Articles | Volume 16, issue 7
https://doi.org/10.5194/se-16-641-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-641-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The size distributions of fractures and earthquakes: implications for orogen-internal seismogenic deformation
Sandro Truttmann
CORRESPONDING AUTHOR
Institute of Geological Sciences, University of Bern, Bern, 3012, Switzerland
Tobias Diehl
Swiss Seismological Service, ETH Zürich, Zurich, 8092, Switzerland
Marco Herwegh
Institute of Geological Sciences, University of Bern, Bern, 3012, Switzerland
Stefan Wiemer
Swiss Seismological Service, ETH Zürich, Zurich, 8092, Switzerland
Related authors
No articles found.
James Gilgannon and Marco Herwegh
EGUsphere, https://doi.org/10.5194/egusphere-2025-1718, https://doi.org/10.5194/egusphere-2025-1718, 2025
Short summary
Short summary
Carbonate rocks can control how strong the Earth’s crust is in places. They are often described in simple terms as calcite or dolomite, but they are more complicated. At the atomistic level different amounts of elements, like magnesium and calcium, are incorporated at different temperatures and at the microscopic level carbonates can have different internal structures. We review 50 years of experimental data to provide equations that can describe the strength of most kinds of carbonates.
Miriam Larissa Schwarz, Hansruedi Maurer, Anne Christine Obermann, Paul Antony Selvadurai, Alexis Shakas, Stefan Wiemer, and Domenico Giardini
EGUsphere, https://doi.org/10.5194/egusphere-2025-1094, https://doi.org/10.5194/egusphere-2025-1094, 2025
Short summary
Short summary
This study applied fat ray travel time tomography to image the geothermal testbed at the BedrettoLab. An active seismic crosshole survey provided a dataset of 42'843 manually picked first breaks. The complex major fault zone was successfully imaged by a 3D velocity model and validated with wireline logs and geological observations. Seismic events from hydraulic stimulation correlated with velocity structures, "avoiding" very high and low velocities, speculatively due to stress gradients.
Marta Han, Leila Mizrahi, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 25, 991–1012, https://doi.org/10.5194/nhess-25-991-2025, https://doi.org/10.5194/nhess-25-991-2025, 2025
Short summary
Short summary
Relying on recent accomplishments of collecting and harmonizing data by the 2020 European Seismic Hazard Model (ESHM20) and leveraging advancements in state-of-the-art earthquake forecasting methods, we develop a harmonized earthquake forecasting model for Europe. We propose several model variants and test them on training data for consistency and on a 7-year testing period against each other, as well as against both a time-independent benchmark and a global time-dependent benchmark.
Natalia Nevskaya, Alfons Berger, Holger Stünitz, Markus Ohl, Oliver Plümper, and Marco Herwegh
EGUsphere, https://doi.org/10.5194/egusphere-2024-3970, https://doi.org/10.5194/egusphere-2024-3970, 2025
Short summary
Short summary
To date, there remains a deficiency in rheological parameters for polymineralic rocks to be used in models for strain localization and seismicity in the Earth's continental middle crust. We calculated grain size and stress sensitivity of experimentally deformed natural, fine-grained, granitoid rocks. Extrapolation of these parameters predicts a switch in the weakest material as a function of grain size and deformation mechanism: from coarse monomineralic quartz to fine polymineralic rocks.
Natalia Nevskaya, Alfons Berger, Holger Stünitz, Weijia Zhan, Markus Ohl, Oliver Plümper, and Marco Herwegh
EGUsphere, https://doi.org/10.5194/egusphere-2024-3968, https://doi.org/10.5194/egusphere-2024-3968, 2025
Short summary
Short summary
Rheology of polymineralic rocks is crucial to unravel the strain and stress distribution in Earth’s middle crust with implications for e.g. seismicity or geothermal systems. Our experimental study of the viscous rheology of natural, fine-grained, granitoid rocks shows that dissolution-precipitation creep and pinning is active in extremely weak narrow zones. Due to the polymineralic character, strain localizes with and without a precursory fracture in zones weaker than monomineralic quartz.
Athanasios N. Papadopoulos, Philippe Roth, Laurentiu Danciu, Paolo Bergamo, Francesco Panzera, Donat Fäh, Carlo Cauzzi, Blaise Duvernay, Alireza Khodaverdian, Pierino Lestuzzi, Ömer Odabaşi, Ettore Fagà, Paolo Bazzurro, Michèle Marti, Nadja Valenzuela, Irina Dallo, Nicolas Schmid, Philip Kästli, Florian Haslinger, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3561–3578, https://doi.org/10.5194/nhess-24-3561-2024, https://doi.org/10.5194/nhess-24-3561-2024, 2024
Short summary
Short summary
The Earthquake Risk Model of Switzerland (ERM-CH23), released in early 2023, is the culmination of a multidisciplinary effort aiming to achieve, for the first time, a comprehensive assessment of the potential consequences of earthquakes on the Swiss building stock and population. ERM-CH23 provides risk estimates for various impact metrics, ranging from economic loss as a result of damage to buildings and their contents to human losses, such as deaths, injuries, and displaced population.
Veronica Peverelli, Alfons Berger, Martin Wille, Thomas Pettke, Benita Putlitz, Andreas Mulch, Edwin Gnos, and Marco Herwegh
Eur. J. Mineral., 36, 879–898, https://doi.org/10.5194/ejm-36-879-2024, https://doi.org/10.5194/ejm-36-879-2024, 2024
Short summary
Short summary
We used U–Pb dating and Pb–Sr–O–H isotopes of hydrothermal epidote to characterize fluid circulation in the Aar Massif (central Swiss Alps). Our data support the hypothesis that Permian fluids exploited syn-rift extensional faults. In the Miocene during the Alpine orogeny, fluid sources were meteoric, sedimentary, and/or metamorphic water. Likely, Miocene shear zones were exploited for fluid circulation, with implications for the Sr isotope budget of the granitoids.
