Articles | Volume 12, issue 1
https://doi.org/10.5194/se-12-237-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-237-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extensional reactivation of the Penninic frontal thrust 3 Myr ago as evidenced by U–Pb dating on calcite in fault zone cataclasite
Antonin Bilau
CORRESPONDING AUTHOR
EDYTEM, Université Savoie Mont Blanc, CNRS, UMR 5204, 73370 Le Bourget-du-Lac, France
ISTerre, Université Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, 38000 Grenoble, France
Yann Rolland
CORRESPONDING AUTHOR
EDYTEM, Université Savoie Mont Blanc, CNRS, UMR 5204, 73370 Le Bourget-du-Lac, France
ISTerre, Université Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, 38000 Grenoble, France
Stéphane Schwartz
ISTerre, Université Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, 38000 Grenoble, France
Nicolas Godeau
Aix-Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, 13545 Aix-en-Provence, France
Abel Guihou
Aix-Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, 13545 Aix-en-Provence, France
Pierre Deschamps
Aix-Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, 13545 Aix-en-Provence, France
Benjamin Brigaud
GEOPS, CNRS, Université Paris-Saclay, 91405 Orsay, France
Aurélie Noret
GEOPS, CNRS, Université Paris-Saclay, 91405 Orsay, France
Thierry Dumont
ISTerre, Université Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, 38000 Grenoble, France
Cécile Gautheron
GEOPS, CNRS, Université Paris-Saclay, 91405 Orsay, France
Related authors
No articles found.
Yutian Ke, Damien Calmels, Julien Bouchez, Marc Massault, Benjamin Chetelat, Aurélie Noret, Hongming Cai, Jiubin Chen, Jérôme Gaillardet, and Cécile Quantin
Earth Surf. Dynam., 12, 347–365, https://doi.org/10.5194/esurf-12-347-2024, https://doi.org/10.5194/esurf-12-347-2024, 2024
Short summary
Short summary
Through a river cross-section, we show that fluvial organic carbon in the lower Huanghe has clear vertical and lateral heterogeneity in elemental and isotopic signals. Bank erosion supplies terrestrial organic carbon to the fluvial transport. Physical erosion of aged and refractory organic carbon, including radiocarbon-dead organic carbon source from the biosphere, from relatively deep soil horizons of the Chinese Loess Plateau contributes to fluvial particulate organic carbon in the Huanghe.
Karina P. P. Marques, Thierry Allard, Cécile Gautheron, Benoît Baptiste, Rosella Pinna-Jamme, Guillaume Morin, Ludovic Delbes, and Pablo Vidal-Torrado
Eur. J. Mineral., 35, 383–395, https://doi.org/10.5194/ejm-35-383-2023, https://doi.org/10.5194/ejm-35-383-2023, 2023
Short summary
Short summary
We proposed a new non-destructive mineralogical methodology on sub-millimeter grains that allows us to quantify the hematite and goethite content and hematite / goethite ratio of grains prior to (U–Th) / He geochronological analysis. (U–Th) / He data performed on different aliquots with different acquisition times show no remarkable differences in age, opening a new way to investigate the (U–Th) / He data evolution in supergene lateritic duricrusts.
Thibault Duteil, Raphaël Bourillot, Olivier Braissant, Adrien Henry, Michel Franceschi, Marie-Joelle Olivier, Nathalie Le Roy, Benjamin Brigaud, Eric Portier, and Pieter T. Visscher
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-62, https://doi.org/10.5194/bg-2023-62, 2023
Revised manuscript not accepted
Short summary
Short summary
Water chemistry was measured in an estuarine sediment core at a depth of 6 m. These measurements indirectly identify microbial metabolisms that disrupt water chemistry. In addition, microbial activity in sediments was measured for direct evidence of the presence of microorganisms. Impacts of these disturbances, studied by modelling show that new mineral phases can precipitate in depth.
Carole Petit, Tristan Salles, Vincent Godard, Yann Rolland, and Laurence Audin
Earth Surf. Dynam., 11, 183–201, https://doi.org/10.5194/esurf-11-183-2023, https://doi.org/10.5194/esurf-11-183-2023, 2023
Short summary
Short summary
We present new tools in the landscape evolution model Badlands to simulate 10Be production, erosion and transport. These tools are applied to a source-to-sink system in the SW French Alps, where the model is calibrated. We propose a model that fits river incision rates and 10Be concentrations in sediments, and we show that 10Be in deep marine sediments is a signal with multiple contributions that cannot be easily interpreted in terms of climate forcing.
Marianna Corre, Arnaud Agranier, Martine Lanson, Cécile Gautheron, Fabrice Brunet, and Stéphane Schwartz
Geochronology, 4, 665–681, https://doi.org/10.5194/gchron-4-665-2022, https://doi.org/10.5194/gchron-4-665-2022, 2022
Short summary
Short summary
This study is focused on the accurate measurement of U and Th by wet chemistry and laser ablation methods to improve (U–Th)/He dating of magnetite and spinel. The low U–Th content and the lack of specific U–Th standards significantly limit the accuracy of (U–Th)/He dating. Obtained U–Th results on natural and synthetic magnetite and aluminous spinel samples analyzed by wet chemistry methods and LA-ICP-MS sampling have important implications for the (U–Th)/He method and dates interpretation.
Pierre Seraphin, Julio Gonçalvès, Bruno Hamelin, Thomas Stieglitz, and Pierre Deschamps
Hydrol. Earth Syst. Sci., 26, 5757–5771, https://doi.org/10.5194/hess-26-5757-2022, https://doi.org/10.5194/hess-26-5757-2022, 2022
Short summary
Short summary
This study assesses the detailed water budget of the Saq–Ram Aquifer System using satellite gravity data. Spatial heterogeneities regarding the groundwater recharge were identified: (i) irrigation excess is great enough to artificially recharge the aquifer; and (ii) volcanic lava deposits, which cover 8% of the domain, contribute to more than 50% of the total natural recharge. This indicates a major control of geological context on arid aquifer recharge, which has been poorly discussed hitherto.
Karina Patricia Prazeres Marques, Thierry Allard, Cécile Gautheron, Benoît Baptiste, Rosella Pinna-Jamme, Guillaume Morin, Ludovic Delbes, and Pablo Vidal-Torrado
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-9, https://doi.org/10.5194/gchron-2022-9, 2022
Preprint withdrawn
Short summary
Short summary
We proposed a new non-destructive mineralogical methodology on inframilimetric grains that allows to quantify the hematite and goethite content and hematite/goethite ratio of grains prior to (U-Th)/He geochronological analysis. (U-Th)/He data performed on different aliquots with different acquisition time shows no remarkable differences in age, opening a new way to investigate the (U-Th)/He data evolution in supergene lateritic duricrusts.
Cécile Gautheron, Rosella Pinna-Jamme, Alexis Derycke, Floriane Ahadi, Caroline Sanchez, Frédéric Haurine, Gael Monvoisin, Damien Barbosa, Guillaume Delpech, Joseph Maltese, Philippe Sarda, and Laurent Tassan-Got
Geochronology, 3, 351–370, https://doi.org/10.5194/gchron-3-351-2021, https://doi.org/10.5194/gchron-3-351-2021, 2021
Short summary
Short summary
Apatite and zircon (U–Th) / He thermochronology is now a mainstream tool to reconstruct Earth's evolution through the history of cooling and exhumation over the first dozen kilometers. The geological implications of these data rely on the precision of measurements of He, U, Th, and Sm contents in crystals. This technical note documents the methods for He thermochronology developed at the GEOPS laboratory, Paris-Saclay University, that allow (U–Th) / He data to be obtained with precision.
Patrick Boyden, Jennifer Weil-Accardo, Pierre Deschamps, Davide Oppo, and Alessio Rovere
Earth Syst. Sci. Data, 13, 1633–1651, https://doi.org/10.5194/essd-13-1633-2021, https://doi.org/10.5194/essd-13-1633-2021, 2021
Short summary
Short summary
Sea levels during the last interglacial (130 to 73 ka) are seen as possible process analogs for future sea-level-rise scenarios as our world warms. To this end we catalog previously published ancient shoreline elevations and chronologies in a standardized data format for East Africa and the Western Indian Ocean region. These entries were then contributed to the greater World Atlas of Last Interglacial Shorelines database.
Louise Lenoir, Thomas Blaise, Andréa Somogyi, Benjamin Brigaud, Jocelyn Barbarand, Claire Boukari, Julius Nouet, Aurore Brézard-Oudot, and Maurice Pagel
Geochronology, 3, 199–227, https://doi.org/10.5194/gchron-3-199-2021, https://doi.org/10.5194/gchron-3-199-2021, 2021
Short summary
Short summary
To explore the U–Pb geochronometer in fluorite, the spatial distribution of uranium and other substituted elements in natural crystals is investigated using induced fission-track and synchrotron radiation X-ray fluorescence mapping. LA-ICP-MS U–Pb dating on four crystals, which preserve micrometer-scale variations in U concentrations, yields identical ages within analytical uncertainty. Our results show that fluorite U–Pb geochronology has potential for dating distinct crystal growth stages.
