ma. Such long activity is recorded by now tightly juxtaposed brittle structural facies, i.e. different types of fault rocks. Our results also have implications on the regional evolution of the northern Apennines, of which the Zuccale Fault is an important structure.
Leonardo Del Sole, Marco Antonellini, Roger Soliva, Gregory Ballas, Fabrizio Balsamo, and Giulio Viola
Solid Earth, 11, 2169–2195, https://doi.org/10.5194/se-11-2169-2020, https://doi.org/10.5194/se-11-2169-2020, 2020
Short summary
Short summary
This study focuses on the impact of deformation bands on fluid flow and diagenesis in porous sandstones in two different case studies (northern Apennines, Italy; Provence, France) by combining a variety of multiscalar mapping techniques, detailed field and microstructural observations, and stable isotope analysis. We show that deformation bands buffer and compartmentalize fluid flow and foster and localize diagenesis, recorded by carbonate cement nodules spatially associated with the bands.
Cited articles
Belaidi, A., Bonter, D. A., Slightam, C., and Trice, R. C.: The Lancaster Field: Progress in opening the UK's fractured basement play, Petrol. Geol. Conf. Proc., 8, 385–398, https://doi.org/10.1144/PGC8.20, 2018.
Blenkinsop, T., Doyle, M., and Nugus, M.: A unified approach to measuring structures in orientated drill core, in: Geological Society Special Publication, vol. 421, Geological Society of London, 99–108, https://doi.org/10.1144/SP421.1, 2015.
Bøe, R. and Bjerkli, K.: Mesozoic sedimentary rocks in Edøyfjorden and Beitstadfjorden, Central Norway: Implications for the structural history of the Møre-Trøndelag Fault Zone, Mar. Geol., 87, 287–299, https://doi.org/10.1016/0025-3227(89)90066-2, 1989.
Bøe, R., Atakan, K., and Sturt, B. A.: The style of deformation in on Hitra and Smøla. Central, Norges geologiske undersøkelse Bulletin, 414, 1–19, 1989.
Bruton, D. L. and Bockelie, J. F.: The Ordovician Sedimentary Sequence on Smøla, West Central Norway, Norges geologiske undersøkelse Bulletin, 348, 21–31, 1979.
Bunkholt, H. S. S., Oftedal, B. T., Hansen, J. A., Løseth, H., and Kløvjan, O. S.: Trøndelag Platform and Halten–Dønna Terraces Composite Tectono-Sedimentary Element, Norwegian Rifted Margin, Norwegian Sea, Geological Society, London, Memoirs, M57–2017, https://doi.org/10.1144/m57-2017-13, 2022.
Corfu, F., Andersen, T. B., and Gasser, D.: The Scandinavian Caledonides: Main features, conceptual advances and critical questions, Geol. Soc. Spec. Publ., 390, 9–43, https://doi.org/10.1144/SP390.25, 2014.
Cunningham, W. D. and Mann, P.: Tectonics of strike-slip restraining and releasing bends, Geol. Soc. Lond. Spec. Publ., 290, 1–12, https://doi.org/10.1144/SP290.1, 2007.
Davids, C., Wemmer, K., Zwingmann, H., Kohlmann, F., Jacobs, J., and Bergh, S. G.: K-Ar illite and apatite fission track constraints on brittle faulting and the evolution of the northern Norwegian passive margin, Tectonophysics, 608, 196–211, https://doi.org/10.1016/j.tecto.2013.09.035, 2013.
Drake, H., Tullborg, E. L., and Page, L.: Distinguished multiple events of fracture mineralisation related to far-field orogenic effects in Paleoproterozoic crystalline rocks, Simpevarp area, SE Sweden, Lithos, 110, 37–49, https://doi.org/10.1016/J.LITHOS.2008.12.003, 2009.
Faleide, J. I., Tsikalas, F., Breivik, A. J., Mjelde, R., Ritzmann, O., Engen, Ø., Wilson, J., and Eldholm, O.: Structure and evolution of the continental margin off Norway and the Barents Sea, International Union of Geological Sciences, 31, 82–91, https://doi.org/10.18814/epiiugs/2008/v31i1/012, 2008.