Laurentiu Danciu, Domenico Giardini, Graeme Weatherill, Roberto Basili, Shyam Nandan, Andrea Rovida, Céline Beauval, Pierre-Yves Bard, Marco Pagani, Celso G. Reyes, Karin Sesetyan, Susana Vilanova, Fabrice Cotton, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3049–3073, https://doi.org/10.5194/nhess-24-3049-2024, https://doi.org/10.5194/nhess-24-3049-2024, 2024
Short summary
Short summary
The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative references in the next update of the European Seismic Design Code (CEN EC8), and it also provides a key input to the first earthquake risk model for Europe.
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024, https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary
Short summary
We detail the selection and characterization of a fault zone for earthquake experiments in the Fault Activation and Earthquake Ruptures (FEAR) project at the Bedretto Lab. FEAR, which studies earthquake processes, overcame data collection challenges near faults. The fault zone in Rotondo granite was selected based on geometry, monitorability, and hydro-mechanical properties. Remote sensing, borehole logging, and geological mapping were used to create a 3D model for precise monitoring.
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frédérick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinović, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinović, Domenico Giardini, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 583–607, https://doi.org/10.5194/nhess-24-583-2024, https://doi.org/10.5194/nhess-24-583-2024, 2024
Short summary
Short summary
Seismic hazard and risk are time dependent as seismicity is clustered and exposure can change rapidly. We are developing an interdisciplinary dynamic earthquake risk framework for advancing earthquake risk mitigation in Switzerland. This includes various earthquake risk products and services, such as operational earthquake forecasting and early warning. Standardisation and harmonisation into seamless solutions that access the same databases, workflows, and software are a crucial component.
Irina Dallo, Michèle Marti, Nadja Valenzuela, Helen Crowley, Jamal Dabbeek, Laurentiu Danciu, Simone Zaugg, Fabrice Cotton, Domenico Giardini, Rui Pinho, John F. Schneider, Céline Beauval, António A. Correia, Olga-Joan Ktenidou, Päivi Mäntyniemi, Marco Pagani, Vitor Silva, Graeme Weatherill, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 291–307, https://doi.org/10.5194/nhess-24-291-2024, https://doi.org/10.5194/nhess-24-291-2024, 2024
Short summary
Short summary
For the release of cross-country harmonised hazard and risk models, a communication strategy co-defined by the model developers and communication experts is needed. The strategy should consist of a communication concept, user testing, expert feedback mechanisms, and the establishment of a network with outreach specialists. Here we present our approach for the release of the European Seismic Hazard Model and European Seismic Risk Model and provide practical recommendations for similar efforts.
Veronica Peverelli, Alfons Berger, Martin Wille, Thomas Pettke, Pierre Lanari, Igor Maria Villa, and Marco Herwegh
Solid Earth, 13, 1803–1821, https://doi.org/10.5194/se-13-1803-2022, https://doi.org/10.5194/se-13-1803-2022, 2022
Short summary
Short summary
This work studies the interplay of epidote dissolution–precipitation and quartz dynamic recrystallization during viscous granular flow in a deforming epidote–quartz vein. Pb and Sr isotope data indicate that epidote dissolution–precipitation is mediated by internal/recycled fluids with an additional external fluid component. Microstructures and geochemical data show that the epidote material is redistributed and chemically homogenized within the deforming vein via a dynamic granular fluid pump.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Veronica Peverelli, Tanya Ewing, Daniela Rubatto, Martin Wille, Alfons Berger, Igor Maria Villa, Pierre Lanari, Thomas Pettke, and Marco Herwegh
Geochronology, 3, 123–147, https://doi.org/10.5194/gchron-3-123-2021, https://doi.org/10.5194/gchron-3-123-2021, 2021
Short summary
Short summary
This work presents LA-ICP-MS U–Pb geochronology of epidote in hydrothermal veins. The challenges of epidote dating are addressed, and a protocol is proposed allowing us to obtain epidote U–Pb ages with a precision as good as 5 % in addition to the initial Pb isotopic composition of the epidote-forming fluid. Epidote demonstrates its potential to be used as a U–Pb geochronometer and as a fluid tracer, allowing us to reconstruct the timing of hydrothermal activity and the origin of the fluid(s).
James Gilgannon, Marius Waldvogel, Thomas Poulet, Florian Fusseis, Alfons Berger, Auke Barnhoorn, and Marco Herwegh
Solid Earth, 12, 405–420, https://doi.org/10.5194/se-12-405-2021, https://doi.org/10.5194/se-12-405-2021, 2021
Short summary
Short summary
Using experiments that simulate deep tectonic interfaces, known as viscous shear zones, we found that these zones spontaneously develop periodic sheets of small pores. The presence of porous layers in deep rocks undergoing tectonic deformation is significant because it requires a change to the current model of how the Earth deforms. Emergent porous layers in viscous rocks will focus mineralising fluids and could lead to the seismic failure of rocks that are never supposed to have this occur.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Camilla Rossi, Francesco Grigoli, Simone Cesca, Sebastian Heimann, Paolo Gasperini, Vala Hjörleifsdóttir, Torsten Dahm, Christopher J. Bean, Stefan Wiemer, Luca Scarabello, Nima Nooshiri, John F. Clinton, Anne Obermann, Kristján Ágústsson, and Thorbjörg Ágústsdóttir
Adv. Geosci., 54, 129–136, https://doi.org/10.5194/adgeo-54-129-2020, https://doi.org/10.5194/adgeo-54-129-2020, 2020
Short summary
Short summary
We investigate the microseismicity occurred at Hengill area, a complex tectonic and geothermal site, where the origin of earthquakes may be either natural or anthropogenic. We use a very dense broadband seismic monitoring network and apply full-waveform based method for location. Our results and first characterization identified different types of microseismic clusters, which might be associated to either production/injection or the tectonic activity of the geothermal area.
Samuel Mock, Christoph von Hagke, Fritz Schlunegger, István Dunkl, and Marco Herwegh
Solid Earth, 11, 1823–1847, https://doi.org/10.5194/se-11-1823-2020, https://doi.org/10.5194/se-11-1823-2020, 2020
Short summary
Short summary
Based on thermochronological data, we infer thrusting along-strike the northern rim of the Central Alps between 12–4 Ma. While the lithology influences the pattern of thrusting at the local scale, we observe that thrusting in the foreland is a long-wavelength feature occurring between Lake Geneva and Salzburg. This coincides with the geometry and dynamics of the attached lithospheric slab at depth. Thus, thrusting in the foreland is at least partly linked to changes in slab dynamics.
