Articles | Volume 16, issue 4/5
https://doi.org/10.5194/se-16-367-2025
https://doi.org/10.5194/se-16-367-2025
Research article
 | 
15 May 2025
Research article |  | 15 May 2025

Unbiased statistical length analysis of linear features: adapting survival analysis to geological applications

Gabriele Benedetti, Stefano Casiraghi, Daniela Bertacchi, and Andrea Bistacchi

Related authors

An integrated workflow for parametrization of fracture network geometry in digital outcrop models
Stefano Casiraghi, Gabriele Benedetti, Daniela Bertacchi, Silvia Mittempergher, Federico Agliardi, Bruno Monopoli, Fabio La Valle, Mattia Martinelli, Francesco Bigoni, Cristian Albertini, and Andrea Bistacchi
Solid Earth, 16, 1351–1382, https://doi.org/10.5194/se-16-1351-2025,https://doi.org/10.5194/se-16-1351-2025, 2025
Short summary

Cited articles

Akaike, H.: A New Look at the Statistical Model Identification, IEEE T. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. a, b
Anderson, T. W. and Darling, D. A.: A Test of Goodness of Fit, J. Am. Stat. A., 49, 765–769, https://doi.org/10.1080/01621459.1954.10501232, 1954. a, b
Andersson, J., Shapiro, A. M., and Bear, J.: A Stochastic Model of a Fractured Rock Conditioned by Measured Information, Water Resour. Res., 20, 79–88, https://doi.org/10.1029/WR020i001p00079, 1984. a
Baecher, G. B.: Progressively Censored Sampling of Rock Joint Traces, J. Int. Ass. Math. Geol., 12, 33–40, https://doi.org/10.1007/BF01039902, 1980. a, b
Baecher, G. B.: Statistical Analysis of Rock Mass Fracturing, J. Int. Ass. Math. Geol., 15, 329–348, https://doi.org/10.1007/BF01036074, 1983. a
Short summary
At any scale, the limited size of a study area introduces a bias in the interpretation of linear features, defined as right-censoring bias. We show the effects of not considering such bias and apply survival analysis techniques to obtain unbiased estimates of multiple parametrical distributions in three censored length datasets. Finally, we propose a novel approach to select the most representative model from a sensible candidate pool using the probability integral transform technique.
Share