Faleide, J. I., Bjørlykke, K., and Gabrielsen, R. H.: Geology of the Norwegian Continental Shelf, in: Petroleum Geoscience: From Sedimentary Environments to Rock Physics, edited by: Bjørlykke, K., Springer, Berlin, Heidelberg, 603–637, https://doi.org/10.1007/978-3-642-34132-8_25, 2015.
Fediuk, F. and Siedlecki, S.: Smøla. Description of the geological map (AMS-M 711) 1321 I – 1:50 000, Universitetsforlaget, 1–26, https://hdl.handle.net/11250/2675044 (last access: 1 December 2023), 1977.
Fossen, H.: The role of extensional tectonics in the Caledonides of South Norway, J Struct Geol, 14, 1033–1046, 1992.
Fossen, H.: Extensional tectonics in the North Atlantic Caledonides: A regional view, Geol. Soc. Spec. Publ., 335, 767–793, https://doi.org/10.1144/SP335.31, 2010.
Fossen, H., Khani, H. F., Faleide, J. I., Ksienzyk, A. K., and Dunlap, W. J.: Post-Caledonian extension in the West Norway-northern North Sea region: The role of structural inheritance, in: Geological Society Special Publication, vol. 439, Geological Society of London, 465–486, https://doi.org/10.1144/SP439.6, 2017.
Fossen, H., Ksienzyk, A. K., Rotevatn, A., Bauck, M. S., and Wemmer, K.: From widespread faulting to localised rifting: Evidence from K-Ar fault gouge dates from the Norwegian North Sea rift shoulder, Basin Res., 33, 1934–1953, https://doi.org/10.1111/bre.12541, 2021.
Fredin, O., Viola, G., Zwingmann, H., Sørlie, R., Brönner, M., Lie, J. E., Grandal, E. M., Müller, A., Margreth, A., Vogt, C., and Knies, J.: The inheritance of a Mesozoic landscape in western Scandinavia, Nat. Commun., 8, 14879, https://doi.org/10.1038/ncomms14879, 2017.
Gautneb, H.: Structure, age and formation of dykes on the island of Smøla, Central Norway, Norsk Geologisk Tidsskrift, 68, 275–288, 1988.
Gautneb, H. and Roberts, D.: Geology and petrochemistry of the Smøla-Hitra batholith, Central Norway, Norges geologiske undersøkelse Bulletin, 416, 1–24, 1989.
Gee, D. G., Fossen, H., Henriksen, N., and Higgins, A. K.: From the Early Paleozoic Platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland, International Union of Geological Sciences, 31, 44–51, https://doi.org/10.18814/epiiugs/2008/v31i1/007, 2008.
Gernigon, L., Franke, D., Geoffroy, L., Schiffer, C., Foulger, G. R., and Stoker, M.: Crustal fragmentation, magmatism, and the diachronous opening of the Norwegian-Greenland Sea, Earth-Sci. Rev., 206, 102839, https://doi.org/10.1016/J.EARSCIREV.2019.04.011, 2020.
Gillespie, P. A., Holdsworth, R. E., Long, D., Williams, A., and Gutmanis, J. C.: Introduction: geology of fractured reservoirs, J. Geol. Soc. Lond., 178, jgs2020-197, https://doi.org/10.1144/jgs2020-197, 2020.
Grønlie, A. and Roberts, D.: Resurgent strike-slip duplex development along the Hitra-Snåsa and Verran Faults, Møre-trøndelag fault zone, Central Norway, J. Struct. Geol., 11, 295–305, https://doi.org/10.1016/0191-8141(89)90069-2, 1989.
Grønlie, A., Naeser, C. W., Naeser, N. D., Mitchell, J. G., Sturt, B. A., and Ineson, P. R.: Fission-track and K-Ar dating of tectonic activity in a transect across the Møre-Trøndelag Fault Zone, central Norway, Norsk Geologisk Tidsskrift, 74, 24–34, 1994.
Hartz, E. H., B. Martinsen, B., Øverli, P. E., Lie, H., Ditcha, E. M., Schmid, D. W., and Medvedev, S.: Newly Discovered Giant Oil Fields of North Sea – The Role of Fractured Basement Highs, in: Conference Proceedings, First EAGE/SBGf Workshop 2013, Rio de Janeiro – Fractures in Conventional and Unconventional Reservoirs, November 2013, European Association of Geoscientists & Engineers, https://doi.org/10.3997/2214-4609.20131805, 2013.
