Articles | Volume 15, issue 8
https://doi.org/10.5194/se-15-1087-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-1087-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Selection and characterization of the target fault for fluid-induced activation and earthquake rupture experiments
Peter Achtziger-Zupančič
CORRESPONDING AUTHOR
Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems IEG, Aachen, Germany
Department of Engineering Geology and Hydrogeology, RWTH Aachen University, Aachen, Germany
Alberto Ceccato
Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
Alba Simona Zappone
CORRESPONDING AUTHOR
Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
Giacomo Pozzi
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Alexis Shakas
Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
Florian Amann
Fraunhofer Research Institution for Energy Infrastructures and Geothermal Systems IEG, Aachen, Germany
Department of Engineering Geology and Hydrogeology, RWTH Aachen University, Aachen, Germany
Whitney Maria Behr
Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
Daniel Escallon Botero
Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
Domenico Giardini
Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
Marian Hertrich
Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
Mohammadreza Jalali
Department of Engineering Geology and Hydrogeology, RWTH Aachen University, Aachen, Germany
Xiaodong Ma
School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
Men-Andrin Meier
Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
Julian Osten
Department of Engineering Geology and Hydrogeology, RWTH Aachen University, Aachen, Germany
Stefan Wiemer
Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
Massimo Cocco
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Related authors
Friedrich Carl, Peter Achtziger-Zupančič, Jian Yang, Marlise Colling Cassel, and Florian Wellmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-3203, https://doi.org/10.5194/egusphere-2025-3203, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
A method for shape quantification based on geometrical parameters is proposed alongside a set of regular geometries established as geomodeling benchmarks. Dimensions, gradient and curvature data is obtained on cross-sections. Data analyses provide insight into the main geometrical characteristics of the benchmark models and visualizes geometrical dis-/similarities between bodies. The method and benchmarks are usable in geomodeling workflows and structural comparisons based on sparse data.
Friedrich Carl, Peter Achtziger-Zupančič, Jian Yang, Marlise Colling Cassel, and Florian Wellmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-3203, https://doi.org/10.5194/egusphere-2025-3203, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
A method for shape quantification based on geometrical parameters is proposed alongside a set of regular geometries established as geomodeling benchmarks. Dimensions, gradient and curvature data is obtained on cross-sections. Data analyses provide insight into the main geometrical characteristics of the benchmark models and visualizes geometrical dis-/similarities between bodies. The method and benchmarks are usable in geomodeling workflows and structural comparisons based on sparse data.
Sandro Truttmann, Tobias Diehl, Marco Herwegh, and Stefan Wiemer
Solid Earth, 16, 641–662, https://doi.org/10.5194/se-16-641-2025, https://doi.org/10.5194/se-16-641-2025, 2025
Short summary
Short summary
Our study investigates the statistical relationship between geological fractures and earthquakes in the southwestern Swiss Alps. We analyze how the fracture size and earthquake rupture are related and find differences in how fractures at different depths rupture seismically. While shallow fractures tend to rupture only partially, deeper fractures are more likely to rupture along their entire length, potentially resulting in larger earthquakes.
Kathrin Behnen, Marian Hertrich, Hansruedi Maurer, Alexis Shakas, Kai Bröker, Claire Epiney, María Blanch Jover, and Domenico Giardini
Solid Earth, 16, 333–350, https://doi.org/10.5194/se-16-333-2025, https://doi.org/10.5194/se-16-333-2025, 2025
Short summary
Short summary
Several cross-hole seismic surveys in the undisturbed Rotondo granite are used to analyze the seismic anisotropy in the Bedretto Lab, Switzerland. The P and S1 waves show a clear trend of faster velocities in the NE–SW direction and slower velocities perpendicular to it, indicating a tilted transverse isotropic velocity model. The symmetry plane is mostly aligned with the direction of maximum stress, but also the orientation of fractures is expected to influence the velocities.
Raphael Burchartz, Timo Seemann, Garri Gaus, Lisa Winhausen, Mohammadreza Jalali, Brian Mutuma Mbui, Sebastian Grohmann, Linda Burnaz, Marlise Colling Cassel, Jochen Erbacher, Ralf Littke, and Florian Amann
EGUsphere, https://doi.org/10.5194/egusphere-2025-579, https://doi.org/10.5194/egusphere-2025-579, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
In Germany, claystones are studied for their suitability as host-rocks for the disposal of high-level radioactive waste. The MATURITY project systematically investigates how gradual burial affects key barrier properties in the Lower Jurassic Amaltheenton Formation of the Lower Saxony Basin (Germany). Understanding these changes helps assess claystone suitability for long-term waste isolation, improving site selection for deep geological repositories.
Miriam Larissa Schwarz, Hansruedi Maurer, Anne Christine Obermann, Paul Antony Selvadurai, Alexis Shakas, Stefan Wiemer, and Domenico Giardini
EGUsphere, https://doi.org/10.5194/egusphere-2025-1094, https://doi.org/10.5194/egusphere-2025-1094, 2025
Short summary
Short summary
This study applied fat ray travel time tomography to image the geothermal testbed at the BedrettoLab. An active seismic crosshole survey provided a dataset of 42'843 manually picked first breaks. The complex major fault zone was successfully imaged by a 3D velocity model and validated with wireline logs and geological observations. Seismic events from hydraulic stimulation correlated with velocity structures, "avoiding" very high and low velocities, speculatively due to stress gradients.
Marta Han, Leila Mizrahi, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 25, 991–1012, https://doi.org/10.5194/nhess-25-991-2025, https://doi.org/10.5194/nhess-25-991-2025, 2025
Short summary
Short summary
Relying on recent accomplishments of collecting and harmonizing data by the 2020 European Seismic Hazard Model (ESHM20) and leveraging advancements in state-of-the-art earthquake forecasting methods, we develop a harmonized earthquake forecasting model for Europe. We propose several model variants and test them on training data for consistency and on a 7-year testing period against each other, as well as against both a time-independent benchmark and a global time-dependent benchmark.
