Articles | Volume 6, issue 2
https://doi.org/10.5194/se-6-457-2015
https://doi.org/10.5194/se-6-457-2015
Research article
 | 
30 Apr 2015
Research article |  | 30 Apr 2015

Tectonic evolution and high-pressure rock exhumation in the Qiangtang terrane, central Tibet

Z. Zhao, P. D. Bons, G. Wang, A. Soesoo, and Y. Liu

Related authors

ISMIP-HOM benchmark experiments using Underworld
Till Sachau, Haibin Yang, Justin Lang, Paul D. Bons, and Louis Moresi
Geosci. Model Dev., 15, 8749–8764, https://doi.org/10.5194/gmd-15-8749-2022,https://doi.org/10.5194/gmd-15-8749-2022, 2022
Short summary
Can changes in deformation regimes be inferred from crystallographic preferred orientations in polar ice?
Maria-Gema Llorens, Albert Griera, Paul D. Bons, Ilka Weikusat, David J. Prior, Enrique Gomez-Rivas, Tamara de Riese, Ivone Jimenez-Munt, Daniel García-Castellanos, and Ricardo A. Lebensohn
The Cryosphere, 16, 2009–2024, https://doi.org/10.5194/tc-16-2009-2022,https://doi.org/10.5194/tc-16-2009-2022, 2022
Short summary
Comment on “Exceptionally high heat flux needed to sustain the Northeast Greenland Ice Stream” by Smith-Johnsen et al. (2020)
Paul D. Bons, Tamara de Riese, Steven Franke, Maria-Gema Llorens, Till Sachau, Nicolas Stoll, Ilka Weikusat, Julien Westhoff, and Yu Zhang
The Cryosphere, 15, 2251–2254, https://doi.org/10.5194/tc-15-2251-2021,https://doi.org/10.5194/tc-15-2251-2021, 2021
Short summary
Crystallographic preferred orientations of ice deformed in direct-shear experiments at low temperatures
Chao Qi, David J. Prior, Lisa Craw, Sheng Fan, Maria-Gema Llorens, Albert Griera, Marianne Negrini, Paul D. Bons, and David L. Goldsby
The Cryosphere, 13, 351–371, https://doi.org/10.5194/tc-13-351-2019,https://doi.org/10.5194/tc-13-351-2019, 2019
Short summary
Strain localization and dynamic recrystallization in the ice–air aggregate: a numerical study
Florian Steinbach, Paul D. Bons, Albert Griera, Daniela Jansen, Maria-Gema Llorens, Jens Roessiger, and Ilka Weikusat
The Cryosphere, 10, 3071–3089, https://doi.org/10.5194/tc-10-3071-2016,https://doi.org/10.5194/tc-10-3071-2016, 2016
Short summary

Related subject area

Geodynamics
Magmatic underplating associated with Proterozoic basin formation: insights from gravity study over the southern margin of the Bundelkhand Craton, India
Ananya Parthapradip Mukherjee and Animesh Mandal
Solid Earth, 15, 711–729, https://doi.org/10.5194/se-15-711-2024,https://doi.org/10.5194/se-15-711-2024, 2024
Short summary
On the impact of true polar wander on heat flux patterns at the core–mantle boundary
Thomas Frasson, Stéphane Labrosse, Henri-Claude Nataf, Nicolas Coltice, and Nicolas Flament
Solid Earth, 15, 617–637, https://doi.org/10.5194/se-15-617-2024,https://doi.org/10.5194/se-15-617-2024, 2024
Short summary
The influence of viscous slab rheology on numerical models of subduction
Natalie Hummel, Susanne Buiter, and Zoltán Erdős
Solid Earth, 15, 567–587, https://doi.org/10.5194/se-15-567-2024,https://doi.org/10.5194/se-15-567-2024, 2024
Short summary
Statistical appraisal of geothermal heat flow observations in the Arctic
Judith Freienstein, Wolfgang Szwillus, Agnes Wansing, and Jörg Ebbing
Solid Earth, 15, 513–533, https://doi.org/10.5194/se-15-513-2024,https://doi.org/10.5194/se-15-513-2024, 2024
Short summary
Fast uplift in the southern Patagonian Andes due to long- and short-term deglaciation and the asthenospheric window underneath
Veleda A. P. Muller, Pietro Sternai, and Christian Sue
Solid Earth, 15, 387–404, https://doi.org/10.5194/se-15-387-2024,https://doi.org/10.5194/se-15-387-2024, 2024
Short summary

Cited articles

Agard, P., Yamato, P., Jolivet, L., and Burov, E.: Exhumation of oceanic blueschists and eclogites in subduction zones: timing and mechanisms, Earth-Sci. Rev., 92, 53–79, 2009.
Andersen, T. B., Jamtveit, B., Dewey, J. F., and Swensson, E.: Subduction and eduction of continental crust: major mechanism during continent–continent collision and orogenic extensional collapse, a model based on the south Caledonides, Terra Nova, 3, 303–310, 1991.
Baxter, A. T., Aitchison, J. C., and Zyabrev, S. V.: Radiolarian age constraints on Mesotethyan ocean evolution, and their implications for development of the Bangong-Nujiang suture, Tibet, J. Geol. Soc. London, 166, 689–694, 2009.
Brueckner, H. K. and Cuthbert, S. J.: Extension, disruption, and translation of an orogenic wedge by exhumation of large ultrahigh-pressure terranes: Examples from the Norwegian Caledonides, Lithosphere, 5, 277–289, 2013.
Bucher, K. and Frey, M.: Petrogenesis of metamorphic rocks, 7th Edn., Springer, Berlin-Heidelberg, Germany, 259–277, 2002.
Download
Short summary
The early Mesozoic tectonic history of the Qiangtang terrane in central Tibet is hotly debated. We argue that the north and south Qiangtang terranes were separated by an ocean (Paleo-Tethys) until the late Triassic. Subduction was mainly to the north, underneath the north Qiangtang terrane. The high-pressure rocks were exhumed in a lithospheric-scale core complex. Together with non-metamorphic sedimentary and ophiolitic mélange, these were finally thrust on top of the south Qiangtang.