Clément Flaux, Matthieu Giaime, Valérie Pichot, Nick Marriner, Mena el-Assal, Abel Guihou, Pierre Deschamps, Christelle Claude, and Christophe Morhange
E&G Quaternary Sci. J., 70, 93–104, https://doi.org/10.5194/egqsj-70-93-2021, https://doi.org/10.5194/egqsj-70-93-2021, 2021
Short summary
Short summary
Lake Mareotis (NW Nile delta, Egypt) was a gateway between the Nile valley and the Mediterranean during Greco-Roman times. The hydrological evolution of Lake Mareotis was reconstructed using lake sediments and archaeological archives. The data show both a rise in Nile inputs to the basin during the first millennia BC and AD and a lake-level rise of ca. 1.5 m during the Roman period. A high-energy deposit such as a tsunami also possibly affected Alexandria's lacustrine hinterland.
Chloé Poulin, Bruno Hamelin, Christine Vallet-Coulomb, Guinbe Amngar, Bichara Loukman, Jean-François Cretaux, Jean-Claude Doumnang, Abdallah Mahamat Nour, Guillemette Menot, Florence Sylvestre, and Pierre Deschamps
Hydrol. Earth Syst. Sci., 23, 1705–1724, https://doi.org/10.5194/hess-23-1705-2019, https://doi.org/10.5194/hess-23-1705-2019, 2019
Short summary
Short summary
This study investigates the water budget of two intertropical lake systems in the absence of long-term hydrological monitoring. By coupling dry season isotopic data with satellite imagery, we were able to provide quantitative constrains on the hydrological balance and show that these two lake systems can be considered miniature analogs of Lake Chad, making them important targets in the future setup of any large-scale program on the hydro-climatic evolution in the Sahel region.
Camille Bouchez, Julio Goncalves, Pierre Deschamps, Christine Vallet-Coulomb, Bruno Hamelin, Jean-Claude Doumnang, and Florence Sylvestre
Hydrol. Earth Syst. Sci., 20, 1599–1619, https://doi.org/10.5194/hess-20-1599-2016, https://doi.org/10.5194/hess-20-1599-2016, 2016
Short summary
Short summary
Flows out of Lake Chad are constrained by a modeling of the hydrological, chemical, and isotopic budgets, based on a review of existing data along with new data. This innovative approach allows one to determine the proportions of evaporation, transpiration, and infiltration out of the lake while the two last flows are often neglected in semi-arid environments. Moreover, it allows to investigate the lake hydrological and chemical regulations under the large climatic changes in Sahel since 1950.
A. Margirier, L. Audin, J. Carcaillet, S. Schwartz, and C. Benavente
Earth Surf. Dynam., 3, 281–289, https://doi.org/10.5194/esurf-3-281-2015, https://doi.org/10.5194/esurf-3-281-2015, 2015
Short summary
Short summary
This study deals with the control of crustal tectonic activity and Altiplano climatic fluctuations in the evolution of the arid western Andes. Based on geomorphic analysis coupled with terrestrial cosmogenic nuclide investigation, we point out the role of active faulting and wet events in the development of the Chuquibamba landslide (southern Peru). Our main outcome is that the last major debris flow coincides in time with the Ouki wet climatic event identified on the Altiplano.
P. G. C. Amaral, A. Vincens, J. Guiot, G. Buchet, P. Deschamps, J.-C. Doumnang, and F. Sylvestre
Clim. Past, 9, 223–241, https://doi.org/10.5194/cp-9-223-2013, https://doi.org/10.5194/cp-9-223-2013, 2013
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Structural geology
Driven magmatism and crustal thinning of coastal southern China in response to subduction
Selection and characterization of the target fault for fluid-induced activation and earthquake rupture experiments
Naturally fractured reservoir characterisation in heterogeneous sandstones: insight for uranium in situ recovery (Imouraren, Niger)
Influence of water on crystallographic preferred orientation patterns in a naturally-deformed quartzite
Multiscalar 3D temporal structural characterisation of Smøla island, mid-Norwegian passive margin: an analogue for unravelling the tectonic history of offshore basement highs
Localized shear versus distributed strain accumulation as shear-accommodation mechanisms in ductile shear zones: Constraining their dictating factors
Impact of faults on the remote stress state
Subduction plate interface shear stress associated with rapid subduction at deep slow earthquake depths: example from the Sanbagawa belt, southwestern Japan
Multiple phase rifting and subsequent inversion in the West Netherlands Basin: implications for geothermal reservoir characterization
Analogue modelling of basin inversion: implications for the Araripe Basin (Brazil)
Geomorphic expressions of active rifting reflect the role of structural inheritance: A new model for the evolution of the Shanxi Rift, North China
Natural fracture patterns at Swift Reservoir anticline, NW Montana: the influence of structural position and lithology from multiple observation scales
Rapid hydration and weakening of anhydrite under stress: implications for natural hydration in the Earth's crust and mantle
Analogue experiments on releasing and restraining bends and their application to the study of the Barents Shear Margin
Structural framework and timing of the Pahtohavare Cu ± Au deposits, Kiruna mining district, Sweden
Does the syn- versus post-rift thickness ratio have an impact on the inversion-related structural style?
Inversion of accommodation zones in salt-bearing extensional systems: insights from analog modeling
Structural control of inherited salt structures during inversion of a domino basement-fault system from an analogue modelling approach
Kinematics and time-resolved evolution of the main thrust-sense shear zone in the Eo-Alpine orogenic wedge (the Vinschgau Shear Zone, eastern Alps)
Role of inheritance during tectonic inversion of a rift system in basement-involved to salt-decoupled transition: analogue modelling and application to the Pyrenean–Biscay system
Water release and homogenization by dynamic recrystallization of quartz
Hydrothermal activity of the Lake Abhe geothermal field (Djibouti): Structural controls and paths for further exploration
Time-dependent frictional properties of granular materials used in analogue modelling: implications for mimicking fault healing during reactivation and inversion
Large grain-size-dependent rheology contrasts of halite at low differential stress: evidence from microstructural study of naturally deformed gneissic Zechstein 2 rock salt (Kristallbrockensalz) from the northern Netherlands
Analogue modelling of the inversion of multiple extensional basins in foreland fold-and-thrust belts
A contribution to the quantification of crustal shortening and kinematics of deformation across the Western Andes ( ∼ 20–22° S)
Rift thermal inheritance in the SW Alps (France): insights from RSCM thermometry and 1D thermal numerical modelling
The Luangwa Rift Active Fault Database and fault reactivation along the southwestern branch of the East African Rift
Clustering has a meaning: optimization of angular similarity to detect 3D geometric anomalies in geological terrains
Shear zone evolution and the path of earthquake rupture
Mechanical compaction mechanisms in the input sediments of the Sumatra subduction complex – insights from microstructural analysis of cores from IODP Expedition 362
Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods
Multiscale lineament analysis and permeability heterogeneity of fractured crystalline basement blocks
Structural characterization and K–Ar illite dating of reactivated, complex and heterogeneous fault zones: lessons from the Zuccale Fault, Northern Apennines
How do differences in interpreting seismic images affect estimates of geological slip rates?
Progressive veining during peridotite carbonation: insights from listvenites in Hole BT1B, Samail ophiolite (Oman)
Tectonic evolution of the Indio Hills segment of the San Andreas fault in southern California, southwestern USA
Structural diagenesis in ultra-deep tight sandstones in the Kuqa Depression, Tarim Basin, China
Variscan structures and their control on latest to post-Variscan basin architecture: insights from the westernmost Bohemian Massif and southeastern Germany
Multi-disciplinary characterizations of the BedrettoLab – a new underground geoscience research facility
Biotite supports long-range diffusive transport in dissolution–precipitation creep in halite through small porosity fluctuations
De-risking the energy transition by quantifying the uncertainties in fault stability
Virtual field trip to the Esla Nappe (Cantabrian Zone, NW Spain): delivering traditional geological mapping skills remotely using real data
Marine forearc structure of eastern Java and its role in the 1994 Java tsunami earthquake
Roughness of fracture surfaces in numerical models and laboratory experiments
Impact of basement thrust faults on low-angle normal faults and rift basin evolution: a case study in the Enping sag, Pearl River Basin
Evidence for and significance of the Late Cretaceous Asteroussia event in the Gondwanan Ios basement terranes
Investigating spatial heterogeneity within fracture networks using hierarchical clustering and graph distance metrics
Dating folding beyond folding, from layer-parallel shortening to fold tightening, using mesostructures: lessons from the Apennines, Pyrenees, and Rocky Mountains
Deformation-enhanced diagenesis and bacterial proliferation in the Nankai accretionary prism
Jinbao Su, Wenbin Zhu, and Guangwei Li
Solid Earth, 15, 1133–1141, https://doi.org/10.5194/se-15-1133-2024, https://doi.org/10.5194/se-15-1133-2024, 2024
Short summary
Short summary
The late Mesozoic igneous rocks in the South China Block exhibit flare-ups and lulls, which form in compressional or extensional backgrounds. The ascending of magma forms a mush-like head and decreases crustal thickness. The presence of faults and pre-existing magmas will accelerate emplacement of underplating magma. The magmatism at different times may be formed under similar subduction conditions, and the boundary compression forces will delay magma ascent.
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024, https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary
Short summary
We detail the selection and characterization of a fault zone for earthquake experiments in the Fault Activation and Earthquake Ruptures (FEAR) project at the Bedretto Lab. FEAR, which studies earthquake processes, overcame data collection challenges near faults. The fault zone in Rotondo granite was selected based on geometry, monitorability, and hydro-mechanical properties. Remote sensing, borehole logging, and geological mapping were used to create a 3D model for precise monitoring.