Cited articles
Ackermann, R. V. and Schlische, R. W.: Anticlustering of small normal faults around larger faults, Geology, 25, 1127, https://doi.org/10.1130/0091-7613(1997)025<1127:AOSNFA>2.3.CO;2, 1997.
Ackermann, R. V., Schlische, R. W., and Withjack, M. O.: The geometric and statistical evolution of normal fault systems: an experimental study of the effects of mechanical layer thickness on scaling laws, J. Struct. Geol., 23, 1803–1819, https://doi.org/10.1016/S0191-8141(01)00028-1, 2001.
Alstott, J., Bullmore, E., and Plenz, D.: Powerlaw: a Python package for analysis of heavy-tailed distributions, PLoS ONE, 9, e85777, https://doi.org/10.1371/journal.pone.0085777, 2014.
Baer, M., Deichmann, N., Fäh, D., Kradolfer, U., Mayer-Rosa, D., Ruettener, E., Schler, T., Sellami, S., and Smit, P.: Earthquakes in Switzerland and surrounding regions during 1996, Eclogae Geol. Helv., 90, 557–567, 1997.
Baer, M., Deichmann, N., Braunmiller, J., Bernardi, F., Cornou, C., Fäh, D., Giardini, D., Huber, S., Kaestli, P., Kind, F., Kradolfer, U., Mai, M., Maraini, S., Oprsal, I., Schler, T., Schorlemmer, D., Sellami, S., Steimen, S., Wiemer, S., Woessner, J., and Wyss, A.: Earthquakes in Switzerland and surrounding regions during 2002, Eclogae Geol. Helv., 96, 313–324, 2003.
Baer, M., Deichmann, N., Braunmiller, J., Husen, S., Fäh, D., Giardini, D., Kästli, P., Kradolfer, U., and Wiemer, S.: Earthquakes in Switzerland and surrounding regions during 2004, Eclogae Geol. Helv., 98, 407–418, https://doi.org/10.1007/s00015-005-1168-3, 2005.
Baumberger, R., Herwegh, M., and Kissling, E.: Remote Sensing and Field Data Based Structural 3D Modelling (Haslital, Switzerland) in Combination with Uncertainty Estimation and Verification by Underground Data, in: 3D Digital Geological Models, edited by: Bistacchi, A., Massironi, M., and Viseur, S., Wiley, 159–197, https://doi.org/10.1002/9781119313922.ch10, 2022.
Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., and Berkowitz, B.: Scaling of fracture systems in geological media, Rev. Geophys., 39, 347–383, https://doi.org/10.1029/1999RG000074, 2001.
Borgos, H. G., Cowie, P. A., and Dawers, N. H.: Practicalities of extrapolating one-dimensional fault and fracture size-frequency distributions to higher-dimensional samples, J. Geophys. Res., 105, 28377–28391, https://doi.org/10.1029/2000JB900260, 2000.
Bossennec, C., Frey, M., Seib, L., Bär, K., and Sass, I.: Multiscale Characterisation of Fracture Patterns of a Crystalline Reservoir Analogue, Geosciences, 11, 371, https://doi.org/10.3390/geosciences11090371, 2021.
Bour, O. and Davy, P.: Clustering and size distributions of fault patterns: Theory and measurements, Geophys. Res. Lett., 26, 2001–2004, https://doi.org/10.1029/1999GL900419, 1999.
Bour, O., Davy, P., Darcel, C., and Odling, N.: A statistical scaling model for fracture network geometry, with validation on a multiscale mapping of a joint network (Hornelen Basin, Norway), J. Geophys. Res., 107, 2113, https://doi.org/10.1029/2001JB000176, 2002.
Boutoux, A., Bellahsen, N., Nanni, U., Pik, R., Verlaguet, A., Rolland, Y., and Lacombe, O.: Thermal and structural evolution of the external Western Alps: Insights from (U–Th–Sm) He thermochronology and RSCM thermometry in the Aiguilles Rouges/Mont Blanc massifs, Tectonophysics, 683, 109–123, https://doi.org/10.1016/j.tecto.2016.06.010, 2016.
Brockmann, E., Ineichen, D., Marti, U., Schaer, S., Schlatter, A., and Villiger, A.: Determination of Tectonic Movements in the Swiss Alps Using GNSS and Levelling, in: Geodesy for Planet Earth, vol. 136, edited by: Kenyon, S., Pacino, M. C., and Marti, U., Springer Berlin Heidelberg, Berlin, Heidelberg, 689–695, https://doi.org/10.1007/978-3-642-20338-1_85, 2012.
Bruyninx, C., Legrand, J., Fabian, A., and Pottiaux, E.: GNSS metadata and data validation in the EUREF Permanent Network, GPS Solut., 23, 106, https://doi.org/10.1007/s10291-019-0880-9, 2019.
Burkhard, P. M.: L'Helvétique de la bordure occidentale du massif de l'Aar (évolution tectonique et métamorphique), Eclogae Geol. Helv., 81, 63–114, 1988.
Campani, M., Mancktelow, N., Seward, D., Rolland, Y., Müller, W., and Guerra, I.: Geochronological evidence for continuous exhumation through the ductile-brittle transition along a crustal-scale low-angle normal fault: Simplon Fault Zone, central Alps, Tectonics, 29, 2009TC002582, https://doi.org/10.1029/2009TC002582, 2010.
Campani, M., Mancktelow, N., and Courrioux, G.: The 3D interplay between folding and faulting in a syn-orogenic extensional system: the Simplon Fault Zone in the Central Alps (Switzerland and Italy), Swiss J. Geosci., 107, 251–271, https://doi.org/10.1007/s00015-014-0163-y, 2014.
Cao, W. and Lei, Q.: Influence of Landscape Coverage on Measuring Spatial and Length Properties of Rock Fracture Networks: Insights from Numerical Simulation, Pure Appl. Geophys., 175, 2167–2179, https://doi.org/10.1007/s00024-018-1774-4, 2018.