Valentin Samuel Gischig, Antonio Pio Rinaldi, Andres Alcolea, Falko Bethman, Marco Broccardo, Kai Erich Norbert Bröker, Raymi Castilla, Federico Ciardo, Victor Clasen Repollés, Virginie Durand, Nima Gholizadeh Doonechaly, Marian Hertrich, Rebecca Hochreutener, Philipp Kästli, Dimitrios Karvounis, Xiaodong Ma, Men-Andrin Meier, Peter Meier, Maria Mesimeri, Arnaud Mignan, Anne Obermann, Katrin Plenkers, Martina Rosskopf, Francisco Serbeto, Paul Antony Selvadurai, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Jordan Aaron, Hansruedi Maurer, and Domenico Giardini
EGUsphere, https://doi.org/10.5194/egusphere-2024-3882, https://doi.org/10.5194/egusphere-2024-3882, 2025
Short summary
Short summary
Induced earthquakes present a major obstacle for developing geoenergy resources. These occur during hydraulic stimulations that enhance fluid pathways in the rock. In the Bedretto Underground Laboratory, hydraulic stimulations are investigated in a downscaled manner. A workflow to analyse the hazard of induced earthquakes is applied at different stages of the test program. The hazard estimates illustrate the difficulty to reduce the uncertainty owing to the variable seismogenic responses.
Roberto Basili, Laurentiu Danciu, Céline Beauval, Karin Sesetyan, Susana Pires Vilanova, Shota Adamia, Pierre Arroucau, Jure Atanackov, Stéphane Baize, Carolina Canora, Riccardo Caputo, Michele Matteo Cosimo Carafa, Edward Marc Cushing, Susana Custódio, Mine Betul Demircioglu Tumsa, João C. Duarte, Athanassios Ganas, Julián García-Mayordomo, Laura Gómez de la Peña, Eulàlia Gràcia, Petra Jamšek Rupnik, Hervé Jomard, Vanja Kastelic, Francesco Emanuele Maesano, Raquel Martín-Banda, Sara Martínez-Loriente, Marta Neres, Hector Perea, Barbara Šket Motnikar, Mara Monica Tiberti, Nino Tsereteli, Varvara Tsironi, Roberto Vallone, Kris Vanneste, Polona Zupančič, and Domenico Giardini
Nat. Hazards Earth Syst. Sci., 24, 3945–3976, https://doi.org/10.5194/nhess-24-3945-2024, https://doi.org/10.5194/nhess-24-3945-2024, 2024
Short summary
Short summary
This study presents the European Fault-Source Model 2020 (EFSM20), a dataset of 1248 geologic crustal faults and four subduction systems, each having the necessary parameters to forecast long-term earthquake occurrences in the European continent. This dataset constituted one of the main inputs for the recently released European Seismic Hazard Model 2020, a key instrument to mitigate seismic risk in Europe. EFSM20 adopts recognized open-standard formats, and it is openly accessible and reusable.
Jesús Muñoz-Montecinos, Andrea Giuliani, Senan Oesch, Silvia Volante, Bradley Peters, and Whitney Behr
Geochronology, 6, 585–605, https://doi.org/10.5194/gchron-6-585-2024, https://doi.org/10.5194/gchron-6-585-2024, 2024
Short summary
Short summary
Dating the roots of plate boundaries is essential for understanding geologic processes, but geochemical limitations, particularly in young mafic rocks, make this challenging. Advancements in mass spectrometry now enable high-resolution analysis of micro-domains. We assess these limitations by dating rocks from Syros. Multi-phase mineral analysis improves age uncertainty 6-fold. We emphasize the importance of the local geologic context and propose strategies to mitigate uncertainties.
Athanasios N. Papadopoulos, Philippe Roth, Laurentiu Danciu, Paolo Bergamo, Francesco Panzera, Donat Fäh, Carlo Cauzzi, Blaise Duvernay, Alireza Khodaverdian, Pierino Lestuzzi, Ömer Odabaşi, Ettore Fagà, Paolo Bazzurro, Michèle Marti, Nadja Valenzuela, Irina Dallo, Nicolas Schmid, Philip Kästli, Florian Haslinger, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3561–3578, https://doi.org/10.5194/nhess-24-3561-2024, https://doi.org/10.5194/nhess-24-3561-2024, 2024
Short summary
Short summary
The Earthquake Risk Model of Switzerland (ERM-CH23), released in early 2023, is the culmination of a multidisciplinary effort aiming to achieve, for the first time, a comprehensive assessment of the potential consequences of earthquakes on the Swiss building stock and population. ERM-CH23 provides risk estimates for various impact metrics, ranging from economic loss as a result of damage to buildings and their contents to human losses, such as deaths, injuries, and displaced population.
Laurentiu Danciu, Domenico Giardini, Graeme Weatherill, Roberto Basili, Shyam Nandan, Andrea Rovida, Céline Beauval, Pierre-Yves Bard, Marco Pagani, Celso G. Reyes, Karin Sesetyan, Susana Vilanova, Fabrice Cotton, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3049–3073, https://doi.org/10.5194/nhess-24-3049-2024, https://doi.org/10.5194/nhess-24-3049-2024, 2024
Short summary
Short summary
The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative references in the next update of the European Seismic Design Code (CEN EC8), and it also provides a key input to the first earthquake risk model for Europe.
Lonnie Justin Hufford, Leif Tokle, Whitney Maria Behr, Luiz Grafula Morales, and Claudio Madonna
EGUsphere, https://doi.org/10.5194/egusphere-2024-1507, https://doi.org/10.5194/egusphere-2024-1507, 2024
Preprint withdrawn
Short summary
Short summary
We constrained the rheology of glaucophane aggregates deforming near its brittle-ductile transition with general shear deformation experiments. In the experiments, glaucophane first underwent work hardening and strain weakening associated with brittle grain size reduction and incipient dislocation processes, then evolved to steady-state dislocation creep. We developed a flow law that can be used to approximate the rheological behavior of mafic oceanic crust at blueschist facies conditions.