Maxime Jamet, Gregory Ballas, Roger Soliva, Olivier Gerbeaud, Thierry Lefebvre, Christine Leredde, and Didier Loggia
Solid Earth, 15, 895–920, https://doi.org/10.5194/se-15-895-2024, https://doi.org/10.5194/se-15-895-2024, 2024
Short summary
Short summary
This study characterizes the Tchirezrine II sandstone reservoir in northern Niger. Crucial for potential uranium in situ recovery (ISR), our multifaceted approach reveals (i) a network of homogeneously distributed orthogonal structures, (ii) the impact of clustered E–W fault structures on anisotropic fluid flow, and (iii) local changes in the matrix behaviour of the reservoir as a function of the density and nature of the deformation structure.
Jeffrey M. Rahl, Brendan Moehringer, Kenneth S. Befus, and John S. Singleton
EGUsphere, https://doi.org/10.5194/egusphere-2024-1567, https://doi.org/10.5194/egusphere-2024-1567, 2024
Short summary
Short summary
At the high temperatures present in the deeper crust, minerals such as quartz can flow much like silly putty. The detailed mechanisms of how atoms are reorganized depends upon several factors, such as the temperature and the rate of which the mineral changes shape. We present observations from a naturally-deformed rock showing that the amount of water present also influences the type of deformation in quartz, with implications for geological interpretations.
Matthew S. Hodge, Guri Venvik, Jochen Knies, Roelant van der Lelij, Jasmin Schönenberger, Øystein Nordgulen, Marco Brönner, Aziz Nasuti, and Giulio Viola
Solid Earth, 15, 589–615, https://doi.org/10.5194/se-15-589-2024, https://doi.org/10.5194/se-15-589-2024, 2024
Short summary
Short summary
Smøla island, in the mid-Norwegian margin, has complex fracture and fault patterns resulting from tectonic activity. This study uses a multiple-method approach to unravel Smøla's tectonic history. We found five different phases of deformation related to various fracture geometries and minerals dating back hundreds of millions of years. 3D models of these features visualise these structures in space. This approach may help us to understand offshore oil and gas reservoirs hosted in the basement.
Pramit Chatterjee, Arnab Roy, and Nibir Mandal
EGUsphere, https://doi.org/10.5194/egusphere-2024-1077, https://doi.org/10.5194/egusphere-2024-1077, 2024
Short summary
Short summary
Understanding the strain accumulation processes in ductile shear zones is essential to explain the failure mechanisms at great crustal depths. This study explores the rheological and kinematic factors determining the varying modes of shear accommodation in natural shear zones. Numerical simulations suggest that an interplay of the following parameters: initial bulk viscosity, bulk shear rate, and internal cohesion governs the dominance of one accommodation mechanism over the other.
Karsten Reiter, Oliver Heidbach, and Moritz O. Ziegler
Solid Earth, 15, 305–327, https://doi.org/10.5194/se-15-305-2024, https://doi.org/10.5194/se-15-305-2024, 2024
Short summary
Short summary
It is generally assumed that faults have an influence on the stress state of the Earth’s crust. It is questionable whether this influence is still present far away from a fault. Simple numerical models were used to investigate the extent of the influence of faults on the stress state. Several models with different fault representations were investigated. The stress fluctuations further away from the fault (> 1 km) are very small.
Yukinojo Koyama, Simon R. Wallis, and Takayoshi Nagaya
Solid Earth, 15, 143–166, https://doi.org/10.5194/se-15-143-2024, https://doi.org/10.5194/se-15-143-2024, 2024
Short summary
Short summary
Stress along a subduction plate boundary is important for understanding subduction phenomena such as earthquakes. We estimated paleo-stress using quartz recrystallized grain size combined with deformation temperature and P–T paths of exhumed rocks. The obtained results show differential stresses of 30.8–82.7 MPa consistent over depths of 17–27 km in the paleo-subduction boundary. The obtained stress may represent the initial conditions under which slow earthquakes nucleated in the same domain.
Annelotte Weert, Kei Ogata, Francesco Vinci, Coen Leo, Giovanni Bertotti, Jerome Amory, and Stefano Tavani
Solid Earth, 15, 121–141, https://doi.org/10.5194/se-15-121-2024, https://doi.org/10.5194/se-15-121-2024, 2024
Short summary
Short summary
On the road to a sustainable planet, geothermal energy is considered one of the main substitutes when it comes to heating. The geological history of an area can have a major influence on the application of these geothermal systems, as demonstrated in the West Netherlands Basin. Here, multiple episodes of rifting and subsequent basin inversion have controlled the distribution of the reservoir rocks, thus influencing the locations where geothermal energy can be exploited.
Pâmela C. Richetti, Frank Zwaan, Guido Schreurs, Renata S. Schmitt, and Timothy C. Schmid
Solid Earth, 14, 1245–1266, https://doi.org/10.5194/se-14-1245-2023, https://doi.org/10.5194/se-14-1245-2023, 2023
Short summary
Short summary
The Araripe Basin in NE Brazil was originally formed during Cretaceous times, as South America and Africa broke up. The basin is an important analogue to offshore South Atlantic break-up basins; its sediments were uplifted and are now found at 1000 m height, allowing for studies thereof, but the cause of the uplift remains debated. Here we ran a series of tectonic laboratory experiments that show how a specific plate tectonic configuration can explain the evolution of the Araripe Basin.
Malte Froemchen, Ken J. W. McCaffrey, Mark B. Allen, Jeroen van Hunen, Thomas B. Phillips, and Yueren Xu
EGUsphere, https://doi.org/10.5194/egusphere-2023-2563, https://doi.org/10.5194/egusphere-2023-2563, 2023
Short summary
Short summary
The Shanxi Rift is a young active rift in North China that formed superimposed on a Proterozoic orogen. The impact of these structures on the active rift faults is poorly constrained. Here we quantify the landscape response to active faulting and compare these to published maps of inherited structures. We find that inherited structures played an important role in the segmentation of the Shanxi Rift and in the development of Rift Interaction Zones, the most active regions of the Shanxi Rift.
Adam J. Cawood, Hannah Watkins, Clare E. Bond, Marian J. Warren, and Mark A. Cooper
Solid Earth, 14, 1005–1030, https://doi.org/10.5194/se-14-1005-2023, https://doi.org/10.5194/se-14-1005-2023, 2023
Short summary
Short summary
Here we test conceptual models of fracture development by investigating fractures across multiple scales. We find that most fractures increase in abundance towards the fold hinge, and we interpret these as being fold related. Other fractures at the site show inconsistent orientations and are unrelated to fold formation. Our results show that predicting fracture patterns requires the consideration of multiple geologic variables.
Johanna Heeb, David Healy, Nicholas E. Timms, and Enrique Gomez-Rivas
Solid Earth, 14, 985–1003, https://doi.org/10.5194/se-14-985-2023, https://doi.org/10.5194/se-14-985-2023, 2023
Short summary
Short summary
Hydration of rocks is a key process in the Earth’s crust and mantle that is accompanied by changes in physical traits and mechanical behaviour of rocks. This study assesses the influence of stress on hydration reaction kinetics and mechanics in experiments on anhydrite. We show that hydration occurs readily under stress and results in localized hydration along fractures and mechanic weakening. New gypsum growth is selective and depends on the stress field and host anhydrite crystal orientation.
Roy Helge Gabrielsen, Panagiotis Athanasios Giannenas, Dimitrios Sokoutis, Ernst Willingshofer, Muhammad Hassaan, and Jan Inge Faleide
Solid Earth, 14, 961–983, https://doi.org/10.5194/se-14-961-2023, https://doi.org/10.5194/se-14-961-2023, 2023
Short summary
Short summary
The Barents Shear Margin defines the border between the relatively shallow Barents Sea that is situated on a continental plate and the deep ocean. This margin's evolution history was probably influenced by plate tectonic reorganizations. From scaled experiments, we deduced several types of structures (faults, folds, and sedimentary basins) that help us to improve the understanding of the history of the opening of the North Atlantic.
Leslie Logan, Ervin Veress, Joel B. H. Andersson, Olof Martinsson, and Tobias E. Bauer
Solid Earth, 14, 763–784, https://doi.org/10.5194/se-14-763-2023, https://doi.org/10.5194/se-14-763-2023, 2023
Short summary
Short summary
The Pahtohavare Cu ± Au deposits in the Kiruna mining district have a dubious timing of formation and have not been contextualized within an up-to-date tectonic framework. Structural mapping was carried out to reveal that the deposits are hosted in brittle structures that cut a noncylindrical, SE-plunging anticline constrained to have formed during the late-Svecokarelian orogeny. These results show that Cu ± Au mineralization formed more than ca. 80 Myr after iron oxide–apatite mineralization.
Alexandra Tamas, Dan M. Tamas, Gabor Tari, Csaba Krezsek, Alexandru Lapadat, and Zsolt Schleder
Solid Earth, 14, 741–761, https://doi.org/10.5194/se-14-741-2023, https://doi.org/10.5194/se-14-741-2023, 2023
Short summary
Short summary
Tectonic processes are complex and often difficult to understand due to the limitations of surface or subsurface data. One such process is inversion tectonics, which means that an area initially developed in an extension (such as the opening of an ocean) is reversed to compression (the process leading to mountain building). In this research, we use a laboratory method (analogue modelling), and with the help of a sandbox, we try to better understand structures (folds/faults) related to inversion.