Hestnes, Å., Gasser, D., Scheiber, T., Jacobs, J., van der Lelij, R., Schönenberger, J., and Ksienzyk, A. K.: The brittle evolution of Western Norway – A space-time model based on fault mineralizations, K–Ar fault gouge dating and paleostress analysis, J. Struct. Geol., 160, 104621, https://doi.org/10.1016/J.JSG.2022.104621, 2022.
Hestnes, Å., Drost, K., Sømme, T. O., Gasser, D., Scheiber, T., Linge, H., Chew, D., and Jacobs, J.: Constraining the tectonic evolution of rifted continental margins by U-Pb calcite dating, Sci. Rep., 13, 7876, https://doi.org/10.1038/s41598-023-34649-z, 2023.
Hodge, M: Datasets for “Multiscalar 3D-temporal structural characterisation of Smøla Island, Mid-Norwegian passive margin” Authored by Hodge et al., V3, Mendeley Data [data set], https://doi.org/10.17632/2nmr2cz9yy.3, 2024.
Holcombe, R.: Oriented Drillcore: Measurement, Conversion and QA/QC Procedures for Structural and Exploration Geologists, https://www.holcombe.net.au/downloads/HCOVG_oriented_core_procedures.pdf (last access: 15 March 2022), 2013.
Holdsworth, R. E., McCaffrey, K. J. W., Dempsey, E., Roberts, N. M. W., Hardman, K., Morton, A., Feely, M., Hunt, J., Conway, A., and Robertson, A.: Natural fracture propping and earthquake-induced oil migration in fractured basement reservoirs, Geology, 47, 700–704, https://doi.org/10.1130/G46280.1, 2019.
Indrevær, K., Stunitz, H., and Bergh, S. G.: On Palaeozoic–Mesozoic brittle normal faults along the SW Barents Sea margin: Fault processes and implications for basement permeability and margin evolution, J. Geol. Soc. Lond., 171, 831–846, https://doi.org/10.1144/jgs2014-018, 2014.
Kendrick, M. A., Eide, A., Roberts, D., and Osmundsen, P. T.: The Middle to Late Devonian Høybakken detachment, central Norway: 40Ar–39Ar evidence for prolonged late/post-Scandian extension and uplift, Geol. Mag., 141, 329–344, https://doi.org/10.1017/S0016756803008811, 2004.
Kim, Y. S., Peacock, D. C. P., and Sanderson, D. J.: Fault damage zones, J. Struct. Geol., 26, 503–517, https://doi.org/10.1016/J.JSG.2003.08.002, 2004.
Knies, J., Schönenberger, J., Zwingmann, H., van der Lelij, R., Smelror, M., Vullum, P. E., Brönner, M., Vogt, C., Fredin, O., Müller, A., Grasby, S. E., Beauchamp, B., and Viola, G.: Continental weathering and recovery from ocean nutrient stress during the Early Triassic Biotic Crisis, Commun. Earth Environ., 3, 161, https://doi.org/10.1038/s43247-022-00480-z, 2022.
Ksienzyk, A. K., Wemmer, K., Jacobs, J., Fossen, H., Schomberg, A. C., Süssenberger, A., Lünsdorf, N. K., and Bastesen, E.: Post-Caledonian brittle deformation in the Bergen area, West Norway: results from K–Ar illite fault gouge dating, Norweg. J. Geol., 96, 275–299, https://doi.org/10.17850/njg96-3-06, 2016.
Levy, S. and Woldegabriel, G.: Ion Exchange and Dehydration Effects on Potassium and Argon Contents of Clinoptilolite, MRS Proc., 412, 791, https://doi.org/10.1557/PROC-412-791, 1995.
Mosar, J., Eide, E. A., Osmundsen, P. T., Sommaruga, A., and Torsvik, T. H.: Greenland – Norway separation: A geodynamic model for the North Atlantic, Norweg. J. Geol., 82, 282–299, 2002.