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frédérick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinović, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinović, Domenico Giardini, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 583–607, https://doi.org/10.5194/nhess-24-583-2024, https://doi.org/10.5194/nhess-24-583-2024, 2024
Short summary
Short summary
Seismic hazard and risk are time dependent as seismicity is clustered and exposure can change rapidly. We are developing an interdisciplinary dynamic earthquake risk framework for advancing earthquake risk mitigation in Switzerland. This includes various earthquake risk products and services, such as operational earthquake forecasting and early warning. Standardisation and harmonisation into seamless solutions that access the same databases, workflows, and software are a crucial component.
Irina Dallo, Michèle Marti, Nadja Valenzuela, Helen Crowley, Jamal Dabbeek, Laurentiu Danciu, Simone Zaugg, Fabrice Cotton, Domenico Giardini, Rui Pinho, John F. Schneider, Céline Beauval, António A. Correia, Olga-Joan Ktenidou, Päivi Mäntyniemi, Marco Pagani, Vitor Silva, Graeme Weatherill, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 291–307, https://doi.org/10.5194/nhess-24-291-2024, https://doi.org/10.5194/nhess-24-291-2024, 2024
Short summary
Short summary
For the release of cross-country harmonised hazard and risk models, a communication strategy co-defined by the model developers and communication experts is needed. The strategy should consist of a communication concept, user testing, expert feedback mechanisms, and the establishment of a network with outreach specialists. Here we present our approach for the release of the European Seismic Hazard Model and European Seismic Risk Model and provide practical recommendations for similar efforts.
Matthias S. Brennwald, Antonio P. Rinaldi, Jocelyn Gisiger, Alba Zappone, and Rolf Kipfer
Geosci. Instrum. Method. Data Syst., 13, 1–8, https://doi.org/10.5194/gi-13-1-2024, https://doi.org/10.5194/gi-13-1-2024, 2024
Short summary
Short summary
The gas equilibrium membrane inlet mass spectrometry (GE-MIMS) method for dissolved-gas quantification was expanded to work in water at high pressures.
Lisa Maria Ringel, Mohammadreza Jalali, and Peter Bayer
Hydrol. Earth Syst. Sci., 26, 6443–6455, https://doi.org/10.5194/hess-26-6443-2022, https://doi.org/10.5194/hess-26-6443-2022, 2022
Short summary
Short summary
Fractured rocks host a class of aquifers that serve as major freshwater resources worldwide. This work is dedicated to resolving the three-dimensional hydraulic and structural properties of fractured rock. For this purpose, hydraulic tomography experiments at the Grimsel Test Site in Switzerland are utilized, and the discrete fracture network is inverted. The comparison of the inversion results with independent findings from other studies demonstrates the validity of the approach.
Alberto Ceccato, Giulia Tartaglia, Marco Antonellini, and Giulio Viola
Solid Earth, 13, 1431–1453, https://doi.org/10.5194/se-13-1431-2022, https://doi.org/10.5194/se-13-1431-2022, 2022
Short summary
Short summary
The Earth's surface is commonly characterized by the occurrence of fractures, which can be mapped, and their can be geometry quantified on digital representations of the surface at different scales of observation. Here we present a series of analytical and statistical tools, which can aid the quantification of fracture spatial distribution at different scales. In doing so, we can improve our understanding of how fracture geometry and geology affect fluid flow within the fractured Earth crust.
Chengjun Feng, Guangliang Gao, Shihuai Zhang, Dongsheng Sun, Siyu Zhu, Chengxuan Tan, and Xiaodong Ma
Nat. Hazards Earth Syst. Sci., 22, 2257–2287, https://doi.org/10.5194/nhess-22-2257-2022, https://doi.org/10.5194/nhess-22-2257-2022, 2022
Short summary
Short summary
We show how FSP (Fault Slip Potential) software can be used in quantitative screening to estimate the fault slip potential in a region with some uncertainties in the ambient stress field and to assess the reactivation potential on these faults of presumably higher criticality in response to fluid injection. The case study of the Matouying enhanced geothermal system (EGS) field has important implications for deep geothermal exploitation in China, especially for the Gonghe EGS in Qinghai Province.
Lisa Winhausen, Kavan Khaledi, Mohammadreza Jalali, Janos L. Urai, and Florian Amann
Solid Earth, 13, 901–915, https://doi.org/10.5194/se-13-901-2022, https://doi.org/10.5194/se-13-901-2022, 2022
Short summary
Short summary
Triaxial compression tests at different effective stresses allow for analysing the deformation behaviour of Opalinus Clay, the potential host rock for nuclear waste in Switzerland. We conducted microstructural investigations of the deformed samples to relate the bulk hydro-mechanical behaviour to the processes on the microscale. Results show a transition from brittle- to more ductile-dominated deformation. We propose a non-linear failure envelop associated with the failure mode transition.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Lisa Winhausen, Mohammadreza Jalali, and Florian Amann
Saf. Nucl. Waste Disposal, 1, 301–301, https://doi.org/10.5194/sand-1-301-2021, https://doi.org/10.5194/sand-1-301-2021, 2021
Lisa Winhausen, Jop Klaver, Joyce Schmatz, Guillaume Desbois, Janos L. Urai, Florian Amann, and Christophe Nussbaum
Solid Earth, 12, 2109–2126, https://doi.org/10.5194/se-12-2109-2021, https://doi.org/10.5194/se-12-2109-2021, 2021
Short summary
Short summary
An experimentally deformed sample of Opalinus Clay (OPA), which is being considered as host rock for nuclear waste in Switzerland, was studied by electron microscopy to image deformation microstructures. Deformation localised by forming micrometre-thick fractures. Deformation zones show dilatant micro-cracking, granular flow and bending grains, and pore collapse. Our model, with three different stages of damage accumulation, illustrates microstructural deformation in a compressed OPA sample.