Elizabeth Parker Wilson, Pablo Granado, Pablo Santolaria, Oriol Ferrer, and Josep Anton Muñoz
Solid Earth, 14, 709–739, https://doi.org/10.5194/se-14-709-2023, https://doi.org/10.5194/se-14-709-2023, 2023
Short summary
Short summary
This work focuses on the control of accommodation zones on extensional and subsequent inversion in salt-detached domains using sandbox analogue models. During extension, the transfer zone acts as a pathway for the movement of salt, changing the expected geometries. When inverted, the salt layer and syn-inversion sedimentation control the deformation style in the salt-detached cover system. Three natural cases are compared to the model results and show similar inversion geometries.
Oriol Ferrer, Eloi Carola, and Ken McClay
Solid Earth, 14, 571–589, https://doi.org/10.5194/se-14-571-2023, https://doi.org/10.5194/se-14-571-2023, 2023
Short summary
Short summary
Using an experimental approach based on scaled sandbox models, this work aims to understand how salt above different rotational fault blocks influences the cover geometry and evolution, first during extension and then during inversion. The results show that inherited salt structures constrain contractional deformation. We show for the first time how welds and fault welds are reopened during contractional deformation, having direct implications for the subsurface exploration of natural resources.
Chiara Montemagni, Stefano Zanchetta, Martina Rocca, Igor M. Villa, Corrado Morelli, Volkmar Mair, and Andrea Zanchi
Solid Earth, 14, 551–570, https://doi.org/10.5194/se-14-551-2023, https://doi.org/10.5194/se-14-551-2023, 2023
Short summary
Short summary
The Vinschgau Shear Zone (VSZ) is one of the largest and most significant shear zones developed within the Late Cretaceous thrust stack in the Austroalpine domain of the eastern Alps. 40Ar / 39Ar geochronology constrains the activity of the VSZ between 97 and 80 Ma. The decreasing vorticity towards the core of the shear zone, coupled with the younging of mylonites, points to a shear thinning behavior. The deepest units of the Eo-Alpine orogenic wedge were exhumed along the VSZ.
Jordi Miró, Oriol Ferrer, Josep Anton Muñoz, and Gianreto Manastchal
Solid Earth, 14, 425–445, https://doi.org/10.5194/se-14-425-2023, https://doi.org/10.5194/se-14-425-2023, 2023
Short summary
Short summary
Using the Asturian–Basque–Cantabrian system and analogue (sandbox) models, this work focuses on the linkage between basement-controlled and salt-decoupled domains and how deformation is accommodated between the two during extension and subsequent inversion. Analogue models show significant structural variability in the transitional domain, with oblique structures that can be strongly modified by syn-contractional sedimentation. Experimental results are consistent with the case study.
Junichi Fukuda, Takamoto Okudaira, and Yukiko Ohtomo
Solid Earth, 14, 409–424, https://doi.org/10.5194/se-14-409-2023, https://doi.org/10.5194/se-14-409-2023, 2023
Short summary
Short summary
We measured water distributions in deformed quartz by infrared spectroscopy mapping and used the results to discuss changes in water distribution resulting from textural development. Because of the grain size reduction process (dynamic recrystallization), water contents decrease from 40–1750 wt ppm in host grains of ~2 mm to 100–510 wt ppm in recrystallized regions composed of fine grains of ~10 µm. Our results indicate that water is released and homogenized by dynamic recrystallization.
Bastien Walter, Yves Géraud, Alexiane Favier, Nadjib Chibati, and Marc Diraison
EGUsphere, https://doi.org/10.5194/egusphere-2023-397, https://doi.org/10.5194/egusphere-2023-397, 2023
Preprint archived
Short summary
Short summary
Lake Abhe in southwestern Djibouti is known for its exposures of massive hydrothermal chimneys and hot springs on the lake’s eastern shore. This study highlights the control of the main structural faults of the area on the development of these hydrothermal features. This work contributes to better understand hydrothermal fluid pathways in this area and may help further exploration for the geothermal development of this remarkable site.
Michael Rudolf, Matthias Rosenau, and Onno Oncken
Solid Earth, 14, 311–331, https://doi.org/10.5194/se-14-311-2023, https://doi.org/10.5194/se-14-311-2023, 2023
Short summary
Short summary
Analogue models of tectonic processes rely on the reproduction of their geometry, kinematics and dynamics. An important property is fault behaviour, which is linked to the frictional characteristics of the fault gouge. This is represented by granular materials, such as quartz sand. In our study we investigate the time-dependent frictional properties of various analogue materials and highlight their impact on the suitability of these materials for analogue models focusing on fault reactivation.
Jessica Barabasch, Joyce Schmatz, Jop Klaver, Alexander Schwedt, and Janos L. Urai
Solid Earth, 14, 271–291, https://doi.org/10.5194/se-14-271-2023, https://doi.org/10.5194/se-14-271-2023, 2023
Short summary
Short summary
We analysed Zechstein salt with microscopes and observed specific microstructures that indicate much faster deformation in rock salt with fine halite grains when compared to salt with larger grains. This is important because people build large cavities in the subsurface salt for energy storage or want to deposit radioactive waste inside it. When engineers and scientists use grain-size data and equations that include this mechanism, it will help to make better predictions in geological models.
Nicolás Molnar and Susanne Buiter
Solid Earth, 14, 213–235, https://doi.org/10.5194/se-14-213-2023, https://doi.org/10.5194/se-14-213-2023, 2023
Short summary
Short summary
Progression of orogenic wedges over pre-existing extensional structures is common in nature, but deciphering the spatio-temporal evolution of deformation from the geological record remains challenging. Our laboratory experiments provide insights on how horizontal stresses are transferred across a heterogeneous crust, constrain which pre-shortening conditions can either favour or hinder the reactivatation of extensional structures, and explain what implications they have on critical taper theory.
Tania Habel, Martine Simoes, Robin Lacassin, Daniel Carrizo, and German Aguilar
Solid Earth, 14, 17–42, https://doi.org/10.5194/se-14-17-2023, https://doi.org/10.5194/se-14-17-2023, 2023
Short summary
Short summary
The Central Andes are one of the most emblematic reliefs on Earth, but their western flank remains understudied. Here we explore two rare key sites in the hostile conditions of the Atacama desert to build cross-sections, quantify crustal shortening, and discuss the timing of this deformation at ∼20–22°S. We propose that the structures of the Western Andes accommodated significant crustal shortening here, but only during the earliest stages of mountain building.
Naïm Célini, Frédéric Mouthereau, Abdeltif Lahfid, Claude Gout, and Jean-Paul Callot
Solid Earth, 14, 1–16, https://doi.org/10.5194/se-14-1-2023, https://doi.org/10.5194/se-14-1-2023, 2023
Short summary
Short summary
We investigate the peak temperature of sedimentary rocks of the SW Alps (France), using Raman spectroscopy on carbonaceous material. This method provides an estimate of the peak temperature achieved by organic-rich rocks. To determine the timing and the tectonic context of the origin of these temperatures we use 1D thermal modelling. We find that the high temperatures up to 300 °C were achieved during precollisional extensional events, not during tectonic burial in the Western Alps.
Luke N. J. Wedmore, Tess Turner, Juliet Biggs, Jack N. Williams, Henry M. Sichingabula, Christine Kabumbu, and Kawawa Banda
Solid Earth, 13, 1731–1753, https://doi.org/10.5194/se-13-1731-2022, https://doi.org/10.5194/se-13-1731-2022, 2022
Short summary
Short summary
Mapping and compiling the attributes of faults capable of hosting earthquakes are important for the next generation of seismic hazard assessment. We document 18 active faults in the Luangwa Rift, Zambia, in an active fault database. These faults are between 9 and 207 km long offset Quaternary sediments, have scarps up to ~30 m high, and are capable of hosting earthquakes from Mw 5.8 to 8.1. We associate the Molaza Fault with surface ruptures from two unattributed M 6+ 20th century earthquakes.
Michał P. Michalak, Lesław Teper, Florian Wellmann, Jerzy Żaba, Krzysztof Gaidzik, Marcin Kostur, Yuriy P. Maystrenko, and Paulina Leonowicz
Solid Earth, 13, 1697–1720, https://doi.org/10.5194/se-13-1697-2022, https://doi.org/10.5194/se-13-1697-2022, 2022
Short summary
Short summary
When characterizing geological/geophysical surfaces, various geometric attributes are calculated, such as dip angle (1D) or dip direction (2D). However, the boundaries between specific values may be subjective and without optimization significance, resulting from using default color palletes. This study proposes minimizing cosine distance among within-cluster observations to detect 3D anomalies. Our results suggest that the method holds promise for identification of megacylinders or megacones.
Erik M. Young, Christie D. Rowe, and James D. Kirkpatrick
Solid Earth, 13, 1607–1629, https://doi.org/10.5194/se-13-1607-2022, https://doi.org/10.5194/se-13-1607-2022, 2022
Short summary
Short summary
Studying how earthquakes spread deep within the faults they originate from is crucial to improving our understanding of the earthquake process. We mapped preserved ancient earthquake surfaces that are now exposed in South Africa and studied their relationship with the shape and type of rocks surrounding them. We determined that these surfaces are not random and are instead associated with specific kinds of rocks and that their shape is linked to the evolution of the faults in which they occur.