Cardello, G. L. and Mancktelow, N. S.: Veining and post-nappe transtensional faulting in the SW Helvetic Alps (Switzerland), Swiss J. Geosci., 108, 379–400, https://doi.org/10.1007/s00015-015-0199-7, 2015.
Cardello, G. L., Bernasconi, S. M., Fellin, M. G., Rahn, M., Rosskopf, R., Maden, C., and Mancktelow, N. S.: Carbonate deformation through the brittle-ductile transition: The case of the SW Helvetic nappes, Switzerland, J. Struct. Geol., 181, 105083, https://doi.org/10.1016/j.jsg.2024.105083, 2024.
Castaing, C., Halawani, M. A., Gervais, F., Chilès, J. P., Genter, A., Bourgine, B., Ouillon, G., Brosse, J. M., Martin, P., Genna, A., and Janjou, D.: Scaling relationships in intraplate fracture systems related to Red Sea rifting, Tectonophysics, 261, 291–314, https://doi.org/10.1016/0040-1951(95)00177-8, 1996.
Ceccato, A., Tartaglia, G., Antonellini, M., and Viola, G.: Multiscale lineament analysis and permeability heterogeneity of fractured crystalline basement blocks, Solid Earth, 13, 1431–1453, https://doi.org/10.5194/se-13-1431-2022, 2022.
Clark, R. M., Cox, S. J. D., and Laslett, G. M.: Generalizations of power-law distributions applicable to sampled fault-trace lengths: model choice, parameter estimation and caveats: Power-law distributions and fault-trace lengths, Geophys. J. Int., 136, 357–372, https://doi.org/10.1046/j.1365-246X.1999.00728.x, 1999.
Clauset, A., Shalizi, C. R., and Newman, M. E. J.: Power-Law Distributions in Empirical Data, SIAM Rev., 51, 661–703, https://doi.org/10.1137/070710111, 2009.
Cowie, P. A., Vanneste, C., and Sornette, D.: Statistical physics model for the spatiotemporal evolution of faults, J. Geophys. Res., 98, 21809–21821, https://doi.org/10.1029/93JB02223, 1993.
Cowie, P. A., Sornette, D., and Vanneste, C.: Multifractal scaling properties of a growing fault population, Geophys. J. Int., 122, 457–469, https://doi.org/10.1111/j.1365-246X.1995.tb07007.x, 1995.
Davy, P.: On the frequency-length distribution of the San Andreas Fault System, J. Geophys. Res., 98, 12141–12151, https://doi.org/10.1029/93JB00372, 1993.
Davy, P., Bour, O., De Dreuzy, J.-R., and Darcel, C.: Flow in multiscale fractal fracture networks, Geological Society, London, Special Publications, 261, 31–45, https://doi.org/10.1144/GSL.SP.2006.261.01.03, 2006.
Davy, P., Le Goc, R., Darcel, C., Bour, O., de Dreuzy, J. R., and Munier, R.: A likely universal model of fracture scaling and its consequence for crustal hydromechanics, J. Geophys. Res., 115, B10411, https://doi.org/10.1029/2009JB007043, 2010.
Davy, Ph., Sornette, A., and Sornette, D.: Some consequences of a proposed fractal nature of continental faulting, Nature, 348, 56–58, https://doi.org/10.1038/348056a0, 1990.
Deichmann, N., Baer, M., Braunmiller, J., Ballarin Dolfin, D., Bay, F., Delouis, B., Fäh, D., Giardini, D., Kastrup, U., Kind, F., Kradolfer, U., Kuenzle, W., Roethlisberger, S., Schler, T., Salichon, J., Sellami, S., Spuehler, E., and Wiemer, S.: Earthquakes in Switzerland and surrounding regions during 1999, Eclogae Geol. Helv., 93, 395–406, 2000.
Deichmann, N., Baer, M., Braunmiller, J., Ballarin Dolfin, D., Bay, F., Bernardi, F., Delouis, B., Fäh, D., Gerstenberger, M., Giardini, D., Huber, S., Kradolfer, U., Maraini, S., Oprsal, I., Schibler, R., Schler, T., Sellami, S., Steimen, S., Wiemer, S., Woessner, J., and Wyss, A.: Earthquakes in Switzerland and surrounding regions during 2001, Eclogae Geol. Helv., 95, 294–261, 2002.
Deichmann, N., Baer, M., Braunmiller, J., Husen, S., Fäh, D., Giardini, D., Kästli, P., Kradolfer, U., and Wiemer, S.: Earthquakes in Switzerland and surrounding regions during 2005, Eclogae Geol. Helv., 99, 443–452, https://doi.org/10.1007/s00015-006-1201-1, 2006.
Deichmann, N., Clinton, J., Husen, S., Edwards, B., Haslinger, F., Fäh, D., Giardini, D., Kästli, P., Kradolfer, U., and Wiemer, S.: Earthquakes in Switzerland and surrounding regions during 2011, Swiss J. Geosci., 105, 463–476, https://doi.org/10.1007/s00015-012-0116-2, 2012.
Delacou, B., Deichmann, N., Sue, C., Thouvenot, F., Champagnac, J.-D., and Burkhard, M.: Active strike-slip faulting in the Chablais area (NW Alps) from earthquake focal mechanisms and relative locations, Eclogae Geol. Helv., 98, 189–199, https://doi.org/10.1007/s00015-005-1159-4, 2005.
Diehl, T., Deichmann, N., Clinton, J., Husen, S., Kraft, T., Plenkers, K., Edwards, B., Cauzzi, C., Michel, C., Kästli, P., Wiemer, S., Haslinger, F., Fäh, D., Kradolfer, U., and Woessner, J.: Earthquakes in Switzerland and surrounding regions during 2012, Swiss J. Geosci., 106, 543–558, https://doi.org/10.1007/s00015-013-0154-4, 2013.
Diehl, T., Clinton, J., Deichmann, N., Cauzzi, C., Kästli, P., Kraft, T., Molinari, I., Böse, M., Michel, C., Hobiger, M., Haslinger, F., Fäh, D., and Wiemer, S.: Earthquakes in Switzerland and surrounding regions during 2015 and 2016, Swiss J. Geosci., 111, 221–244, https://doi.org/10.1007/s00015-017-0295-y, 2018.