Peter-Lasse Giertzuch, Joseph Doetsch, Alexis Shakas, Mohammadreza Jalali, Bernard Brixel, and Hansruedi Maurer
Solid Earth, 12, 1497–1513, https://doi.org/10.5194/se-12-1497-2021, https://doi.org/10.5194/se-12-1497-2021, 2021
Short summary
Short summary
Two time-lapse borehole ground penetrating radar (GPR) surveys were conducted during saline tracer experiments in weakly fractured crystalline rock with sub-millimeter fractures apertures, targeting electrical conductivity changes. The combination of time-lapse reflection and transmission GPR surveys from different boreholes allowed monitoring the tracer flow and reconstructing the flow path and its temporal evolution in 3D and provided a realistic visualization of the hydrological processes.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Camilla Rossi, Francesco Grigoli, Simone Cesca, Sebastian Heimann, Paolo Gasperini, Vala Hjörleifsdóttir, Torsten Dahm, Christopher J. Bean, Stefan Wiemer, Luca Scarabello, Nima Nooshiri, John F. Clinton, Anne Obermann, Kristján Ágústsson, and Thorbjörg Ágústsdóttir
Adv. Geosci., 54, 129–136, https://doi.org/10.5194/adgeo-54-129-2020, https://doi.org/10.5194/adgeo-54-129-2020, 2020
Short summary
Short summary
We investigate the microseismicity occurred at Hengill area, a complex tectonic and geothermal site, where the origin of earthquakes may be either natural or anthropogenic. We use a very dense broadband seismic monitoring network and apply full-waveform based method for location. Our results and first characterization identified different types of microseismic clusters, which might be associated to either production/injection or the tectonic activity of the geothermal area.
Hannes Krietsch, Valentin S. Gischig, Joseph Doetsch, Keith F. Evans, Linus Villiger, Mohammadreza Jalali, Benoît Valley, Simon Löw, and Florian Amann
Solid Earth, 11, 1699–1729, https://doi.org/10.5194/se-11-1699-2020, https://doi.org/10.5194/se-11-1699-2020, 2020
Cited articles
Achtziger-Zupančivc, P., Loew, S., and Hiller, A.: Factors controlling the permeability distribution in fault vein zones surrounding granitic intrusions (Ore Mountains/Germany), J. Geophys. Res.-Solid, 122, 1876–1899, 2017. a
Amann, F., Gischig, V., Evans, K., Doetsch, J., Jalali, R., Valley, B., Krietsch, H., Dutler, N., Villiger, L., Brixel, B., Klepikova, M., Kittilä, A., Madonna, C., Wiemer, S., Saar, M. O., Loew, S., Driesner, T., Maurer, H., and Giardini, D.: The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment, Solid Earth, 9, 115–137, https://doi.org/10.5194/se-9-115-2018, 2018. a, b
Arnet, M.: Deep Alpine Fluids: Origin, pathways and dynamic remobilisation in response to hydraulic stimulations at the Bedretto Underground Laboratory for Geoenergies (BULGG), ETH Zürich, https://doi.org/10.3929/ethz-b-000532915, 2022. a, b, c
Bischoff, A., Heap, M. J., Mikkola, P., Kuva, J., Reuschlé, T., Jolis, E. M., Engström, J., Reijonen, H., and Leskelä, T.: Hydrothermally altered shear zones: A new reservoir play for the expansion of deep geothermal exploration in crystalline settings, Geothermics, 118, 102895, https://doi.org/10.1016/j.geothermics.2023.102895, 2024. a, b, c, d, e
Bröker, K. and Ma, X.: Estimating the Least Principal Stress in a Granitic Rock Mass: Systematic Mini-Frac Tests and Elaborated Pressure Transient Analysis, Rock Mech. Rock Eng., 55, 1931–1954, https://doi.org/10.1007/s00603-021-02743-1, 2022. a
Bröker, K., Ma, X. , Zhang, S., Gholizadeh Doonechaly, N., Hertrich, M., Klee, G., Greenwood, A., Caspari, E., and Giardini, D.: Constraining the stress field and its variability at the BedrettoLab: Elaborated hydraulic fracture trace analysis, Int. J. Rock Mech. Min. Sci., 178, 105739, https://doi.org/10.1016/j.ijrmms.2024.105739, 2024. a
Bukovská, Z., Soejono, I., Vondrovic, L., Vavro, M., Souček, K., Buriánek, D., Dobeš, P., Švagera, O., Waclawik, P.,Řihošek, J., Verner, K., Sláma, J., Vavro, L., Koníček, P., Staš, L., Pécskay, Z., and Veselovský, F.: Characterization and 3D visualization of underground research facility for deep geological repository experiments: A case study of underground research facility Bukov, Czech Republic, Eng. Geol., 259, 105186, https://doi.org/10.1016/j.enggeo.2019.105186, 2019. a, b
Caspari, E., Greenwood, A., Baron, L., Egli, D., Toschini, E., Hu, K., and Holliger, K.: Characteristics of a fracture network surrounding a hydrothermally altered shear zone from geophysical borehole logs, Solid Earth, 11, 829–854, https://doi.org/10.5194/se-11-829-2020, 2020. a
Ceccato, A. and Pennacchioni, G.: Structural evolution of the Rieserferner pluton in the framework of the Oligo-Miocene tectonics of the Eastern Alps, J. Struct. Geol., 116, 64–80, 2018. a
Ceccato, A., Tartaglia, G., Antonellini, M., and Viola, G.: Multiscale lineament analysis and permeability heterogeneity of fractured crystalline basement blocks, Solid Earth, 13, 1431–1453, https://doi.org/10.5194/se-13-1431-2022, 2022. a