Sivaji Lahiri, Kitty L. Milliken, Peter Vrolijk, Guillaume Desbois, and Janos L. Urai
Solid Earth, 13, 1513–1539, https://doi.org/10.5194/se-13-1513-2022, https://doi.org/10.5194/se-13-1513-2022, 2022
Short summary
Short summary
Understanding the mechanism of mechanical compaction is important. Previous studies on mechanical compaction were mostly done by performing experiments. Studies on natural rocks are rare due to compositional heterogeneity of the sedimentary succession with depth. Due to remarkable similarity in composition and grain size, the Sumatra subduction complex provides a unique opportunity to study the micromechanism of mechanical compaction on natural samples.
Dongwon Lee, Nikolaos Karadimitriou, Matthias Ruf, and Holger Steeb
Solid Earth, 13, 1475–1494, https://doi.org/10.5194/se-13-1475-2022, https://doi.org/10.5194/se-13-1475-2022, 2022
Short summary
Short summary
This research article focuses on filtering and segmentation methods employed in high-resolution µXRCT studies for crystalline rocks, bearing fractures, or fracture networks, of very small aperture. Specifically, we focus on the identification of artificially induced (via quenching) fractures in Carrara marble samples. Results from the same dataset from all five different methods adopted were produced and compared with each other in terms of their output quality and time efficiency.
Alberto Ceccato, Giulia Tartaglia, Marco Antonellini, and Giulio Viola
Solid Earth, 13, 1431–1453, https://doi.org/10.5194/se-13-1431-2022, https://doi.org/10.5194/se-13-1431-2022, 2022
Short summary
Short summary
The Earth's surface is commonly characterized by the occurrence of fractures, which can be mapped, and their can be geometry quantified on digital representations of the surface at different scales of observation. Here we present a series of analytical and statistical tools, which can aid the quantification of fracture spatial distribution at different scales. In doing so, we can improve our understanding of how fracture geometry and geology affect fluid flow within the fractured Earth crust.
Giulio Viola, Giovanni Musumeci, Francesco Mazzarini, Lorenzo Tavazzani, Manuel Curzi, Espen Torgersen, Roelant van der Lelij, and Luca Aldega
Solid Earth, 13, 1327–1351, https://doi.org/10.5194/se-13-1327-2022, https://doi.org/10.5194/se-13-1327-2022, 2022
Short summary
Short summary
A structural-geochronological approach helps to unravel the Zuccale Fault's architecture. By mapping its internal structure and dating some of its fault rocks, we constrained a deformation history lasting 20 Myr starting at ca. 22 Ma. Such long activity is recorded by now tightly juxtaposed brittle structural facies, i.e. different types of fault rocks. Our results also have implications on the regional evolution of the northern Apennines, of which the Zuccale Fault is an important structure.
Wan-Lin Hu
Solid Earth, 13, 1281–1290, https://doi.org/10.5194/se-13-1281-2022, https://doi.org/10.5194/se-13-1281-2022, 2022
Short summary
Short summary
Having a seismic image is generally expected to enable us to better determine fault geometry and thus estimate geological slip rates accurately. However, the process of interpreting seismic images may introduce unintended uncertainties, which have not yet been widely discussed. Here, a case of a shear fault-bend fold in the frontal Himalaya is used to demonstrate how differences in interpretations can affect the following estimates of slip rates and dependent conclusions.
Manuel D. Menzel, Janos L. Urai, Estibalitz Ukar, Thierry Decrausaz, and Marguerite Godard
Solid Earth, 13, 1191–1218, https://doi.org/10.5194/se-13-1191-2022, https://doi.org/10.5194/se-13-1191-2022, 2022
Short summary
Short summary
Mantle rocks can bind large quantities of carbon by reaction with CO2, but this capacity requires fluid pathways not to be clogged by carbonate. We studied mantle rocks from Oman to understand the mechanisms allowing their transformation into carbonate and quartz. Using advanced imaging techniques, we show that abundant veins were essential fluid pathways driving the reaction. Our results show that tectonic stress was important for fracture opening and a key ingredient for carbon fixation.
Jean-Baptiste P. Koehl, Steffen G. Bergh, and Arthur G. Sylvester
Solid Earth, 13, 1169–1190, https://doi.org/10.5194/se-13-1169-2022, https://doi.org/10.5194/se-13-1169-2022, 2022
Short summary
Short summary
The San Andreas fault is a major active fault associated with ongoing earthquake sequences in southern California. The present study investigates the development of the Indio Hills area in the Coachella Valley along the main San Andreas fault and the Indio Hills fault. The Indio Hills area is located near an area with high ongoing earthquake activity (Brawley seismic zone), and, therefore, its recent tectonic evolution has implications for earthquake prediction.
Jin Lai, Dong Li, Yong Ai, Hongkun Liu, Deyang Cai, Kangjun Chen, Yuqiang Xie, and Guiwen Wang
Solid Earth, 13, 975–1002, https://doi.org/10.5194/se-13-975-2022, https://doi.org/10.5194/se-13-975-2022, 2022
Short summary
Short summary
(1) Structural diagenesis analysis is performed on the ultra-deep tight sandstone. (2) Fracture and intergranular pores are related to the low in situ stress magnitudes. (3) Dissolution is associated with the presence of fracture.
Hamed Fazlikhani, Wolfgang Bauer, and Harald Stollhofen
Solid Earth, 13, 393–416, https://doi.org/10.5194/se-13-393-2022, https://doi.org/10.5194/se-13-393-2022, 2022
Short summary
Short summary
Interpretation of newly acquired FRANKEN 2D seismic survey data in southeeastern Germany shows that upper Paleozoic low-grade metasedimentary rocks and possible nappe units are transported by Variscan shear zones to ca. 65 km west of the Franconian Fault System (FFS). We show that the locations of post-Variscan upper Carboniferous–Permian normal faults and associated graben and half-graben basins are controlled by the geometry of underlying Variscan shear zones.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Berit Schwichtenberg, Florian Fusseis, Ian B. Butler, and Edward Andò
Solid Earth, 13, 41–64, https://doi.org/10.5194/se-13-41-2022, https://doi.org/10.5194/se-13-41-2022, 2022
Short summary
Short summary
Hydraulic rock properties such as porosity and permeability are relevant factors that have an impact on groundwater resources, geological repositories and fossil fuel reservoirs. We investigate the influence of chemical compaction upon the porosity evolution in salt–biotite mixtures and related transport length scales by conducting laboratory experiments in combination with 4-D analysis. Our observations invite a renewed discussion of the effect of sheet silicates on chemical compaction.
David Healy and Stephen Paul Hicks
Solid Earth, 13, 15–39, https://doi.org/10.5194/se-13-15-2022, https://doi.org/10.5194/se-13-15-2022, 2022
Short summary
Short summary
The energy transition requires operations in faulted rocks. To manage the technical challenges and public concern over possible induced earthquakes, we need to quantify the risks. We calculate the probability of fault slip based on uncertain inputs, stresses, fluid pressures, and the mechanical properties of rocks in fault zones. Our examples highlight the specific gaps in our knowledge. Citizen science projects could produce useful data and include the public in the discussions about hazards.
Manuel I. de Paz-Álvarez, Thomas G. Blenkinsop, David M. Buchs, George E. Gibbons, and Lesley Cherns
Solid Earth, 13, 1–14, https://doi.org/10.5194/se-13-1-2022, https://doi.org/10.5194/se-13-1-2022, 2022
Short summary
Short summary
We describe a virtual geological mapping course implemented in response to travelling and social restrictions derived from the ongoing COVID-19 pandemic. The course was designed to replicate a physical mapping exercise as closely as possible with the aid of real field data and photographs collected by the authors during previous years in the Cantabrian Zone (NW Spain). The course is delivered through Google Earth via a KMZ file with outcrop descriptions and links to GitHub-hosted photographs.
Yueyang Xia, Jacob Geersen, Dirk Klaeschen, Bo Ma, Dietrich Lange, Michael Riedel, Michael Schnabel, and Heidrun Kopp
Solid Earth, 12, 2467–2477, https://doi.org/10.5194/se-12-2467-2021, https://doi.org/10.5194/se-12-2467-2021, 2021
Short summary
Short summary
The 2 June 1994 Java tsunami earthquake ruptured in a seismically quiet subduction zone and generated a larger-than-expected tsunami. Here, we re-process a seismic line across the rupture area. We show that a subducting seamount is located up-dip of the mainshock in a region that did not rupture during the earthquake. Seamount subduction modulates the topography of the marine forearc and acts as a seismic barrier in the 1994 earthquake rupture.
Steffen Abe and Hagen Deckert
Solid Earth, 12, 2407–2424, https://doi.org/10.5194/se-12-2407-2021, https://doi.org/10.5194/se-12-2407-2021, 2021
Short summary
Short summary
We use numerical simulations and laboratory experiments on rock samples to investigate how stress conditions influence the geometry and roughness of fracture surfaces. The roughness of the surfaces was analyzed in terms of absolute roughness and scaling properties. The results show that the surfaces are self-affine but with different scaling properties between the numerical models and the real rock samples. Results suggest that stress conditions have little influence on the surface roughness.
