Articles | Volume 13, issue 9
https://doi.org/10.5194/se-13-1475-2022
https://doi.org/10.5194/se-13-1475-2022
Research article
 | 
27 Sep 2022
Research article |  | 27 Sep 2022

Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods

Dongwon Lee, Nikolaos Karadimitriou, Matthias Ruf, and Holger Steeb

Related authors

Supraglacial lake drainage through gullies and fractures
Angelika Humbert, Veit Helm, Ole Zeising, Niklas Neckel, Matthias H. Braun, Shfaqat Abbas Khan, Martin Rückamp, Holger Steeb, Julia Sohn, Matthias Bohnen, and Ralf Müller
EGUsphere, https://doi.org/10.5194/egusphere-2024-1151,https://doi.org/10.5194/egusphere-2024-1151, 2024
Short summary
Digital carbonate rock physics
Erik H. Saenger, Stephanie Vialle, Maxim Lebedev, David Uribe, Maria Osorno, Mandy Duda, and Holger Steeb
Solid Earth, 7, 1185–1197, https://doi.org/10.5194/se-7-1185-2016,https://doi.org/10.5194/se-7-1185-2016, 2016
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Structural geology
Localized shear and distributed strain accumulation as competing shear accommodation mechanisms in crustal shear zones: constraining their dictating factors
Pramit Chatterjee, Arnab Roy, and Nibir Mandal
Solid Earth, 15, 1281–1301, https://doi.org/10.5194/se-15-1281-2024,https://doi.org/10.5194/se-15-1281-2024, 2024
Short summary
Influence of water on crystallographic preferred orientation patterns in a naturally deformed quartzite
Jeffrey M. Rahl, Brendan Moehringer, Kenneth S. Befus, and John S. Singleton
Solid Earth, 15, 1233–1240, https://doi.org/10.5194/se-15-1233-2024,https://doi.org/10.5194/se-15-1233-2024, 2024
Short summary
Geomorphic expressions of active rifting reflect the role of structural inheritance: a new model for the evolution of the Shanxi Rift, northern China
Malte Froemchen, Ken J. W. McCaffrey, Mark B. Allen, Jeroen van Hunen, Thomas B. Phillips, and Yueren Xu
Solid Earth, 15, 1203–1231, https://doi.org/10.5194/se-15-1203-2024,https://doi.org/10.5194/se-15-1203-2024, 2024
Short summary
Driven magmatism and crustal thinning of coastal southern China in response to subduction
Jinbao Su, Wenbin Zhu, and Guangwei Li
Solid Earth, 15, 1133–1141, https://doi.org/10.5194/se-15-1133-2024,https://doi.org/10.5194/se-15-1133-2024, 2024
Short summary
Selection and characterization of the target fault for fluid-induced activation and earthquake rupture experiments
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024,https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary

Cited articles

Acharya, T. and Ray, A. K.: Image Processing: Principles and Applications, John Wiley & Sons, https://doi.org/10.1002/0471745790, 2005. a
Ahamed, B. B., Yuvaraj, D., and Priya, S. S.: Image Denoising with Linear and Non-linear Filters, Proceedings of 2019 International Conference on Computational Intelligence and Knowledge Economy, ICCIKE 2019, 10, 806–810, https://doi.org/10.1109/ICCIKE47802.2019.9004429, 2019. a
Al-amri, S. S., Kalyankar, N. V., and Khamitkar, S. D.: Image segmentation by using edge detection, Int. J. Comput. Sci. Eng., 2, 804–807, 2010. a
Albawi, S., Mohammed, T. A., and Al-Zawi, S.: Understanding of a convolutional neural network, in: Proceedings of 2017 International Conference on Engineering and Technology, ICET 2017, IEEE, 2018, 1–6, https://doi.org/10.1109/ICEngTechnol.2017.8308186, 2018. a
Alqahtani, N., Alzubaidi, F., Armstrong, R. T., Swietojanski, P., and Mostaghimi, P.: Machine learning for predicting properties of porous media from 2d X-ray images, J. Petrol. Sci. Eng., 184, 106514, https://doi.org/10.1016/j.petrol.2019.106514, 2020. a
Download
Short summary
This research article focuses on filtering and segmentation methods employed in high-resolution µXRCT studies for crystalline rocks, bearing fractures, or fracture networks, of very small aperture. Specifically, we focus on the identification of artificially induced (via quenching) fractures in Carrara marble samples. Results from the same dataset from all five different methods adopted were produced and compared with each other in terms of their output quality and time efficiency.