Diehl, T., Clinton, J., Cauzzi, C., Kraft, T., Kästli, P., Deichmann, N., Massin, F., Grigoli, F., Molinari, I., B?se, M., Hobiger, M., Haslinger, F., Fäh, D., and Wiemer, S.: Earthquakes in Switzerland and surrounding regions during 2017 and 2018, Swiss J. Geosci., 114, 4, https://doi.org/10.1186/s00015-020-00382-2, 2021a.
Diehl, T., Kissling, E., Herwegh, M., and Schmid, S. M.: Improving Absolute Hypocenter Accuracy With 3D Pg and Sg Body-Wave Inversion Procedures and Application to Earthquakes in the Central Alps Region, J. Geophys. Res.-Sol. Ea., 126, e2021JB022155, https://doi.org/10.1029/2021JB022155, 2021b.
Diehl, T., Heilig, J., Cauzzi, C., Deichmann, N., Clinton, J., Truttmann, S., Herwegh, M., and Wiemer, S.: SECOS24: New insights into seismicity, deformation and crustal stresses in the Central Alps Region from a baseline seismotectonic earthquake catalog, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-12811, https://doi.org/10.5194/egusphere-egu24-12811, 2024.
Dietrich, D.: Fold-axis parallel extension in an arcuate fold- and thrust belt: the case of the Helvetic nappes, Tectonophysics, 170, 183–212, https://doi.org/10.1016/0040-1951(89)90271-0, 1989.
Dietrich, D. and Casey, M.: A new tectonic model for the Helvetic nappes, Geological Society, London, Special Publications, 45, 47–63, https://doi.org/10.1144/GSL.SP.1989.045.01.03, 1989.
Egli, D. and Mancktelow, N.: The structural history of the Mont Blanc massif with regard to models for its recent exhumation, Swiss J. Geosci., 106, 469–489, https://doi.org/10.1007/s00015-013-0153-5, 2013.
Egli, D., Mancktelow, N., and Spikings, R.: Constraints from 40Ar/39 Ar geochronology on the timing of Alpine shear zones in the Mont Blanc-Aiguilles Rouges region of the European Alps, Tectonics, 36, 730–748, https://doi.org/10.1002/2016TC004450, 2017.
Escher, A., Masson, H., and Steck, A.: Nappe geometry in the Western Swiss Alps, J. Struct. Geol., 15, 501–509, https://doi.org/10.1016/0191-8141(93)90144-Y, 1993.
Fox, M., Herman, F., Kissling, E., and Willett, S. D.: Rapid exhumation in the Western Alps driven by slab detachment and glacial erosion, Geology, 43, 379–382, https://doi.org/10.1130/G36411.1, 2015.
Fréchet, J., Thouvenot, F., Frogneux, M., Deichmann, N., and Cara, M.: The MW 4.5 Vallorcine (French Alps) earthquake of 8 September 2005 and its complex aftershock sequence, J. Seismol., 15, 43–58, https://doi.org/10.1007/s10950-010-9205-8, 2011.
Gasser, D. and Mancktelow, N. S.: Brittle faulting in the Rawil depression: field observations from the Rezli fault zones, Helvetic nappes, Western Switzerland, Swiss J. Geosci., 103, 15–32, https://doi.org/10.1007/s00015-010-0004-6, 2010.
Glotzbach, C., Reinecker, J., Danišík, M., Rahn, M., Frisch, W., and Spiegel, C.: Thermal history of the central Gotthard and Aar massifs, European Alps: Evidence for steady state, long-term exhumation, J. Geophys. Res.-Earth, 115, F03017, https://doi.org/10.1029/2009JF001304, 2010.
Goebel, T. H. W., Kwiatek, G., Becker, T. W., Brodsky, E. E., and Dresen, G.: What allows seismic events to grow big?: Insights from b-value and fault roughness analysis in laboratory stick-slip experiments, Geology, 45, 815–818, https://doi.org/10.1130/G39147.1, 2017.
Goertz-Allmann, B. P., Edwards, B., Bethmann, F., Deichmann, N., Clinton, J., Fah, D., and Giardini, D.: A New Empirical Magnitude Scaling Relation for Switzerland, B. Seismol. Soc. Am., 101, 3088–3095, https://doi.org/10.1785/0120100291, 2011.
Goldstein, M. L., Morris, S. A., and Yen, G. G.: Problems with ?tting to the power-law distribution, Eur. Phys. J. B, 41, 255–258, 2004.
Gulia, L. and Wiemer, S.: The influence of tectonic regimes on the earthquake size distribution: A case study for Italy, Geophys. Res. Lett., 37, L10305, https://doi.org/10.1029/2010GL043066, 2010.
Gutenberg, B. and Richter, C. F.: Frequency of Earthquakes in California, B. Seismol. Soc. Am., 34, 185–188, 1944.
Hatton, C. G., Main, I. G., and Meredith, P. G.: A comparison of seismic and structural measurements of scaling exponents during tensile subcritical crack growth, J. Struct. Geol., 15, 1485–1495, 1993.
Häuselmann, P., Granger, D. E., Jeannin, P.-Y., and Lauritzen, S.-E.: Abrupt glacial valley incision at 0.8 Ma dated from cave deposits in Switzerland, Geology, 35, 143, https://doi.org/10.1130/G23094A, 2007.
Heffer, K. J. and Bevan, T. G.: Scaling Relationships in Natural Fractures: Data, Theory, and Application, Society of Petroleum engineers, European Petroleum Conference, The Hague, the Netherlands, October 1990, https://doi.org/10.2118/20981-MS, 1990.
Hentschel, H. G. E. and Procaccia, I.: The infinite number of generalized dimensions of fractals and strange attractors, Phys. D, 8, 435–444, https://doi.org/10.1016/0167-2789(83)90235-X, 1983.
Herwegh, M., Berger, A., Glotzbach, C., Wangenheim, C., Mock, S., Wehrens, P., Baumberger, R., Egli, D., and Kissling, E.: Late stages of continent-continent collision: Timing, kinematic evolution, and exhumation of the Northern rim (Aar Massif) of the Alps, Earth-Sci. Rev., 200, 102959, https://doi.org/10.1016/j.earscirev.2019.102959, 2020.