Chao Deng, Rixiang Zhu, Jianhui Han, Yu Shu, Yuxiang Wu, Kefeng Hou, and Wei Long
Solid Earth, 12, 2327–2350, https://doi.org/10.5194/se-12-2327-2021, https://doi.org/10.5194/se-12-2327-2021, 2021
Short summary
Short summary
This study uses seismic reflection data to interpret the geometric relationship and evolution of intra-basement and rift-related structures in the Enping sag in the northern South China Sea. Our observations suggest the primary control of pre-existing thrust faults is the formation of low-angle normal faults, with possible help from low-friction materials, and the significant role of pre-existing basement thrust faults in fault geometry, paleotopography, and syn-rift stratigraphy of rift basins.
Sonia Yeung, Marnie Forster, Emmanuel Skourtsos, and Gordon Lister
Solid Earth, 12, 2255–2275, https://doi.org/10.5194/se-12-2255-2021, https://doi.org/10.5194/se-12-2255-2021, 2021
Short summary
Short summary
We do not know when the ancient Tethys Ocean lithosphere began to founder, but one clue can be found in subduction accreted tectonic slices, including Gondwanan basement terranes on the island of Ios, Cyclades, Greece. We propose a 250–300 km southwards jump of the subduction megathrust with a period of flat-slab subduction followed by slab break-off. The initiation and its subsequent rollback of a new subduction zone would explain the onset of Oligo–Miocene extension and accompanying magmatism.
Rahul Prabhakaran, Giovanni Bertotti, Janos Urai, and David Smeulders
Solid Earth, 12, 2159–2209, https://doi.org/10.5194/se-12-2159-2021, https://doi.org/10.5194/se-12-2159-2021, 2021
Short summary
Short summary
Rock fractures are organized as networks with spatially varying arrangements. Due to networks' influence on bulk rock behaviour, it is important to quantify network spatial variation. We utilize an approach where fracture networks are treated as spatial graphs. By combining graph similarity measures with clustering techniques, spatial clusters within large-scale fracture networks are identified and organized hierarchically. The method is validated on a dataset with nearly 300 000 fractures.
Olivier Lacombe, Nicolas E. Beaudoin, Guilhem Hoareau, Aurélie Labeur, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 12, 2145–2157, https://doi.org/10.5194/se-12-2145-2021, https://doi.org/10.5194/se-12-2145-2021, 2021
Short summary
Short summary
This paper aims to illustrate how the timing and duration of contractional deformation associated with folding in orogenic forelands can be constrained by the dating of brittle mesostructures observed in folded strata. The study combines new and already published absolute ages of fractures to provide, for the first time, an educated discussion about the factors controlling the duration of the sequence of deformation encompassing layer-parallel shortening, fold growth, and late fold tightening.
Vincent Famin, Hugues Raimbourg, Muriel Andreani, and Anne-Marie Boullier
Solid Earth, 12, 2067–2085, https://doi.org/10.5194/se-12-2067-2021, https://doi.org/10.5194/se-12-2067-2021, 2021
Short summary
Short summary
Sediments accumulated in accretionary prisms are deformed by the compression imposed by plate subduction. Here we show that deformation of the sediments transforms some minerals in them. We suggest that these mineral transformations are due to the proliferation of microorganisms boosted by deformation. Deformation-enhanced microbial proliferation may change our view of sedimentary and tectonic processes in subduction zones.
Cited articles
Agard, P., Monie, P., Jolivet, L., and Goffé, B.: Exhumation of the Schistes Lustre´s complex: in situ laser probe 40Ar/39Ar constraints and implications for the Western Alps, J. Metamorphic Geol., 20, 599–618, https://doi.org/10.1046/j.1525-1314.2002.00391.x, 2002.
Andrieu, S., Brigaud, B., Rabourg, T., and Noret, A.: The Mid-Cenomanian
Event in shallow marine environments: Influence on carbonate producers and
depositional sequences (northern Aquitaine Basin, France), Cretaceous Res.,
56, 587–607, https://doi.org/10.1016/j.cretres.2015.06.018,
2015.
Ault, A. K., Gautheron, C., and King, G. E.: Innovations in (U–Th)/He,
fission track, and trapped charge thermochronometry with applications to
earthquakes, weathering, surface-mantle connections, and the growth and
decay of mountains, Tectonics, 38, 3705–3739, https://doi.org/10.1029/2018TC005312, 2019.
Barnaby, R. J. and Rimstidt, J. D.: Redox conditions of calcite cementation
interpreted from Mn and Fe contents of authigenic calcites, Geol. Soc. Am.
Bull., 101, 795–804, https://doi.org/10.1130/0016-7606(1989)101<0795:RCOCCI>2.3.CO;2, 1989.
Beaudoin, N., Huyghe, D., Bellahsen, N., Lacombe, O., Emmanuel, L.,
Mouthereau, F., and Ouanhnon, L.: Fluid systems and fracture development
during syn-depositional fold growth: An example from the Pico del Aguila
anticline, Sierras Exteriores, southern Pyrenees, Spain, J. Struct. Geol.,
70, 23–38, https://doi.org/10.1016/j.jsg.2014.11.003, 2015.
Beaudoin, N., Lacombe, O., Roberts, N. M. W., and Koehn, D.: U-Pb dating of
calcite veins reveals complex stress evolution and thrust sequence in the
Bighorn Basin, Wyoming, USA, Geology, 46, 1015–1018, https://doi.org/10.1130/G45379.1, 2018.
Bellahsen, N., Mouthereau, F., Boutoux, A., Bellanger, M., Lacombe, O.,
Jolivet, L., and Rolland, Y.: Collision kinematics in the western external
Alps, Tectonics, 33, 1055–1088, https://doi.org/10.1002/2013TC003453, 2014.
Bellanger, M., Augier, R., Bellahsen, N., Jolivet, L., Monié, P.,
Baudin, T., and Beyssac, O.: Shortening of the European Dauphinois margin
(Oisans Massif, Western Alps): New insights from RSCM maximum temperature
estimates and 40Ar∕39Ar in situ dating, J. Geodyn., 83, 37–64,
https://doi.org/10.1016/j.jog.2014.09.004, 2015.
Beltrando, M., Lister, G. S., Forster, M., Dunlap, W. J., Fraser, G., and
Hermann, J.: Dating microstructures by the 40Ar∕39Ar step-heating
technique: Deformation–pressure–temperature–time history of the Penninic
Units of the Western Alps, Lithos, 113, 801–819, https://doi.org/10.1016/j.lithos.2009.07.006, 2009.
Bergemann, C. A., Gnos, E., and Whitehouse, M. J.: Insights into the tectonic
history of the Western Alps through dating of fissure monazite in the Mont
Blanc and Aiguilles Rouges Massifs, Tectonophysics, 750, 203–212,
https://doi.org/10.1016/j.tecto.2018.11.013, 2019.
Bergemann, C. A., Gnos, E., Berger, A., Janots, E., and Whitehouse, M. J.: Dating tectonic activity in the Lepontine Dome and Rhone-Simplon Fault regions through hydrothermal monazite-(Ce), Solid Earth, 11, 199–222, https://doi.org/10.5194/se-11-199-2020, 2020.
Bertrand, A. and Sue, C.: Reconciling late faulting over the whole Alpine
belt: from structural analysis to geochronological constrains, Swiss J.
Geosci., 110, 565–580, https://doi.org/10.1007/s00015-017-0265-4, 2017.
Beucher, R., van der Beek, P., Braun, J., and Batt, G. E.: Exhumation and
relief development in the Pelvoux and Dora-Maira analysis and inversion of
thermochronological age transects, J. Geophys. Res., 117, F03030, https://doi.org/10.1029/2011JF002240, 2012.
Bons, P. D., Elburg, M. A., and Gomez-Rivas, E.: A review of the formation of
tectonic veins and their microstructures, J. Struct. Geol., 43, 33–62,
https://doi.org/10.1016/j.jsg.2012.07.005, 2012.
Boutoux, A., Bellahsen, N., Nanni, U., Pik, R., Verlaguet, A., Rolland, Y.,
and Lacombe, O.: Thermal and structural evolution of the external Western
Alps: Insights from (U–Th–Sm)/He thermochronology and RSCM thermometry in
the Aiguilles Rouges/Mont Blanc massifs, Tectonophysics, 683, 109–123,
https://doi.org/10.1016/j.tecto.2016.06.010, 2016.
Cederbom, C. E., Sinclair, H. D., Schlunegger, F., and Rahn, M. K.: Climate
induced rebound and exhumation of European Alps, Geology, 32, 709–712,
https://doi.org/10.1130/G20491.1, 2004.
Cenki-Tok, B., Darling, J. R., Rolland, Y., Dhuime, B., and Storey, C. D.:
Direct dating of mid-crustal shear zones with synkinematic allanite: new in
situ U-Th-Pb geochronological approaches applied to the Mont Blanc massif,
Terra Nova, 26, 29–37, https://doi.org/10.1111/ter.12066,
2014.
Ceriani, S. and Schmid, S. M.: From N-S collision to WNW-directed
post-collisional thrusting and folding: Structural study of the Frontal
Penninic Units in Savoie (Western Alps, France), Eclogae Geol. Helv., 97,
347–369, https://doi.org/10.1007/s00015-004-1129-2, 2004.