Ceccato, A., Behr, W. M., Zappone, A. S., Tavazzani, L., and Giuliani, A.: Structural evolution, exhumation rates, and rheology of the European crust during Alpine collision: Constraints from the Rotondo granite–Gotthard nappe, Tectonics, 43, e2023TC008219, https://doi.org/10.1029/2023TC008219, 2024. a, b, c, d, e, f, g, h
Cheng, Y. and Renner, J.: Exploratory use of periodic pumping tests for hydraulic characterization of faults, Geophys. J. Int., 212, 543–565, https://doi.org/10.1093/gji/ggx390, 2017. a
David, C., Nejati, M., and Geremia, D.: On petrophysical and geomechanical properties of Bedretto Granite, Tech. rep., ETH Zurich, https://www.research-collection.ethz.ch/handle/20.500.11850/428267 (last access: December 2023), 2020. a
Dempsey, E., Holdsworth, R., Imber, J., Bistacchi, A., and Di Toro, G.: A geological explanation for intraplate earthquake clustering complexity: The zeolite-bearing fault/fracture networks in the Adamello Massif (Southern Italian Alps), J. Struct. Geol., 66, 58–74, 2014. a
Dobson, P., Kneafsey, T., Morris, J., Singh, A., Zoback, M., Roggenthen, W., Doe, T., Neupane, G., Podgorney, R., Wang, H., Knox, H., Schwering, P., Blankenship, D., Ulrich, C., Johnson, T., White, M., and the EGS Collab Team: The EGS Collab Hydroshear Experiment at the Sanford Underground Research Facility – Siting Criteria and Evaluation of Candidate Sites, Geothermal Resources Council Transactions, 42, 16, https://www.geothermal-library.org/index.php?mode=pubs&action=view&record=1034004 (last access: December 2023), 2018. a
Dutler, N., Valley, B., Gischig, V., Villiger, L., Krietsch, H., Doetsch, J., Brixel, B., Jalali, M., and Amann, F.: Hydraulic fracture propagation in a heterogeneous stress field in a crystalline rock mass, Solid Earth, 10, 1877–1904, https://doi.org/10.5194/se-10-1877-2019, 2019. a
Dutler, N. O., Valley, B., Amann, F., Jalali, M., Villiger, L., Krietsch, H., Gischig, V., Doetsch, J., and Giardini, D.: Poroelasticity Contributes to Hydraulic-Stimulation Induced Pressure Changes, Geophys. Res. Lett., 48, e2020GL091468, https://doi.org/10.1029/2020GL091468, 2021. a
Escallon, D., Shakas, A., and Maurer, H.: Modelling and inferring fracture curvature from borehole GPR data: Case study from the Bedretto Laboratory, Switzerland, Near Surf. Geophys., 25, https://doi.org/10.1002/nsg.12286, 2023. a
Evans, K. F., Moriya, H., Niitsuma, H., Jones, R. H., Phillips, W. S., Genter, A., Sausse, J., Jung, R., and Baria, R.: Microseismicity and permeability enhancement of hydrogeologic structures during massive fluid injections into granite at 3 km depth at the Soultz HDR site, Geophys. J. Int., 160, 388–412, https://doi.org/10.1111/j.1365-246X.2004.02474.x, 2005. a, b, c
Faulkner, D. R., Jackson, C., Lunn, R. J., Schlische, R. W., Shipton, Z. K., Wibberley, C., and Withjack, M. O.: A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones, J. Struct. Geol., 32, 1557–1575, https://doi.org/10.1016/j.jsg.2010.06.009, 2010. a
Fookes, P., Pettifer, G., and Waltham, T.: Geomodels in Engineering Geology: an Introduction, Whittles Publishing, ISBN: 978-184995-139-5, 2015. a
Gischig, V. S., Giardini, D., Amann, F., Hertrich, M., Krietsch, H., Loew, S., Maurer, H., Villiger, L., Wiemer, S., Bethmann, F., Brixel, B., Doetsch, J., Doonechaly, N. G., Driesner, T., Dutler, N., Evans, K. F., Jalali, M., Jordan, D., Kittilä, A., Ma, X., Meier, P., Nejati, M., Obermann, A., Plenkers, K., Saar, M. O., Shakas, A., and Valley, B.: Hydraulic stimulation and fluid circulation experiments in underground laboratories: Stepping up the scale towards engineered geothermal systems, Geomech. Energ. Environ., p. 24, 100175, https://doi.org/10.1016/j.gete.2019.100175, 2019. a, b, c, d
Guglielmi, Y., Cappa, F., Avouac, J., Henry, P., and Elsworth, D.: Seismicity triggered by fluid injection-induced aseismic slip, Science, 348, 1224–1226, https://doi.org/10.1126/science.aab0476, 2015a. a, b
Guglielmi, Y. G., Henry, P., Nussbaum, C., Dick, P., Gout, C., and Amann, F.: Underground Research Laboratories for conducting fault activation experiments in shales, 49th US rock mechanics/geomechanics symposium, San Francisco, California, https://onepetro.org/ARMAUSRMS/proceedings/ARMA15/All-ARMA15/ARMA-2015-480/65839, 2015. a, b
Guglielmi, Y., Birkholzer, J., Rutqvist, J., Jeanne, P., and Nussbaum, C.: Can fault leakage occur before or without reactivation? Results from an in situ fault reactivation experiment at Mont Terri, Energ. Proced., 114, 3167–3174, https://doi.org/10.1016/j.egypro.2017.03.1445, 2017. a
Guglielmi, Y., Nussbaum, C., Jeanne, P., Rutqvist, J., Cappa, F., and Birkholzer, J.: Complexity of fault rupture and fluid leakage in shale: insights from a controlled fault activation experiment, J. Geophys. Res.-Solid, 125, 2169–9313, https://doi.org/10.1029/2019JB017781, 2020. a
Guglielmi, Y., Cook, P., Soom, F., Schoenball, M., Dobson, P., and Kneafsey, T.: In Situ Continuous Monitoring of Borehole Displacements Induced by Stimulated Hydrofracture Growth, Geophys. Res. Lett., 48, e2020GL090782, https://doi.org/10.1029/2020GL090782, 2021. a