Herwegh, M., Berger, A., Bellashen, N., Rolland, Y., and Kissling, E.: Evolution of the External Crystalline Massifs of the European Alps: From Massif to Lithosphere Scale, in: Geodynamics of the Alps, ISTE-Wiley, London, https://doi.org/10.1002/9781394299560.ch2, 2024.
Hetényi, G., Epard, J.-L., Colavitti, L., Hirzel, A. H., Kiss, D., Petri, B., Scarponi, M., Schmalholz, S. M., and Subedi, S.: Spatial relation of surface faults and crustal seismicity: a first comparison in the region of Switzerland, Acta Geod. Geophys., 53, 439–461, https://doi.org/10.1007/s40328-018-0229-9, 2018.
Houlié, N., Woessner, J., Giardini, D., and Rothacher, M.: Lithospere strain rate and stress field orientations near the Alpine arc in Switzerland, Sci. Rep., 8, 2018, https://doi.org/10.1038/s41598-018-20253-z, 2018.
Huggenberger, P. and Aebli, H.: Bruchtektonik und Blattverschiebungen im Gebiet des Rawil-Passes: Resultat einer E-W gerichteten dextralen Scherbewegung im kristallinen Untergrund?, Schweiz. Miner. Petrog., 69, 173–180, https://doi.org/10.5169/SEALS-52783, 1989.
Jimenez, M.-J. and Pavoni, N.: Focal mechanisms of recent earthquakes, 1976-1982, and seismotectonics in Switzerland, in: Proc. Sess. 12, IASPEI XVIII Assembly, Hamburg 1983, 77–84, 1983.
Kastrup, U., Zoback, M. L., Deichmann, N., Evans, K. F., Giardini, D., and Michael, A. J.: Stress field variations in the Swiss Alps and the northern Alpine foreland derived from inversion of fault plane solutions, J. Geophys. Res., 109, B01402, https://doi.org/10.1029/2003JB002550, 2004.
Knott, S. D., Beach, A., Brockbank, P. J., Lawson Brown, J., McCallum, J. E., and Welbon, A. I.: Spatial and mechanical controls on normal fault populations, J. Struct. Geol., 18, 359–372, https://doi.org/10.1016/S0191-8141(96)80056-3, 1996.
Lee, T., Diehl, T., Kissling, E., and Wiemer, S.: New insights into the Rhône–Simplon fault system (Swiss Alps) from a consistent earthquake catalogue covering 35 yr, Geophys. J. Int., 232, 1568–1589, https://doi.org/10.1093/gji/ggac407, 2023.
Lei, Q., Latham, J.-P., Tsang, C.-F., Xiang, J., and Lang, P.: A new approach to upscaling fracture network models while preserving geostatistical and geomechanical characteristics: A New Fracture Network Upscaling Method, J. Geophys. Res.-Sol. Ea., 120, 4784–4807, https://doi.org/10.1002/2014JB011736, 2015.
Leonard, M.: Self-Consistent Earthquake Fault-Scaling Relations: Update and Extension to Stable Continental Strike-Slip Faults, B. Seismol. Soc. Am., 104, 2953–2965, https://doi.org/10.1785/0120140087, 2014.
Levato, L., Sellami, S., Epard, J.-L., Pruniaux, B., Olivier, R., Wagner, J.-J., and Masson, H.: The cover-basement contact beneath the Rawil axial depression (western Alps): True amplitude seismic processing, petrophysical properties, and modelling, Tectonophysics, 232, 391–409, https://doi.org/10.1016/0040-1951(94)90099-X, 1994.
Line, C. E. R., Snyder, D. B., and Hobbs, R. W.: The sampling of fault populations in dolerite sills of Central Sweden and implications for resolution of seismic data, J. Struct. Geol., 19, 687–701, https://doi.org/10.1016/S0191-8141(96)00087-9, 1997.
Mancktelow, N.: The Simplon Line: a major displacement zone in the western Lepontine Alps, Eclogae Geol. Helv., 78, 73–96, https://doi.org/10.5169/SEALS-165644, 1985.
Manighetti, I., Campillo, M., Bouley, S., and Cotton, F.: Earthquake scaling, fault segmentation, and structural maturity, Earth Planet. Sc. Lett., 253, 429–438, https://doi.org/10.1016/j.epsl.2006.11.004, 2007.
Marrett, R., Ortega, O. J., and Kelsey, C. M.: Extent of power-law scaling for natural fractures in rock, Geology, 27, 799, https://doi.org/10.1130/0091-7613(1999)027<0799:EOPLSF>2.3.CO;2, 1999.
Maurer, H.: Seismotectonics and upper crustal structure in the western Swiss Alps, Dissertation, ETH Zürich, https://doi.org/10.3929/ethz-a-000926318, 1993.
Maurer, H. and Deichmann, N.: Microearthquake cluster detection based on waveform similarities, with an application to the western Swiss Alps, Geophys. J. Int., 123, 588–600, https://doi.org/10.1111/j.1365-246X.1995.tb06873.x, 1995.
Maurer, H. R., Burkhard, M., Deichmann, N., and Green, A. G.: Active tectonism in the central Alps: contrasting stress regimes north and south of the Rhone Valley, Terra Nova, 9, 91–94, https://doi.org/10.1111/j.1365-3121.1997.tb00010.x, 1997.
Mogi, K.: Study of Elastic Shocks Caused by the Fracture of Heterogeneous Materials and its Relations to Earthquake Phenomena, Bulletin of the Earthquake Research Institute, 40, 125–173, 1962.
Mori, J. and Abercrombie, R. E.: Depth dependence of earthquake frequency-magnitude distributions in California: Implications for rupture initiation, J. Geophys. Res., 102, 15081–15090, https://doi.org/10.1029/97JB01356, 1997.
Musso Piantelli, F., Mair, D., Berger, A., Schlunegger, F., Wiederkehr, M., Kurmann, E., Baumberger, R., Möri, A., and Herwegh, M.: 4D reconstruction of the Doldenhorn nappe-basement system in the Aar massif: Insights into late-stage continent-continent collision in the Swiss Alps, Tectonophysics, 843, 229586, https://doi.org/10.1016/j.tecto.2022.229586, 2022.