Muñoz-Barrera, J. M., Rotevatn, A., Gawthorpe, R. L., Henstra, G. A., and Kristensen, T. B.: The role of structural inheritance in the development of high-displacement crustal faults in the necking domain of rifted margins: The Klakk Fault Complex, Frøya High, offshore mid-Norway, J. Struct. Geol., 140, 104163, https://doi.org/10.1016/j.jsg.2020.104163, 2020.
Nasuti, A., Olesen, O., Baranwal, O., and Dumais, M.: Compilation of aeromagnetic data, in: Coop Phase 2 – Crustal Onshore-Offshore Project. NGU confidential Report, vol. 063, edited by: Olesen, O., Baranwal, O., Brönner, M., Dalsegg, E., Dumais, M., A., Gellein, J., Gernigon, L., Heldal, T., Larsen, B., E., Lauritsen, T., Lutro, O., Maystrenko, Y., Nasuti, A., Roberts, D., Rueslåtten, H., Rønning, J. S., Slagstad, T., Solli, A., and Stampolidis, A., Norges geologiske undersøkelse, 11–24, https://hdl.handle.net/11250/3059840 (last access: 1 July 2023), 2015.
Olsen, E., Gabrielsen, R. H., Braathen, A., and Redfield, T. F.: Fault systems marginal to the Møre-Trøndelag Fault Complex, Osen-Vikna area, Central Norway, Norweg. J. Geol., 87, 59–73, 2007.
Olesen, O., Rueslåtten, H. G., Schönenberger, J., Smelror, M., van der Lelij, R., Larsen, B. E., Olsen, L., Baranwal, V., Bjørlykke, A., and Brönner, M.: Jurassic heritance of the geomorphology in Mid Norway, Norweg. J. Geol., 103, 1–52, https://doi.org/10.17850/njg103-3-2, 2023.
Osmundsen, P. T., Eide, E. A., Haabesland, N. E., Roberts, D., Andersen, T. B., Kendrick, M., Bingen, B., Braathen, A., and Redfield, T. F.: Kinematics of the Høybakken detachment zone and the Møre–Trøndelag Fault Complex, central Norway, J. Geol. Soc. Lond., 163, 303–318, https://doi.org/10.1144/0016-764904-129, 2006.
Passchier, C. W. and Trouw, R. A. J.: Microtectonics, in: 2nd Edn., Springer Science & Business Media, Berlin, ISBN 978-3-540-64003-5, 2005.
Peron-Pinvidic, G. and Osmundsen, P. T.: The Mid Norwegian – NE Greenland conjugate margins: Rifting evolution, margin segmentation, and breakup, Mar. Petrol. Geol., 98, 162–184, https://doi.org/10.1016/j.marpetgeo.2018.08.011, 2018.
Peron-Pinvidic, G. and Osmundsen, P. T.: From orogeny to rifting: insights from the Norwegian `reactivation phase', Sci. Rep., 10, 14860, https://doi.org/10.1038/s41598-020-71893-z, 2020.
Peron-Pinvidic, G., Manatschal, G., and Osmundsen, P. T.: Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts, Mar. Petrol. Geol., 43, 21–47, https://doi.org/10.1016/J.MARPETGEO.2013.02.002, 2013.
Redfield, T. F., Torsvik, T. H., Andriessen, P. A. M., and Gabrielsen, R. H.: Mesozoic and Cenozoic tectonics of the Møre Trøndelag Fault Complex, central Norway: constraints from new apatite fission track data, Phys. Chem. Earth Pt. A/B/C, 29, 673–682, https://doi.org/10.1016/j.pce.2004.03.005, 2004.
Riber, L., Dypvik, H., and Sørlie, R.: Altered basement rocks on the Utsira High and its surroundings, Norwegian North Sea, Norweg. J. Geol., 95, 57–89, 2015.
Roberts, D.: Petrochemistry and palaeogeographic setting of the Ordovician volcanic rocks of Smøla, central Norway, Norges geologiske undersøkelse Bulletin, 359, 43–60, 1980.
Roberts, D. and Gee, D. G.: An introduction to the structure of the Scandinavian Caledonides, The Caledonian Orogen – Scandinavia and Related Areas, edited by: Gee, D. G. and Sturtt, B. A., John Wiley and Sons, New York, 55–68, ISBN 047110504X, 1985.
