Articles | Volume 15, issue 2
https://doi.org/10.5194/se-15-305-2024
https://doi.org/10.5194/se-15-305-2024
Research article
 | 
22 Feb 2024
Research article |  | 22 Feb 2024

Impact of faults on the remote stress state

Karsten Reiter, Oliver Heidbach, and Moritz O. Ziegler

Related authors

Storage potentials for carbon-rich products in Germany – a database and outlook on final storage of products derived from negative emission technologies
Sarah Diekmeier, Karsten Reiter, Andreas Henk, and Colin Friebe
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-489,https://doi.org/10.5194/essd-2024-489, 2025
Preprint under review for ESSD
Short summary
About the Trustworthiness of Physics-Based Machine Learning – A Considerations for Geomechanical Applications
Denise Degen, Moritz Ziegler, Oliver Heidbach, Andreas Henk, Karsten Reiter, and Florian Wellmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2932,https://doi.org/10.5194/egusphere-2024-2932, 2024
Short summary
Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio
Moritz O. Ziegler, Robin Seithel, Thomas Niederhuber, Oliver Heidbach, Thomas Kohl, Birgit Müller, Mojtaba Rajabi, Karsten Reiter, and Luisa Röckel
Solid Earth, 15, 1047–1063, https://doi.org/10.5194/se-15-1047-2024,https://doi.org/10.5194/se-15-1047-2024, 2024
Short summary
How to estimate the 3D stress state for a deep geological repository
Oliver Heidbach, Karsten Reiter, Moritz O. Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 185–185, https://doi.org/10.5194/sand-2-185-2023,https://doi.org/10.5194/sand-2-185-2023, 2023
Short summary
Stress state estimation – new data and variability assessment of model results
Karsten Reiter, Oliver Heidbach, Moritz Ziegler, Silvio Giger, Rodney Garrard, and Jean Desroches
Saf. Nucl. Waste Disposal, 2, 71–72, https://doi.org/10.5194/sand-2-71-2023,https://doi.org/10.5194/sand-2-71-2023, 2023
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Structural geology
Earthquake swarms frozen in an exhumed hydrothermal system (Bolfin Fault Zone, Chile)
Simone Masoch, Giorgio Pennacchioni, Michele Fondriest, Rodrigo Gomila, Piero Poli, José Cembrano, and Giulio Di Toro
Solid Earth, 16, 23–43, https://doi.org/10.5194/se-16-23-2025,https://doi.org/10.5194/se-16-23-2025, 2025
Short summary
Reconciling post-orogenic faulting, paleostress evolution, and structural inheritance in the seismogenic northern Apennines (Italy): insights from the Monti Martani Fault System
Riccardo Asti, Selina Bonini, Giulio Viola, and Gianluca Vignaroli
Solid Earth, 15, 1525–1551, https://doi.org/10.5194/se-15-1525-2024,https://doi.org/10.5194/se-15-1525-2024, 2024
Short summary
Understanding the stress field at the lateral termination of a thrust fold using generic geomechanical models and clustering methods
Anthony Adwan, Bertrand Maillot, Pauline Souloumiac, Christophe Barnes, Christophe Nussbaum, Meinert Rahn, and Thomas Van Stiphout
Solid Earth, 15, 1445–1463, https://doi.org/10.5194/se-15-1445-2024,https://doi.org/10.5194/se-15-1445-2024, 2024
Short summary
Localized shear and distributed strain accumulation as competing shear accommodation mechanisms in crustal shear zones: constraining their dictating factors
Pramit Chatterjee, Arnab Roy, and Nibir Mandal
Solid Earth, 15, 1281–1301, https://doi.org/10.5194/se-15-1281-2024,https://doi.org/10.5194/se-15-1281-2024, 2024
Short summary
Influence of water on crystallographic preferred orientation patterns in a naturally deformed quartzite
Jeffrey M. Rahl, Brendan Moehringer, Kenneth S. Befus, and John S. Singleton
Solid Earth, 15, 1233–1240, https://doi.org/10.5194/se-15-1233-2024,https://doi.org/10.5194/se-15-1233-2024, 2024
Short summary

Cited articles

Anderson, E. M.: The dynamics of faulting, Trans. Edinburgh Geol. Soc., 8, 387–402, https://doi.org/10.1144/transed.8.3.387, 1905. a
Anderson, E. M.: The Dynamics of Faulting and Dyke Formation with Application to Britain, in: 2nd Edn., Oliver and Boyd, London, Edinburgh, 1951. a
Barton, C. A. and Zoback, M. D.: Stress perturbations associated with active faults penetrated by boreholes: Possible evidence for near-complete stress drop and a new technique for stress magnitude measurement, J. Geophys. Res.-Solid, 99, 9373–9390, https://doi.org/10.1029/93JB03359, 1994. a, b, c
Bell, J. S.: In situ stresses in sedimentary rocks (part 2): Applications of stress measurements, Geoscience Canada, 23, 135–153, 1996. a
Bird, P. and Xianghong Kong: Computer simulations of California tectonics confirm very low strength of major faults, Geol. Soc. Am. Bull. 106, 159–174, https://doi.org/10.1130/0016-7606(1994)106<0159:CSOCTC>2.3.CO;2, 1994. a, b
Download
Short summary
It is generally assumed that faults have an influence on the stress state of the Earth’s crust. It is questionable whether this influence is still present far away from a fault. Simple numerical models were used to investigate the extent of the influence of faults on the stress state. Several models with different fault representations were investigated. The stress fluctuations further away from the fault (> 1 km) are very small.
Share