Nicol, A., Walsh, J. J., Watterson, J., and Gillespie, P.: Fault size distributions – are they really power-law?, J. Struct. Geol., 18, 191–197, 1996.
Odling, N. E.: Scaling and connectivity of joint systems in sandstones from western Norway, J. Struct. Geol., 19, 1257–1271, https://doi.org/10.1016/S0191-8141(97)00041-2, 1997.
Odling, N. E., Gillespie, P., Bourgine, B., Castaing, C., Chiles, J.-P., Christensen, N. P., Fillion, E., Genter, A., Olsen, C., Thrane, L., Trice, R., Aarseth, E., Walsh, J. J., and Watterson, J.: Variations in fracture system geometry and their implications for fluid flow in fractured hydrocarbon reservoirs, Petrol. Geosci., 5, 373–384, 1999.
O'Leary, D. W., Friedman, J. D., and Pohn, H. A.: Lineament, linear, lineation: Some proposed new standards for old terms, Geol. Soc. Am. Bull., 87, 1463, https://doi.org/10.1130/0016-7606(1976)87<1463:LLLSPN>2.0.CO;2, 1976.
Ouillon, G., Castaing, C., and Sornette, D.: Hierarchical geometry of faulting, J. Geophys. Res., 101, 5477–5487, https://doi.org/10.1029/95JB02242, 1996.
Pavoni, N.: Comparison of focal mechanisms of earthquakes and faulting in the Helvetic zone of the Central Valais, Swiss Alps, Eclogae Geol. Helv., 73, 551–558, https://doi.org/10.5169/SEALS-164973, 1980a.
Pavoni, N.: Crustal Stresses Inferred from Fault-Plane Solutions of Earthquakes and Neotectonic Deformation in Switzerland, in: Tectonic Stresses in the Alpine-Mediterranean Region, vol. 9, edited by: Scheidegger, A. E., Springer Vienna, Vienna, 63–68, https://doi.org/10.1007/978-3-7091-8588-9_8, 1980b.
Pavoni, N. and Mayer-Rosa, D.: Seismotektonische Karte der Schweiz 1:750000, Eclogae Geol. Helv., 71, 293–295, https://doi.org/10.5169/SEALS-164732, 1978.
Pavoni, N., Maurer, H., Roth, P., and Deichmann, N.: Seismicity and seismotectonics of the Swiss Alps, Birkhaeuser, Basel, 1997.
Petruccelli, A., Schorlemmer, D., Tormann, T., Rinaldi, A. P., Wiemer, S., Gasperini, P., and Vannucci, G.: The influence of faulting style on the size-distribution of global earthquakes, Earth Planet. Sc. Lett., 527, 115791, https://doi.org/10.1016/j.epsl.2019.115791, 2019a.
Petruccelli, A., Gasperini, P., Tormann, T., Schorlemmer, D., Rinaldi, A. P., Vannucci, G., and Wiemer, S.: Simultaneous dependence of the earthquake-size distribution on faulting style and depth, Geophys. Res. Lett., 46, 11044–11053, https://doi.org/10.1029/2019GL083997, 2019b.
Pfiffner, O. A.: The structure of the Helvetic nappes and its relation to the mechanical stratigraphy, J. Struct. Geol., 15, 511–521, 1993.
Pfiffner, O. A., Sahli, S., and Stäuble, M.: Structure and evolution of the external basement massifs (Aar, Aiguilles-Rouges/Mt.Bland), Deep Structure of the Alps, results of NRP20, Birkhäuser, 1997.
Pickering, G., Bull, J. M., and Sanderson, D. J.: Sampling power-law distributions, Tectonophysics, 248, 1–20, 1995.
Piña-Valdés, J., Socquet, A., Beauval, C., Doin, M., D'Agostino, N., and Shen, Z.: 3D GNSS Velocity Field Sheds Light on the Deformation Mechanisms in Europe: Effects of the Vertical Crustal Motion on the Distribution of Seismicity, J. Geophys. Res.-Sol. Ea., 127, e2021JB023451, https://doi.org/10.1029/2021JB023451, 2022.
Ramsay, J. G.: Tectonics of the Helvetic Nappes, Thrust and Nappe Tectonics, Geological Society, London, Special Publications, https://doi.org/10.1144/gsl.sp.1981.009.01.26, 1981.
Ramsay, J. G.: Fold and fault geometry in the western Helvetic nappes of Switzerland and France and its implication for the evolution of the arc of the western Alps, Geological Society, London, Special Publications, 45, 33–45, https://doi.org/10.1144/GSL.SP.1989.045.01.02, 1989.
Schlische, R. W., Young, S. S., Ackermann, R. V., and Gupta, A.: Geometry and scaling relations of a population of very small rift-related normal faults, Geology, 24, 683, https://doi.org/10.1130/0091-7613(1996)024<0683:GASROA>2.3.CO;2, 1996.
Scholz, C. H.: The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes, B. Seismol. Soc. Am., 58, 399–415, 1968.
Scholz, C. H.: Size Distributions for Large and Small Earthquakes, B. Seismol. Soc. Am., 87, 1074–1077, 1997.
Scholz, C. H.: A further note on earthquake size distributions, B. Seismol. Soc. Am., 88, 1325–1326, 1998.
Scholz, C. H.: Fault Mechanics, in: Treatise on Geophysics, Elsevier B.V., https://doi.org/10.1016/B978-044452748-6.00111-5, 441–483, 2007.
Scholz, C. H.: On the stress dependence of the earthquake b value, Geophys. Res. Lett., 42, 1399–1402, https://doi.org/10.1002/2014GL062863, 2015.
Scholz, C. H.: The Mechanics of Earthquakes and Faulting, 3rd edn., Cambridge University Press, https://doi.org/10.1017/9781316681473, 2019.
Scholz, C. H., Dawers, N. H., Yu, J.-Z., Anders, M. H., and Cowie, P. A.: Fault growth and fault scaling laws: Preliminary results, J. Geophys. Res., 98, 21951–21961, https://doi.org/10.1029/93JB01008, 1993.
Schorlemmer, D., Wiemer, S., and Wyss, M.: Variations in earthquake-size distribution across different stress regimes, Nature, 437, 539–542, https://doi.org/10.1038/nature04094, 2005.