Ceriani, S., Fügenschuh, B., and Schmid, S. M.: Multi-stage thrusting at
the “Penninic Front” in the Western Alps between Mont Blanc and Pelvoux
massifs, Int. J. Earth Sci., 90, 685–702, https://doi.org/10.1007/s005310000188, 2001.
Champagnac, J. D., Molnar, P., Anderson, R. S., Sue, C., and Delacou, B.:
Quaternary erosion-induced isostatic rebound in the western Alps, Geology,
35, 195–198, https://doi.org/10.1130/G23053A.1, 2007.
Crespo-Blanc, A., Masson, H., Sharp, Z., and Cosca, M.: A stable and
40Ar∕39Ar isotope study of a major thrust in the Helvetic nappes
(Swiss Alps): Evidence for fluid flow and constraints on nappe kinematics,
Geol. Soc. Am. Bull., 107, 1129–1144, https://doi.org/10.1130/0016-7606(1995)107<1129:ASAAAI>2.3.CO;2, 1995.
Duchêne, S., Blichert-Toft, J., Luais, B., Télouk, P., Lardeaux,
J.-M., and Albarède, F.: The Lu–Hf dating of garnets and the ages of
the Alpine high-pressure metamorphism, Nature, 387, 586–589, https://doi.org/10.1038/42446, 1997.
Dumont, T., Schwartz, S., Guillot, S., Simon-Labric, T., Tricart, P., and
Jourdan, S.: Structural and sedimentary records of the Oligocene revolution
in the Western Alpine arc, J. Geodyn., 56–57, 18–38, https://doi.org/10.1016/j.jog.2011.11.006, 2012.
Goodfellow, B. W., Viola, G., Bingen, B., Nuriel, P., and Kylander-Clark,
A. R. C.: Palaeocene faulting in SE Sweden from U-Pb dating of slickenfibre
calcite, Terra Nova, 29, 321–328, https://doi.org/10.1111/ter.12280, 2017.
Janots, E., Grand'Homme, A., Bernet, M., Guillaume, D., Gnos, E., Boiron, M.-C., Rossi, M., Seydoux-Guillaume, A.-M., and De Ascenção Guedes, R.: Geochronological and thermometric evidence of unusually hot fluids in an Alpine fissure of Lauzière granite (Belledonne, Western Alps), Solid Earth, 10, 211–223, https://doi.org/10.5194/se-10-211-2019, 2019.
Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob,
D. E., Stracke, A., Birbaum, K., Frick, D. A., Günther, D., and Enzweiler,
J.: Determination of reference values for NIST SRM 610–617 glasses
following ISO guidelines, Geostand. Geoanal. Res., 35, 397–429,
https://doi.org/10.1111/j.1751-908X.2011.00120.x, 2011.
Kim, S.-T., Coplen, T. B., and Horita, J.: Normalization of stable isotope
data for carbonate minerals: Implementation of IUPAC guidelines, Geochim.
Cosmochim. Ac., 158, 276–289, https://doi.org/10.1016/j.gca.2015.02.011, 2015.
Lanari, P., Guillot, S., Schwartz, S., Vidal, O., Tricart, P., Riel, N., and
Beyssac, O.: Diachronous evolution of the alpine continental wedge:
evidences from P-T estimates in the Briançonnais Zone houillère
(France-Western Alps), J. Geodyn., 56-57, 39–54, https://doi.org/10.1016/j.jog.2011.09.006, 2012.
Lanari, P., Rolland, Y., Schwartz, S., Vidal, O., Guillot, S., Tricart, P.,
and Dumont, T.: P-T-t estimation of syn-kinematic strain in low-grade rocks
(< 300 ∘C) using thermodynamic modelling and
40Ar∕39Ar dating techniques: example of the Plan-de-Phasy shear
zone (Briançonnais Zone, Western Alps), Terra Nova, 26, 130–138,
https://doi.org/10.1111/ter.12079, 2014.
Lardeaux, J. M., Schwartz, S., Tricart, P., Paul, A., Guillot, S., Béthoux, N.,
and Masson, F.: A crustal-scale cross-section of the southwestern Alps
combining geophysical and geological imagery, Terra Nova, 18, 412–422,
https://doi.org/10.1111/j.1365-3121.2006.00706.x, 2006.
Larroque, C., Delouis, B., Godel, B., and Nocquet, J.-M.: Active deformation
at the southwestern Alps–Ligurian basin junction (France–Italy boundary):
Evidence for recent change from compression to extension in the Argentera
massif, Tectonophysics, 467, 22–34, https://doi.org/10.1016/j.tecto.2008.12.013, 2009.
Malusà, M., Zhao, L., Eva, E., Solarino, S., Paul, A., Guillot, S.,
Schwartz, S., Dumont, T., Aubert, C., Salimbeni, S., Pondrelli, S., Wang,
Q., and Zhu, R.: Earthquakes in the western alpine mantle wedge, Gondwana
Res., 44, 89–95, https://doi.org/10.1016/j.gr.2016.11.012, 2017.
Mathey, M., Walpersdorf, A., Sue, C., Baize, S., and Deprez, A.: Seismogenic
potential of the High Durance Fault constrained by 20 yr of GNSS
measurements in the Western European Alps, Geophy. J. Int., 222,
2136–2146, https://doi.org/10.1093/gji/ggaa292, 2020.
Mugnier, J. L., Loubat, H., and Cannic, S.: Correlation of seismic images
and geology at the boundary between internal and external domains of the
Western Alps, Bull. Soc. Géol. Fr., 164, 697–708, 1993.
Nardini, N., Muñoz-López, D., Cruset, D., Cantarero, I.,
Martín-Martín, J., Benedicto, A., Gomez-Rivas, E., John, C., and
Travé, A.: From Early Contraction to Post-Folding Fluid Evolution in the
Frontal Part of the Bóixols Thrust Sheet (Southern Pyrenees) as Revealed
by the Texture and Geochemistry of Calcite Cements, Minerals, 9, 117–146,
https://doi.org/10.3390/min9020117, 2019.
Nocquet, J. M., Sue, C., Walpersdorf, A., Tran, T., Lenôtre, N.,
Vernant, P., Cushing, M., Jouanne, F., Masson, F., Baize, S., Chéry, J.,
and Van der Beek, P. A.: Present-day uplift of the western Alps, Sci. Rep.,
6, 1–6, https://doi.org/10.1038/srep28404, 2016.
Passchier, C. W. and Trouw, R. A. J.: Microtectonics, 2nd rev. edn.,
Springer, Berlin, Germany, New York, USA, 2005.
Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J.: Iolite:
Freeware for the visualisation and processing of mass spectrometric data, J.
Anal. Atom. Spectrom., 26, 2508–2518, https://doi.org/10.1039/c1ja10172b, 2011.
Ring, U. and Gerdes, A.: Kinematics of the Alpenrhein-Bodensee graben system
in the Central Alps: Oligocene/Miocene transtension due to formation of the
Western Alps arc, Tectonics, 35, 1367–1391, https://doi.org/10.1002/2015TC004085, 2016.
Roberts, N. M. W., Rasbury, E. T., Parrish, R. R., Smith, C. J., Horstwood,
M. S. A., and Condon, D. J.: A calcite reference material for LA-ICP-MS U-Pb
geochronology: Calcite RM for LA-ICP-MS U-Pb dating, Geochem. Geophy.
Geosy., 18, 2807–2814, https://doi.org/10.1002/2016GC006784,
2017.
Roberts, N. M. W., Drost, K., Horstwood, M. S. A., Condon, D. J., Chew, D., Drake, H., Milodowski, A. E., McLean, N. M., Smye, A. J., Walker, R. J., Haslam, R., Hodson, K., Imber, J., Beaudoin, N., and Lee, J. K.: Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb carbonate geochronology: strategies, progress, and limitations, Geochronology, 2, 33–61, https://doi.org/10.5194/gchron-2-33-2020, 2020.
Rolland, Y. and Rossi, M.: Two-stage fluid flow and element transfers in
shear zones during collision burial-exhumation cycle: Insights from the Mont
Blanc Crystalline Massif (Western Alps), J. Geodyn., 101, 88–108, https://doi.org/10.1016/j.jog.2016.03.016, 2016.
Rolland, Y., Rossi, M., Cox, S. F., Corsini, M., Mancktelow, N.,
Pennacchioni, G., Fronari, M., and Boullier, A. M.: 40Ar∕39Ar
dating of synkinematic white mica: insights from fluid-rock reaction in
low-grade shear zones (Mont Blanc Massif) and constraints on timing of
deformation in the NW external Alps, Geol. Soc. Lond., Special
Publications, 299, 293–315, https://doi.org/10.1144/SP299.18, 2008.
Rossi, M. and Rolland, Y.: Stable isotope and Ar/Ar evidence of prolonged
multiscale fluid flow during exhumation of orogenic crust: Example from the
Mont Blanc and Aar Massifs (NW Alps): Multi-scale fluid flow in the Alps,
Tectonics, 33, 1681–1709, https://doi.org/10.1002/2013TC003438, 2014.