Rønning, J. S. and Elvebakk, H.: Onshore-Offshore Resistivity studies. Basement resistivity at the Frøya High, NGU Report 2005.032, Norges geologiske undersøkelse, https://hdl.handle.net/11250/2664989 (last access: 15 May 2023), 2005.
Scheiber, T. and Viola, G.: Complex Bedrock Fracture Patterns: A Multipronged Approach to Resolve Their Evolution in Space and Time, Tectonics, 37, 1030–1062, https://doi.org/10.1002/2017TC004763, 2018.
Scheiber, T., Viola, G., Wilkinson, C. M., Ganerød, M., Skår, Ø., and Gasser, D.: Direct 40Ar/39Ar dating of Late Ordovician and Silurian brittle faulting in the southwestern Norwegian Caledonides, Terra Nova, 28, 374–382, https://doi.org/10.1111/ter.12230, 2016.
Scheiber, T., Viola, G., van der Lelij, R., Margreth, A., and Schönenberger, J.: Microstructurally-constrained versus bulk fault gouge K-Ar dating, J. Struct. Geol., 127, 103868, https://doi.org/10.1016/j.jsg.2019.103868, 2019.
Seequent, T. B. S. C.: Leapfrog Works, https://www.seequent.com/products-solutions/leapfrog-works/ (last access: 23 September 2023), 2022.
Seranne, M.: Late Paleozoic kinematics of the Møre-Trøndelag Fault Zone and adjacent areas, central Norway, Norsk Geologisk Tidsskrift, 72, 141–158, 1992.
Sherlock, S. C., Watts, L. M., Holdsworth, R. E., and Roberts, D.: Dating fault reactivation by Ar/Ar laserprobe: an alternative view of apparently cogenetic mylonite–pseudotachylite assemblages, J. Geol. Soc. Lond., 161, 335–338, https://doi.org/10.1144/0016-764903-160, 2004.
Skilbrei, J. R., Olesen, O., Osmundsen, P. T., Kihle, O., Aaro, S., and Fjellanger, E.: A study of basement structures and onshore-offshore correlations in Central Norway, Norweg. J. Geol., 82, 263–279, 2002.
Slagstad, T. and Kirkland, C. L.: Timing of collision initiation and location of the Scandian orogenic suture in the Scandinavian Caledonides, Terra Nova, 30, 179–188, https://doi.org/10.1111/ter.12324, 2018.
Slagstad, T., Ramstad, R. K., Davidsen, B., and Barrére, C.: Petrophysical and thermal properties of pre-Devonian basement rocks on the Norwegian continental margin, Norges geologiske undersøkelse Bulletin, https://hdl.handle.net/11250/2674269 (last access: 12 April 2023), 2008.
Slagstad, T., Davidsen, B., and Stephen Daly, J.: Age and composition of crystalline basement rocks on the Norwegian continental margin: Offshore extension and continuity of the Caledonian-Appalachian orogenic belt, J. Geol. Soc. Lond., 168, 1167–1185, https://doi.org/10.1144/0016-76492010-136, 2011.
Tanner, D. C., Buness, H., Igel, J., Günther, T., Gabriel, G., Skiba, P., Plenefisch, T., Gestermann, N., and Walter, T. R.: Fault detection, Understanding Faults: Detecting, Dating, and Modelling, 2020, 81–146, https://doi.org/10.1016/B978-0-12-815985-9.00003-5, 2020.
Tartaglia, G., Viola, G., van der Lelij, R., Scheiber, T., Ceccato, A., and Schönenberger, J.: “Brittle structural facies” analysis: A diagnostic method to unravel and date multiple slip events of long-lived faults, Earth Planet. Sc. Lett., 545, 116420, https://doi.org/10.1016/j.epsl.2020.116420, 2020.
Tartaglia, G., Ceccato, A., Scheiber, T., van der Lelij, R., Schönenberger, J., and Viola, G.: Time-constrained multiphase brittle tectonic evolution of the onshore mid-Norwegian passive margin, GSA Bull., 135, 621–642, https://doi.org/10.1130/b36312.1, 2023.
Terzaghi, R. D.: Sources of Error in Joint Surveys, Géotechnique, 15, 287–304, https://doi.org/10.1680/geot.1965.15.3.287, 1965.
