Articles | Volume 11, issue 6
https://doi.org/10.5194/se-11-2119-2020
https://doi.org/10.5194/se-11-2119-2020
Research article
 | 
18 Nov 2020
Research article |  | 18 Nov 2020

The growth of faults and fracture networks in a mechanically evolving, mechanically stratified rock mass: a case study from Spireslack Surface Coal Mine, Scotland

Billy James Andrews, Zoe Kai Shipton, Richard Lord, and Lucy McKay

Related authors

How do we see fractures? Quantifying subjective bias in fracture data collection
Billy J. Andrews, Jennifer J. Roberts, Zoe K. Shipton, Sabina Bigi, M. Chiara Tartarello, and Gareth Johnson
Solid Earth, 10, 487–516, https://doi.org/10.5194/se-10-487-2019,https://doi.org/10.5194/se-10-487-2019, 2019
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Structural geology
A contribution to the quantification of crustal shortening and kinematics of deformation across the Western Andes ( ∼ 20–22° S)
Tania Habel, Martine Simoes, Robin Lacassin, Daniel Carrizo, and German Aguilar
Solid Earth, 14, 17–42, https://doi.org/10.5194/se-14-17-2023,https://doi.org/10.5194/se-14-17-2023, 2023
Short summary
Rift thermal inheritance in the SW Alps (France): insights from RSCM thermometry and 1D thermal numerical modelling
Naïm Célini, Frédéric Mouthereau, Abdeltif Lahfid, Claude Gout, and Jean-Paul Callot
Solid Earth, 14, 1–16, https://doi.org/10.5194/se-14-1-2023,https://doi.org/10.5194/se-14-1-2023, 2023
Short summary
The Luangwa Rift Active Fault Database and fault reactivation along the southwestern branch of the East African Rift
Luke N. J. Wedmore, Tess Turner, Juliet Biggs, Jack N. Williams, Henry M. Sichingabula, Christine Kabumbu, and Kawawa Banda
Solid Earth, 13, 1731–1753, https://doi.org/10.5194/se-13-1731-2022,https://doi.org/10.5194/se-13-1731-2022, 2022
Short summary
Clustering has a meaning: optimization of angular similarity to detect 3D geometric anomalies in geological terrains
Michał P. Michalak, Lesław Teper, Florian Wellmann, Jerzy Żaba, Krzysztof Gaidzik, Marcin Kostur, Yuriy P. Maystrenko, and Paulina Leonowicz
Solid Earth, 13, 1697–1720, https://doi.org/10.5194/se-13-1697-2022,https://doi.org/10.5194/se-13-1697-2022, 2022
Short summary
Time-dependent Frictional Properties of Granular Materials Used In Analogue Modelling: Implications for mimicking fault healing during reactivation and inversion
Michael Rudolf, Matthias Rosenau, and Onno Oncken
EGUsphere, https://doi.org/10.5194/egusphere-2022-1178,https://doi.org/10.5194/egusphere-2022-1178, 2022
Short summary

Cited articles

Anderson, E. M.: The dynamics of faulting and dyke formation with applications to Britain, Oliver and Boyd, Edinburgh, Pp. xii + 191, 1951. 
Andrews, B. J., Roberts, J. J., Shipton, Z. K., Bigi, S., Tartarello, M. C., and Johnson, G.: How do we see fractures? Quantifying subjective bias in fracture data collection, Solid Earth, 10, 487–516, https://doi.org/10.5194/se-10-487-2019, 2019. 
Andrews, B. J.: Supplementary information for “The growth of faults and fracture networks in a mechanically evolving, mechanically stratified rock mass: A case study from Spireslack Surface Coal Mine, Scotland”, https://doi.org/10.15129/4556163e-e417-4bd4-94d2-fc96ba9eb725, last access: 11 November 2020. 
Baghbanan, A. and Jing, L.: Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture, Int. J. Rock Mech. Min. Sci., 45, 1320–1334, https://doi.org/10.1016/j.ijrmms.2008.01.015, 2008. 
Baptie, B.: Seismogenesis and state of stress in the UK, Tectonophysics, 482, 150–159, https://doi.org/10.1016/j.tecto.2009.10.006, 2010. 
Download
Short summary
Through geological mapping we find that fault zone internal structure depends on whether or not the fault cuts multiple lithologies, the presence of shale layers, and the orientation of joints and coal cleats at the time of faulting. During faulting, cementation of fractures (i.e. vein formation) is highest where the fractures are most connected. This leads to the counter-intuitive result that the highest-fracture-density part of the network often has the lowest open-fracture connectivity.