Rossi, M., Rolland, Y., Vidal, O., and Cox, S. F.: Geochemical variations and
element transfer during shear-zone development and related episyenites at
middle crust depths: insights from the Mont Blanc granite (French-Italian
Alps), Geol. Soc. Lond., Special Publications, 245, 373–396,
https://doi.org/10.1144/GSL.SP.2005.245.01.18, 2005.
Rothé, E.: La seismicité des Alpes occidentales, B. Soc. Géol. Fr., 5, 295–320, 1942.
Rubatto, D. and Hermann, J.: Zircon formation during fluid circulation in
eclogites (Monviso, Western Alps): implications for Zr and Hf budget in
subduction zones, Geochim. Cosmochim. Ac., 67, 2173–2187, https://doi.org/10.1016/S0016-7037(02)01321-2, 2003.
Salimbeni, S., Zhao, L., Malusà, M., Guillot, S., Pondrelli, S.,
Margheriti, L., Paul, A., Solarino, S., Aubert, C., Dumont, T., Schwartz,
S., Wang, Q., Xu, X., Zheng, T., and Zhu, R.: Fossil and active mantle flows
in the western Alpine region unravelled by seismic anisotropy analysis and
high-resolution P wave tomography, Tectonophysics, 731–732, 35–47,
https://doi.org/10.1016/j.tecto.2018.03.002, 2018.
Sanchez, G., Rolland, Y., Schneider, J., Corsini, M., Oliot, E., Goncalves,
P., Verati, C., Lardeaux, J.-M., and Marquer, D.: Dating low-temperature
deformation by 40Ar∕39Ar on white mica, insights from the
Argentera-Mercantour Massif (SW Alps), Lithos, 125, 521–536, https://doi.org/10.1016/j.lithos.2011.03.009, 2011.
Schmid, S. M. and Kissling, E.: The arc of the western Alps in the light of
geophysical data on deep crustal structure, Tectonics, 19, 62–85,
https://doi.org/10.1029/1999TC900057, 2000.
Schwartz, S., Lardeaux, J. M., Tricart, P., Guillot, S., and Labrin, E.:
Diachronous exhumation of HP-LT metamorphic rocks from south-western Alps:
evidence from fission-track analysis, Terra Nova, 19, 133–140, https://doi.org/10.1111/j.1365-3121.2006.00728.x, 2007.
Schwartz, S., Gautheron, C., Audin, L., Dumont, T., Nomade, J., Barbarand,
J., Pinna-Jamme, R., and van der Beek, P.: Foreland exhumation controlled by
crustal thickening in the Western Alps, Geology, 45, 139–142, https://doi.org/10.1130/G38561.1, 2017.
Seward, D. and Mancktelow, N. S.: Neogene kinematics of the central and
western Alps: Evidence from fission-track dating, Geology, 22, 803–806,
https://doi.org/10.1130/0091-7613(1994)022<0803:NKOTCA>2.3.CO;2, 1994.
Simon-Labric, T., Rolland, Y., Dumont, T., Heymes, T., Authemayou, C.,
Corsini, M., and Fornari, M.: 40Ar∕39Ar dating of Penninic Front
tectonic displacement (W Alps) during the Lower Oligocene (31–34 Ma), Terra
Nova, 21, 127–136, https://doi.org/10.1111/j.1365-3121.2009.00865.x, 2009.
Smeraglia, L., Fabbri, O., Choulet, F., Buatier, M., Boulvais, P.,
Bernasconi, S. M., and Castorina, F.: Syntectonic fluid flow and deformation
mechanisms within the frontal thrust of a foreland fold-and-thrust belt:
Example from the Internal Jura, Eastern France, Tectonophysics, 778, 228178,
https://doi.org/10.1016/j.tecto.2019.228178, 2020.
Sternai, P., Sue, C., Husson, L., Serpelloni, E., Becker, T. W., Willett,
S. D., Faccenna, C., Di Giulio, A., Spada, G., Jolivet, L., Valla, P., Petit,
C., Nocquet, J.-M., Walpersdorf, A., and Castelltort, S.: Present-day uplift
of the European Alps: Evaluating mechanisms and models of their relative
contributions, Earth-Sci. Rev., 190, 589–604, https://doi.org/10.1016/j.earscirev.2019.01.005, 2019.
Sue, C. and Tricart, P.: Late Alpine brittle extension above the Frontal
Pennine Thrust near Briançon, Western Alps, Eclogae Geol. Helv., 92,
171–181, https://doi.org/10.5169/SEALS-168659, 1999.
Sue, C. and Tricart, P.: Neogene to ongoing normal faulting in the inner
western Alps: a major evolution of the alpine tectonics, Tectonics, 22,
1–25, https://doi.org/10.1029/2002TC001426, 2003.
Sue, C., Thouvenot, F., Fréchet, J., and Tricart, P.: Widespread
extension in the core of the western Alps revealed by earthquake analysis,
J. Geophy. Res.-Sol. Ea., 104, 25611–25622, https://doi.org/10.1029/1999JB900249, 1999.
Sue, C., Delacou, B., Champagnac, J.-D., Allanic, C., Tricart, P., and
Burkhard, M.: Extensional neotectonics around the bend of the
Western/Central Alps: an overview, Int. J. Earth Sci. (Geol Rundsch), 96,
1101–1129, https://doi.org/10.1007/s00531-007-0181-3, 2007.
Tardy, M., Deville, E., Fudral, S. E. R. E., Guellec, S., Ménard, G.,
Thouvenot, F., and Vialon, P.: Interprétation structurale des
données du profil de sismique réflexion profonde ECORS-CROP Alpes
entre le front Pennique et la ligne du Canavese (Alpes occidentales),
Mém. S. Géo. F., 156, 217–226, 1990.
Thouvenot, F., Fréchet, J., Pinter, N., Gyula, G., Weber, J., Stein, S.,
and Medak, D. (Eds.): Seismicity along the northwestern edge of the Adria
Microplate, The Adria Microplate: GPS Geodesy, Tectonics and Hazards, Nato
Si. S. IV Ear. En. Kluwer Academic Publishers, Dordrecht, the Netherlands, 335–349, https://doi.org/10.1007/1-4020-4235-3_23, 2006.
Tricart, P.: From passive margin to continental collision; a tectonic
scenario for the Western Alps, Am. J. Sci., 284, 97–120, https://doi.org/10.2475/ajs.284.2.97, 1984.
Tricart, P., Schwartz, S., Sue, C., Poupeau, G., and Lardeaux, J.-M.: La
denudation tectonique de la zone ultradauphinoise et l'inversion du front
brianconnais au sud-est du Pelvoux (Alpes occidentales); une dynamique
miocene a actuelle, B. Soc. Geol. Fr., 172, 49–58, https://doi.org/10.2113/172.1.49, 2001.
Tricart, P., Lardeaux, J.-M., Schwartz, S., and Sue, C.: The late extension
in the inner western Alps: a synthesis along the south-Pelvoux transect, B.
Soc. Geol. Fr., 177, 299–310, https://doi.org/10.2113/gssgfbull.177.6.299, 2006.
Tricart, P., Van Der Beek, P., Schwartz, S., and Labrin, E.: Diachronous
late-stage exhumation across the western Alpine arc: constraints from
apatite fission-track thermochronology between the Pelvoux and Dora-Maira
Massifs, J. Geol. Soc., 164, 163–174, https://doi.org/10.1144/0016-76492005-174, 2007.
Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology, Geosci.
Front., 9, 1479–1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018.
Walker, J., Cliff, R. A., and Latham, A. G.: U-Pb isotopic age of the StW 573
hominid from Sterkfontein, South Africa, Science, 314, 1592–1594,
https://doi.org/10.1126/science.1132916, 2006.
Walpersdorf, A., Pinget, L., Vernant, P., Sue, C., Deprez, A., and the RENAG
team: Does Long-Term GPS in the Western Alps Finally Confirm Earthquake
Mechanisms?, Tectonics, 37, 3721–3737, https://doi.org/10.1029/2018TC005054, 2018.
Wells, D. L. and Coppersmith, K. J.: New empirical relationships among
magnitude, rupture length, rupture width, rupture area, and surface
displacement, B. Seismol. Soc. Am., 84, 974–1002, 1994.
Woodhead, J. D. and Hergt, J. M.: Strontium, Neodymium and Lead Isotope
Analyses of NIST Glass Certified Reference Materials: SRM 610, 612, 614,
Geostand. Geoanal. Res., 25, 261–266, https://doi.org/10.1111/j.1751-908X.2001.tb00601.x, 2001.
Zhao, L., Paul, A., Solarino, S., Guillot, S., Malusà, M., Zheng, T., Aubert, C., Salimbeni, S., Dumont, T., Schwartz, S., Pondrelli, S., Zhu, R., and Wang, Q.: First seismic evidence for continental subduction beneath the Western Alps,
Geology, 43, 815–818, https://doi.org/10.1130/G36833.1, 2015.
Short summary
As a result of the collision between the European and Apulian plates, the Alps have experienced several evolutionary stages. The Penninic frontal thrust (PFT) (major thrust) was associated with compression, and now seismic studies show ongoing extensional activity. Calcite mineralization associated with shortening and extensional structures was sampled. The last deformation stages are dated by U–Pb on calcite at ~ 3.5 and ~ 2.5 Ma. Isotope analysis evidences deep crustal fluid mobilization.
As a result of the collision between the European and Apulian plates, the Alps have experienced...