Guillot, S. and Ménot, R.-P.: Paleozoic evolution of the external crystalline massifs of the Western Alps, Comptes Rendus Geoscience, 341, 253–265, 2009. a
Hafner, S., Günthert, A., Burckhardt, C., Steiger, R., Hansen, J., and Niggli, C.: Geologischer atlas der schweiz 1:25000, val bedretto, atlasblatt 68, Schweizerische Geologische Kommission, https://shop.swisstopo.admin.ch/de/karten/geologische-karten/erlaeuterungen-zum-geologischen-atlas-der-schweiz-25000 (last access: December 2023), 1975. a, b
Häring, M. O., Schanz, U., Ladner, F., and Dyer, B. C.: Characterisation of the Basel 1 enhanced geothermal system, Geothermics, 37, 469–495, https://doi.org/10.1016/j.geothermics.2008.06.002, 2008. a, b
Harms, U.: ICDP Primer – Planning, Managing, and Executing Continental Scientific Drilling Projects, in: 5th Edn., GFZ Potsdam, https://doi.org/10.48440/icdp.2021.001, 2021. a
Herwegh, M., Berger, A., Baumberger, R., Wehrens, P., and Kissling, E.: Large-scale crustal-block-extrusion during late Alpine collision, Sci. Rep., 7, 1–10, 2017. a
Herwegh, M., Berger, A., Glotzbach, C., Wangenheim, C., Mock, S., Wehrens, P., Baumberger, R., Egli, D., and Kissling, E.: Late stages of continent-continent collision: Timing, kinematic evolution, and exhumation of the Northern rim (Aar Massif) of the Alps, Earth-Sci. Rev., 200, 102959, https://doi.org/10.1016/j.earscirev.2019.102959, 2020. a
Hunt, R.: Geotechnical Engineering Investigation Handbook, in: 2nd Edn., Taylor & Francis, https://doi.org/10.1201/9781420039153, 2005. a
Jalali, M., Gischig, V., Doetsch, J., Näf, R., Krietsch, H., Klepikova, M., Amann, F., and Giardini, D.: Transmissivity Changes and Microseismicity Induced by Small-Scale Hydraulic Fracturing Tests in Crystalline Rock, Geophys. Res. Lett., 45, 2265–2273, https://doi.org/10.1002/2017GL076781, 2018. a
Jeanne, P., Guglielmi, Y., Lamarche, J., Cappa, F., and Marié, L.: Architectural characteristics and petrophysical properties evolution of a strike-slip fault zone in a fractured porous carbonate reservoir, J. Struct. Geol., 44, 93–109, https://doi.org/10.1016/j.jsg.2012.08.016, 2012. a
Kakurina, M., Guglielmi, Y., Nussbaum, C., and Valley, B.: Slip perturbation during fault reactivation by a fluid injection, Tectonophysics, 757, 140–152, https://doi.org/10.1016/j.tecto.2019.01.017, 2019. a
Kanamori, H. and Anderson, D. L.: Theoretical basis of some empirical relations in seismology, Bull. Seismol. Soc. Am., 65, 1073–1095, 1975. a
Kickmaier, W. and McKinley, I.: A review of research carried out in European rock laboratories, Nucl. Eng. Design, 176, 75–81, 1997. a
Kiliç, T., Kartal, R. F., Kadirioğlu, F. T., Bohnhoff, M., Nurlu, M., Acarel, D., Martínez Garzon, P., Dresen, G., Özsarac, V., and Malin, P. E.: Geophysical Borehole Observatory at the North Anatolian Fault in the Eastern Sea of Marmara (GONAF): initial results, J. Seismol., 24, 375–395, https://doi.org/10.1007/s10950-020-09907-6, 2020. a
Kim, G. Y., Kim, K., Lee, J.-Y., Cho, W.-J., and Kim, J.-S.: Current Status of the KURT and Long-term In-situ Experiments, J. Korean Soc. Min. Energ. Resour. Eng., 54, 344–357, 2017. a
Kolyukhin, D. and Torabi, A.: Statistical analysis of the relationships between faults attributes, J. Geophys. Res.-Solid, 117, B05406, https://doi.org/10.1029/2011jb008880, 2012. a
Kralik, M., Clauer, N., Holnsteiner, R., and Kappel, F.: Recurrent fault activity in the Grimsel Test Site (GTS, Switzerland): revealed by Rb-Sr, K-Ar and tritium isotope techniques, J. Geol. Soc. Lond., 149, 293–301, https://doi.org/10.1144/gsjgs.149.2.0293, 1992. a
Krietsch, H., Gischig, V. S., Doetsch, J., Evans, K. F., Villiger, L., Jalali, M., Valley, B., Löw, S., and Amann, F.: Hydromechanical processes and their influence on the stimulation effected volume: observations from a decameter-scale hydraulic stimulation project, Solid Earth, 11, 1699–1729, https://doi.org/10.5194/se-11-1699-2020, 2020a. a
Krietsch, H., Villiger, L., Doetsch, J., Gischig, V., Evans, K. F., Brixel, B., Jalali, M. R., Loew, S., Giardini, D., and Amann, F.: Changing Flow Paths Caused by Simultaneous Shearing and Fracturing Observed During Hydraulic Stimulation, Geophys. Res. Lett., 47, e2019GL086135, https://doi.org/10.1029/2019GL086135, 2020b. a, b, c, d
Kwiatek, G., Plenkers, K., Dresen, G., and Group, J. R.: Source Parameters of Picoseismicity Recorded at Mponeng Deep Gold Mine, South Africa: Implications for Scaling Relations, Bull. Seismol. Soc. Am., 101, 2592–2608, https://doi.org/10.1785/0120110094, 2011. a
Ledésert, B., Hebert, R., Genter, A., Bartier, D., Clauer, N., and Grall, C.: Fractures, hydrothermal alterations and permeability in the Soultz Enhanced Geothermal System, Comptes Rendus Geoscience, 342, 607–615, https://doi.org/10.1016/j.crte.2009.09.011, 2010. a
Lesko, K.: The Sanford Underground Research Facility at Homestake (SURF), Phys. Proced., 61, 542–551, https://doi.org/10.1016/j.phpro.2014.12.001, 2015. a