Spada, M., Tormann, T., Wiemer, S., and Enescu, B.: Generic dependence of the frequency-size distribution of earthquakes on depth and its relation to the strength profile of the crust: THE B -VALUES WITH DEPTH, Geophys. Res. Lett., 40, 709–714, https://doi.org/10.1029/2012GL054198, 2013.
Staudenmaier, N., Cauzzi, C., and Wiemer, S.: Magnitude Scaling Relationships in Parkfield and Switzerland and their relevance for PSHA, Report, Swiss Seismological Service (SED) at ETH Zurich, 2018.
Steck, A., Epard, J.-L., Escher, A., Lehner, P., Marchant, R., and Masson, H.: Geological interpretation of the seismic of the seismic profiles through Western Switzerland: Rawil (W1), Val d'Anniviers (W2), Mattertal (W3), Zmutt-Zermatt-Findelen (W4) and Val de Bagnes (W5), Deep Structure of the Alps, results of NRP20, Birkhäuser, 1997.
Sternai, P., Sue, C., Husson, L., Serpelloni, E., Becker, T. W., Willett, S. D., Faccenna, C., Di Giulio, A., Spada, G., Jolivet, L., Valla, P., Petit, C., Nocquet, J.-M., Walpersdorf, A., and Castelltort, S.: Present-day uplift of the European Alps: Evaluating mechanisms and models of their relative contributions, Earth-Sci. Rev., 190, 589–604, https://doi.org/10.1016/j.earscirev.2019.01.005, 2019.
Thingbaijam, K. K. S., Martin Mai, P., and Goda, K.: New Empirical Earthquake Source-Scaling Laws, B. Seismol. Soc. Am., 107, 2225–2246, https://doi.org/10.1785/0120170017, 2017.
Torabi, A. and Berg, S. S.: Scaling of fault attributes: A review, Mar. Petrol. Geol., 28, 1444–1460, https://doi.org/10.1016/j.marpetgeo.2011.04.003, 2011.
Tormann, T., Wiemer, S., and Mignan, A.: Systematic survey of high-resolution b value imaging along Californian faults: Inference on asperities, J. Geophys. Res.-Sol. Ea., 119, 2029–2054, https://doi.org/10.1002/2013JB010867, 2014.
Truttmann, S., Diehl, T., and Herwegh, M.: Hypocenter-Based 3D Imaging of Active Faults: Method and Applications in the Southwestern Swiss Alps, J. Geophys. Res.-Sol. Ea., 128, e2023JB026352, https://doi.org/10.1029/2023JB026352, 2023.
Truttmann, S., Diehl, T., Herwegh, M., and Wiemer, S.: The Size Distributions of Faults and Earthquakes: Implications for Orogen-Internal Seismogenic Deformation, Zenodo [data set], https://doi.org/10.5281/zenodo.13829055, 2024.
Turcotte, D. L.: Fractals in geology and geophysics, PAGEOPH, 131, 171–196, https://doi.org/10.1007/BF00874486, 1989.
Turcotte, D. L.: Fractals and Chaos in Geology and Geophysics, 2nd edn., Cambridge University Press, https://doi.org/10.1017/CBO9781139174695, 1997.
Ustaszewski, M. and Pfiffner, O. A.: Neotectonic faulting, uplift and seismicity in the central and western Swiss Alps, Geological Society, London, Special Publications, 298, 231–249, https://doi.org/10.1144/SP298.12, 2008.
Ustaszewski, M., Herwegh, M., McClymont, A. F., Pfiffner, O. A., Pickering, R., and Preusser, F.: Unravelling the evolution of an Alpine to post-glacially active fault in the Swiss Alps, J. Struct. Geol., 29, 1943–1959, https://doi.org/10.1016/j.jsg.2007.09.006, 2007.
Valla, P. G., van der Beek, P. A., Shuster, D. L., Braun, J., Herman, F., Tassan-Got, L., and Gautheron, C.: Late Neogene exhumation and relief development of the Aar and Aiguilles Rouges massifs (Swiss Alps) from low-temperature thermochronology modeling and 4He 3He thermochronometry, J. Geophys. Res.-Earth, 117, F01004, https://doi.org/10.1029/2011JF002043, 2012.
Vicsek, T.: Fractal growth phenomena, World Scientific, 1992.
Wehrens, P., Berger, A., Peters, M., Spillmann, T., and Herwegh, M.: Deformation at the frictional-viscous transition: Evidence for cycles of fluid-assisted embrittlement and ductile deformation in the granitoid crust, Tectonophysics, 693, 66–84, https://doi.org/10.1016/j.tecto.2016.10.022, 2016.
Wells, D. L. and Coppersmith, K. J.: New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement, B. Seismol. Soc. Am., 84, 974–1002, 1994.
Wiemer, S., Danciu, L., Edwards, B., Marti, M., Fäh, D., Hiemer, S., Woessner, J., Cauzzi, C., Kästli, P., and Kremer, K.: Seismic Hazard Model 2015 for Switzerland (SUIhaz2015), Report, Swiss Seismological Service (SED) at ETH Zurich, https://doi.org/10.12686/a2, 2016.
Yielding, G., Walsh, J. J., and Watterson, J.: The prediction of small scale faulting in reservoirs, First Break, 10, 449–460, 1992.
Yielding, G., Needham, T., and Jones, H.: Sampling of fault populations using sub-surface data: a review, J. Struct. Geol., 18, 135–146, https://doi.org/10.1016/S0191-8141(96)80039-3, 1996.
Zeeb, C., Gomez-Rivas, E., Bons, P. D., and Blum, P.: Evaluation of sampling methods for fracture network characterization using outcrops, Bulletin, 97, 1545–1566, https://doi.org/10.1306/02131312042, 2013.
Short summary
Our study investigates the statistical relationship between geological fractures and earthquakes in the southwestern Swiss Alps. We analyze how the fracture size and earthquake rupture are related and find differences in how fractures at different depths rupture seismically. While shallow fractures tend to rupture only partially, deeper fractures are more likely to rupture along their entire length, potentially resulting in larger earthquakes.
Our study investigates the statistical relationship between geological fractures and earthquakes...