Articles | Volume 7, issue 4
Solid Earth, 7, 1125–1139, 2016

Special issue: Pore-scale tomography & imaging - applications, techniques...

Solid Earth, 7, 1125–1139, 2016
Research article
19 Jul 2016
Research article | 19 Jul 2016

Phase segmentation of X-ray computer tomography rock images using machine learning techniques: an accuracy and performance study

Swarup Chauhan et al.

Related authors

Interdisciplinary fracture network characterization in the crystalline basement: a case study from the Southern Odenwald, SW Germany
Matthis Frey, Claire Bossennec, Lukas Seib, Kristian Bär, Eva Schill, and Ingo Sass
Solid Earth, 13, 935–955,,, 2022
Short summary
Preliminary safety assessments in the high-level radioactive waste site selection procedure in Germany
Eva-Maria Hoyer, Phillip Kreye, Thomas Lohser, and Wolfram Rühaak
Saf. Nucl. Waste Disposal, 1, 37–38,,, 2021
Short summary
Development of a database for the analysis of the disposal system in the representative preliminary safety analysis
Eva-Maria Hoyer, Paulina Müller, Phillip Kreye, Christoph Behrens, Marc Wengler, Tobias Wengorsch, and Wolfram Rühaak
Saf. Nucl. Waste Disposal, 1, 39–40,,, 2021
From process to system understanding with multi-disciplinary investigation methods: set-up and first results of the CD-A experiment (Mont Terri rock laboratory)
Gesa Ziefle, Tuanny Cajuhi, Sebastian Condamin, Stephan Costabel, Oliver Czaikowski, Antoine Fourriére, Larissa Friedenberg, Markus Furche, Nico Graebling, Bastian Graupner, Jürgen Hesser, David Jaeggi, Kyra Jantschik, Tilo Kneuker, Olaf Kolditz, Franz Königer, Herbert Kunz, Ben Laurich, Jobst Maßmann, Christian Ostertag-Henning, Dorothee Rebscher, Karsten Rink, Wolfram Rühaak, Senecio Schefer, Rainer Schuhmann, Marc Wengler, and Klaus Wieczorek
Saf. Nucl. Waste Disposal, 1, 79–81,,, 2021
Mineral, thermal and deep groundwater of Hesse, Germany
Rafael Schäffer, Kristian Bär, Sebastian Fischer, Johann-Gerhard Fritsche, and Ingo Sass
Earth Syst. Sci. Data, 13, 4847–4860,,, 2021
Short summary

Related subject area

Three-dimensional reflection seismic imaging of the iron oxide deposits in the Ludvika mining area, Sweden, using Fresnel volume migration
Felix Hloušek, Michal Malinowski, Lena Bräunig, Stefan Buske, Alireza Malehmir, Magdalena Markovic, Lukasz Sito, Paul Marsden, and Emma Bäckström
Solid Earth, 13, 917–934,,, 2022
Short summary
Drone-based magnetic and multispectral surveys to develop a 3D model for mineral exploration at Qullissat, Disko Island, Greenland
Robert Jackisch, Björn H. Heincke, Robert Zimmermann, Erik V. Sørensen, Markku Pirttijärvi, Moritz Kirsch, Heikki Salmirinne, Stefanie Lode, Urpo Kuronen, and Richard Gloaguen
Solid Earth, 13, 793–825,,, 2022
Short summary
Ambient seismic noise analysis of LARGE-N data for mineral exploration in the Central Erzgebirge, Germany
Trond Ryberg, Moritz Kirsch, Christian Haberland, Raimon Tolosana-Delgado, Andrea Viezzoli, and Richard Gloaguen
Solid Earth, 13, 519–533,,, 2022
Short summary
Surface-wave tomography for mineral exploration: a successful combination of passive and active data (Siilinjärvi phosphorus mine, Finland)
Chiara Colombero, Myrto Papadopoulou, Tuomas Kauti, Pietari Skyttä, Emilia Koivisto, Mikko Savolainen, and Laura Valentina Socco
Solid Earth, 13, 417–429,,, 2022
Short summary
Reflection tomography by depth warping: a case study across the Java trench
Yueyang Xia, Dirk Klaeschen, Heidrun Kopp, and Michael Schnabel
Solid Earth, 13, 367–392,,, 2022
Short summary

Cited articles

Amigó, E., Gonzalo, J., Artiles, J., and Verdejo, F.: A comparison of extrinsic clustering evaluation metrics based on formal constraints, Inform. Retrieval, 12, 461–486, 2009.
Aretz, A., Bär, K., Götz, A. E., and Sass, I.: Outcrop analogue study of Permocarboniferous geo-thermal sandstone reservoir formations (northern Upper Rhine Graben, Germany): impact of mineral content, depositional environment and diagenesis on petrophysical properties, Int. J. Earth Sci., 105, 1431–1452, 2016.
Bradley, A. P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recogn., 30, 1145–1159. 1997.
Breiman, L.: Bagging predictors, Mach. Lear., 24, 123–140, 1996.
Short summary
Machine learning techniques are a promising alternative for processing (phase segmentation) of 3-D X-ray computer tomographic rock images. Here the performance and accuracy of different machine learning techniques are tested. The aim is to classify pore space, rock grains and matrix of four distinct rock samples. The porosity obtained based on the segmented XCT images is cross-validated with laboratory measurements. Accuracies of the different methods are discussed and recommendations proposed.