Lützenkirchen, V. H. and Loew, S.: Late Alpine brittle faulting in the Rotondo granite (Switzerland): deformation mechanisms and fault evolution, Swiss J. Geosci., 104, 31–54, https://doi.org/10.1007/s00015-010-0050-0, 2011. a, b, c
Ma, K.-F., Tanaka, H., Song, S.-R., Wang, C.-Y., Hung, J.-H., Tsai, Y.-B., Mori, J., Song, Y.-F., Yeh, E.-C., Soh, W., Sone, H., Kuo, L.-W., and Wu, H.-Y.: Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project, Nature, 444, 473–476, https://doi.org/10.1038/nature05253, 2006. a
Ma, X., Hertrich, M., Amann, F., Bröker, K., Gholizadeh Doonechaly, N., Gischig, V., Hochreutener, R., Kästli, P., Krietsch, H., Marti, M., Nägeli, B., Nejati, M., Obermann, A., Plenkers, K., Rinaldi, A. P., Shakas, A., Villiger, L., Wenning, Q., Zappone, A., Bethmann, F., Castilla, R., Seberto, F., Meier, P., Driesner, T., Loew, S., Maurer, H., Saar, M. O., Wiemer, S., and Giardini, D.: Multi-disciplinary characterizations of the BedrettoLab – a new underground geoscience research facility, Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, 2022. a, b, c, d, e, f
Masset, O. and Loew, S.: Hydraulic conductivity distribution in crystalline rocks, derived from inflows to tunnels and galleries in the Central Alps, Switzerland, Hydrogeol. J., 18, 863–891, 2010. a
Meier, M.-A., Giardini, D., Wiemer, S., Cocco, M., Amann, F., Spagnuolo E., Selvadurai., P., Tinti E., Dal Zilio L., Zappone A., Pozzi G., Jalali M., and Gischig V.: Fault activation from up close, EGU24-11536, https://doi.org/10.5194/egusphere-egu24-11536, 2024. a, b, c, d
Morris, A., Ferrill, D. A., and Henderson, D.: Slip-tendency analysis and fault reactivation, Geology, 24, 275–278, https://doi.org/10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2, 1996. a
Munro, M. A. and Blenkinsop, T. G.: MARD – A moving average rose diagram application for the geosciences, Comput. Geosci., 49, 112–120, 2012. a
Niemeijer, A. and Spiers, C.: A microphysical model for strong velocity weakening in phyllosilicate-bearing fault gouges, J. Geophys. Res.-Solid, 112, B10405, https://doi.org/10.1029/2007JB005008, 2007. a
Ofterdinger, U. S., Renard, P., and Loew, S.: Hydraulic subsurface measurements and hydrodynamic modelling as indicators for groundwater flow systems in the Rotondo granite, Central Alps (Switzerland), Hydrol. Process., 28, 255–278, https://doi.org/10.1002/hyp.9568, 2014. a
Olsson, O., Falk, L., Forslund, O., Lundmark, L., and Sandberg, E.: Borehole radar applied to the characterization of hydraulically conductive fracture zones in crystalline rock 1, Geophys. Prospect., 40, 109–142, 1992. a
Ophori, D. U., Stevenson, D., Gascoyne, M., Brown, A., Davison, C., Chan, T., and Stanchell, F.: Revised model of regional groundwater flow of the Whiteshell Research Area: Summary, AECL–11286, Revised model of regional groundwater flow of the Whiteshell research area: summary, edited by: Ophori, D. U. et al., issued by: Whiteshell Laboratories, Pinawa, Manitoba, CC2-11286E – Government of Canada Publications – Canada.ca, last accessed December 2023, 1995. a
Osten, J., Schaber, T., Gaus, G., Hamdi, P., Amann, F., and Achtziger-Zupancičič, P.: A multi-method investigation of the permeability structure of brittle fault zones with ductile precursors in crystalline rock, Grundwasser, 29, 49–61, https://doi.org/10.1007/s00767-023-00561-6, 2024. a, b, c, d, e, f, g
Pennacchioni, G., Ceccato, A., Fioretti, A. M., Mazzoli, C., Zorzi, F., and Ferretti, P.: Episyenites in meta-granitoids of the Tauern Window (Eastern Alps): unpredictable?, J. Geodynam., 101, 73–87, 2016. a
Pleuger, J., Mancktelow, N., Zwingmann, H., and Manser, M.: K–Ar dating of synkinematic clay gouges from Neoalpine faults of the Central, Western and Eastern Alps, Tectonophysics, 550, 1–16, 2012. a
Rast, M., Galli, A., Ruh, J. B., Guillong, M., and Madonna, C.: Geology along the Bedretto tunnel: kinematic and geochronological constraints on the evolution of the Gotthard Massif (Central Alps), Swiss J. Geosci., 115, 8–39, https://doi.org/10.1186/s00015-022-00409-w, 2022. a, b, c, d
Sakuma, H., Sugihara, K., Koide, K., Mikake, S., and Bäckblom, G.: The Mizunami underground research laboratory in Japan-programme for study of the deep geological environment, https://inis.iaea.org/collection/NCLCollectionStore/_Public/30/013/30013994.pdf (last access: December 2023), 1998. a
Schill, E., Meixner, J., Meller, C., Grimm, M., Grimmer, J., Stober, I., and Kohl, T.: Criteria and geological setting for the generic geothermal underground research laboratory, GEOLAB, Geoth. Energ., 4, 30 pp., https://doi.org/10.1186/s40517-016-0049-5, 2016. a
Schneeberger, R., Kober, F., Spillmann, T., Blechschmidt, I., ,Lanyon, G. W., and Mäder, U. K.: Grimsel Test Site: Revisiting the site-specific geoscientific knowledge, Nagra Technical Report, NTB 19-01, https://nagra.ch/wp-content/uploads/2022/08/e_ntb19-001.pdf (last access: October 2023), 2019. a
Schneider, T.: Basistunnel Furka – Geologische Aufnahme des Fensters Bedretto, Brig, Furka-Oberalp-Bahn AG, Tech. Rep., 1985.