Torgersen, E., Arntsen, M. L., Bingen, B., Gasser, D., Gunleiksrud, I. H., and Nilsson, C.: Bedrock map of Norway, 1:1 350 000, Norges Geologiske Undersøkelse, Trondheim, Norway, 2021.
Trice, R.: Basement exploration, West of Shetlands: Progress in opening a new play on the UKCS, Geol. Soc. Spec. Publ., 397, 81–105, https://doi.org/10.1144/SP397.3, 2014.
Trice, R., Hiorth, C., and Holdsworth, R: Fractured basement play development on the UK and Norwegian rifted margins, Geol. Soc. Lond. Spec. Publ., 495, 73–97, https://doi.org/10.1144/SP495-2018-174, 2022.
Tsikalas, F., Faleide, J. I., Eldholm, O., and Blaich, O. A.: The NE Atlantic conjugate margins, Regional Geology and Tectonics: Phanerozoic Passive Margins, Cratonic Basins and Global Tectonic Maps, 140–201, https://doi.org/10.1016/B978-0-444-56357-6.00004-4, 2012.
Tucker, R. D., Robinson, P., Solli, A., Gee, D. G., Thorsnes, T., Krogh, T. E., Nordgulen, Ø., and Bickford, M. E.: Thrusting and Extension in the Scandian Hinterland, Norway: New U-Pb Ages and Tectonostratigraphic Evidence, Am. J. Sci., 304, 477–532, 2004.
Viola, G., Venvik Ganerød, G., and Wahlgren, C.-H.: Unraveling 1.5 Ga of brittle deformation history in the Laxemar-Simpevarp area, southeast Sweden: A contribution to the Swedish site investigation study for the disposal of highly radioactive nuclear waste, Tectonics, 28, TC5007, https://doi.org/10.1029/2009TC002461, 2009.
Viola, G., Torgersen, E., Mazzarini, F., Musumeci, G., van der Lelij, R., Schönenberger, J., and Garofalo, P. S.: New Constraints on the Evolution of the Inner Northern Apennines by K-Ar Dating of Late Miocene-Early Pliocene Compression on the Island of Elba, Italy, Tectonics, 37, 3229–3243, https://doi.org/10.1029/2018TC005182, 2018.
Watts, L. M.: The walls boundary fault zone and the Møre Trøndelag fault complex: a case study of two reactivated fault zones, PhD thesis, Durham University, 550 pp., http://etheses.dur.ac.uk/3878/ (last access: 20 March 2023), 2001.
Watts, L. M., Holdsworth, R. E., Roberts, D., Sleight, J. M., and Walker, R. J.: Structural evolution of the reactivated Møre-Trøndelag Fault Complex, Fosen Peninsula, Norway, J. Geol. Soc. Lond., 180, jgs2022-139, https://doi.org/10.1144/jgs2022-139, 2023.
White, N. C.: Geological Interpretation of Aeromagnetic Data (David J. Isles and Leigh R. Rankin), Econ. Geol., 109, 1495–1496, https://doi.org/10.2113/econgeo.109.5.1495, 2014.
Wibberley, C.: Are feldspar-to-mica reactions necessarily reaction-softening processes in fault zones?, J. Struct. Geol., 21, 1219–1227, https://doi.org/10.1016/S0191-8141(99)00019-X, 1999.
Zastrozhnov, D., Gernigon, L., Gogin, I., Planke, S., Abdelmalak, M. M., Polteau, S., Faleide, J. I., Manton, B., and Myklebust, R.: Regional structure and polyphased Cretaceous-Paleocene rift and basin development of the mid-Norwegian volcanic passive margin, Mar. Petrol. Geol., 115, 104269, https://doi.org/10.1016/j.marpetgeo.2020.104269, 2020.
Short summary
Smøla island, in the mid-Norwegian margin, has complex fracture and fault patterns resulting from tectonic activity. This study uses a multiple-method approach to unravel Smøla's tectonic history. We found five different phases of deformation related to various fracture geometries and minerals dating back hundreds of millions of years. 3D models of these features visualise these structures in space. This approach may help us to understand offshore oil and gas reservoirs hosted in the basement.
Smøla island, in the mid-Norwegian margin, has complex fracture and fault patterns resulting...