Articles | Volume 8, issue 2
https://doi.org/10.5194/se-8-339-2017
https://doi.org/10.5194/se-8-339-2017
Research article
 | 
24 Mar 2017
Research article |  | 24 Mar 2017

The subduction dichotomy of strong plates and weak slabs

Robert I. Petersen, Dave R. Stegman, and Paul J. Tackley

Related authors

Influence of heterogeneous thermal conductivity on the long-term evolution of the lower-mantle thermochemical structure: implications for primordial reservoirs
Joshua Martin Guerrero, Frédéric Deschamps, Yang Li, Wen-Pin Hsieh, and Paul James Tackley
Solid Earth, 14, 119–135, https://doi.org/10.5194/se-14-119-2023,https://doi.org/10.5194/se-14-119-2023, 2023
Short summary
Coupled dynamics and evolution of primordial and recycled heterogeneity in Earth's lower mantle
Anna Johanna Pia Gülcher, Maxim Dionys Ballmer, and Paul James Tackley
Solid Earth, 12, 2087–2107, https://doi.org/10.5194/se-12-2087-2021,https://doi.org/10.5194/se-12-2087-2021, 2021
Short summary
Timescales of chemical equilibrium between the convecting solid mantle and over- and underlying magma oceans
Daniela Paz Bolrão, Maxim D. Ballmer, Adrien Morison, Antoine B. Rozel, Patrick Sanan, Stéphane Labrosse, and Paul J. Tackley
Solid Earth, 12, 421–437, https://doi.org/10.5194/se-12-421-2021,https://doi.org/10.5194/se-12-421-2021, 2021
Short summary
On the self-regulating effect of grain size evolution in mantle convection models: application to thermochemical piles
Jana Schierjott, Antoine Rozel, and Paul Tackley
Solid Earth, 11, 959–982, https://doi.org/10.5194/se-11-959-2020,https://doi.org/10.5194/se-11-959-2020, 2020
Short summary

Related subject area

Geodynamics
How a volcanic arc influences back-arc extension: insight from 2D numerical models
Duo Zhang and J. Huw Davies
Solid Earth, 15, 1113–1132, https://doi.org/10.5194/se-15-1113-2024,https://doi.org/10.5194/se-15-1113-2024, 2024
Short summary
Quantifying mantle mixing through configurational entropy
Erik van der Wiel, Cedric Thieulot, and Douwe J. J. van Hinsbergen
Solid Earth, 15, 861–875, https://doi.org/10.5194/se-15-861-2024,https://doi.org/10.5194/se-15-861-2024, 2024
Short summary
Various lithospheric deformation patterns derived from rheological contrasts between continental terranes: insights from 2-D numerical simulations
Renxian Xie, Lin Chen, Jason P. Morgan, and Yongshun John Chen
Solid Earth, 15, 789–806, https://doi.org/10.5194/se-15-789-2024,https://doi.org/10.5194/se-15-789-2024, 2024
Short summary
Magmatic underplating associated with Proterozoic basin formation: insights from gravity study over the southern margin of the Bundelkhand Craton, India
Ananya Parthapradip Mukherjee and Animesh Mandal
Solid Earth, 15, 711–729, https://doi.org/10.5194/se-15-711-2024,https://doi.org/10.5194/se-15-711-2024, 2024
Short summary
On the impact of true polar wander on heat flux patterns at the core–mantle boundary
Thomas Frasson, Stéphane Labrosse, Henri-Claude Nataf, Nicolas Coltice, and Nicolas Flament
Solid Earth, 15, 617–637, https://doi.org/10.5194/se-15-617-2024,https://doi.org/10.5194/se-15-617-2024, 2024
Short summary

Cited articles

Becker, T. W., Faccenna, C., O'Connell, R. J., and Giardini, D.: The development of slabs in the upper mantle: Insights from numerical and laboratory experiments, J. Geophys. Res., 104, 15207, https://doi.org/10.1029/1999JB900140, 1999.
Bellahsen, N.: Dynamics of subduction and plate motion in laboratory experiments: Insights into the “plate tectonics” behavior of the Earth, J. Geophys. Res., 110, B10401, https://doi.org/10.1029/2004JB002999, 2005.
Bercovici, D.: The generation of plate tectonics from mantle convection, Earth Planet. Sc. Lett., 205, 107–121, https://doi.org/10.1016/S0012-821X(02)01009-9, 2003.
Bercovici, D., Schubert, G., and Ricard, Y.: Abrupt tectonics and rapid slab detachment with grain damage, P. Natl. Acad. Sci. USA, 112, 1287–1291, https://doi.org/10.1073/pnas.1415473112, 2015.
Breuer, D. and Spohn, T.: Possible flush instability in mantle convection at the Archaean-Proterozoic transition, Nature, 378, 608–610, https://doi.org/10.1038/378608a0, 1995.
Download
Short summary
In this study we propose a dichotomy in the strength profile of tectonic plates. This apparent dichotomy suggests that plates at the Earth's surface are significantly stronger, by orders of magnitude, than the subducted slabs in the Earth's interior. Strong plates promote single-sided, Earth-like subduction. Once subducted, strong slabs transmit dynamic stresses and disrupt subduction. Slabs which are weakened do not disrupt subduction and furthermore exhibit a variety of observed morphologies.