Shakas, A., Maurer, H., Giertzuch, P.-L., Hertrich, M., Giardini, D., Serbeto, F., and Meier, P.: Permeability enhancement from a hydraulic stimulation imaged with Ground Penetrating Radar, Geophys. Res. Lett., 47, e2020GL088783, https://doi.org/10.1029/2020GL088783, 2020. a, b
Shapiro, S. A., Kummerow, J., Dinske, C., Asch, G., Rothert, E., Erzinger, J., Kümpel, H.-J., and Kind, R.: Fluid induced seismicity guided by a continental fault: Injection experiment of 2004/2005 at the German Deep Drilling Site (KTB), Geophys. Res. Lett., 33, 0094–8276, https://doi.org/10.1029/2005GL024659, 2006. a
Siren, T.: Overview of Finnish Spent Nuclear Fuel Disposal Programme, J. Korean Soc. Min. Energ. Resour. Eng., 54, 367–376, 2017. a
Sutherland, R., Toy, V., Townend, J., Cox, S., Eccles, J., Faulkner, D., Prior, D., Norris, R., Mariani, E., Boulton, C., Carpenter, B., Menzies, C., Little, T., Hasting, M., De Pascale, G., Langridge, R., Scott, H., Lindroos, Z. R., Fleming, B., and Kopf, A.: Drilling reveals fluid control on architecture and rupture of the Alpine fault, New Zealand, Geology, 40, 1143–1146, https://doi.org/10.1130/G33614.1, 2012. a
Tobin, H. J., Saffer, D. M., Castillo, D. A., and Hirose, T.: Direct constraints on in situ stress state from deep drilling into the Nankai subduction zone, Japan, Geology, 50, 1229–123, https://doi.org/10.1130/G49639.1, 2022. a
Ustaszewski, M. E., Hampel, A., and Pfiffner, O. A.: Composite faults in the Swiss Alps formed by the interplay of tectonics, gravitation and postglacial rebound: an integrated field and modelling study, Swiss J. Geosci., 101, 223–235, 2008. a
Villiger, L., Gischig, V. S., Doetsch, J., Krietsch, H., Dutler, N. O., Jalali, M., Valley, B., Selvaduai, P. A., Mignan, A., Plenkers, K., Giardini, D., Amann, F., and Wiemer, S.: Influence of reservoir geology on seismic response during decameter scale hydraulic stimulations in crystalline rock Project: Grimsel In Situ Stimulation and Circulation (ISC) Experiment, Solid Earth, 11, 627–655, https://doi.org/10.5194/se-11-627-2020, 2020. a
Villiger, L., Gischig, V. S., Kwiatek, G., Krietsch, H., Doetsch, J., Jalali, M., Amann, F., Giardini, D., and Wiemer, S.: Metre-scale stress heterogeneities and stress redistribution drive complex fracture slip and fracture growth during a hydraulic stimulation experiment, Geophys. J. Int., 225, 1689–1703, https://doi.org/10.1093/gji/ggab057, 2021. a
Volpe, G., Pozzi, G., Collettini, C., Spagnuolo, E., Achtziger-Zupančič, P., Zappone, A., Aldega, L., Meier, M., Giardini, D., and Cocco, M.: Laboratory simulation of fault reactivation by fluid injection and implications for induced seismicity at the BedrettoLab, Swiss Alps, Tectonophysics, 862, 229987, https://doi.org/10.1016/j.tecto.2023.229987, 2023. a, b, c, d, e, f, g
Vomvoris, S., Kickmaier, W., and McKinley, I.: Grimsel Test Site: 20 years of research in fractured crystalline rocks – Experience gained and future needs, Proceedings of the Second International Symposium on Dynamics of Fluid in Fractured Rock, Report No. LBNL-54275, Berkeley National Laboratory, 10–12 February, 2004. a
Weisenberger, T. and Bucher, K.: Zeolites in fissures of granites and gneisses of the Central Alps, J. Metamor. Geol., 28, 825–847, 2010. a
Wenning, Q. C., Madonna, C., de Haller, A., and Burg, J.-P.: Permeability and seismic velocity anisotropy across a ductile–brittle fault zone in crystalline rock, Solid Earth, 9, 683–698, https://doi.org/10.5194/se-9-683-2018, 2018. a
Zhang, S., Ma, X., Bröker, K., van Limborgh, R., Wenning, Q., Hertrich, M., and Giardini, D.: Fault Zone Spatial Stress Variations in a Granitic Rock Mass: Revealed by Breakouts Within an Array of Boreholes, J. Geophys. Res.-Solid, 128, e2023JB026477, https://doi.org/10.1029/2023JB026477, 2023. a
Zoback, M., Hickman, S., and Ellsworth, W.: Scientific Drilling into the San Andreas Fault Zone – An Overview of SAFOD's First Five Years, Sci. Drill., 11, 14–28, https://doi.org/10.2204/iodp.sd.11.02.2011, 2011. a
Short summary
We detail the selection and characterization of a fault zone for earthquake experiments in the Fault Activation and Earthquake Ruptures (FEAR) project at the Bedretto Lab. FEAR, which studies earthquake processes, overcame data collection challenges near faults. The fault zone in Rotondo granite was selected based on geometry, monitorability, and hydro-mechanical properties. Remote sensing, borehole logging, and geological mapping were used to create a 3D model for precise monitoring.
We detail the selection and characterization of a fault zone for earthquake experiments in the...