Articles | Volume 8, issue 2
https://doi.org/10.5194/se-8-339-2017
https://doi.org/10.5194/se-8-339-2017
Research article
 | 
24 Mar 2017
Research article |  | 24 Mar 2017

The subduction dichotomy of strong plates and weak slabs

Robert I. Petersen, Dave R. Stegman, and Paul J. Tackley

Related authors

Influence of heterogeneous thermal conductivity on the long-term evolution of the lower-mantle thermochemical structure: implications for primordial reservoirs
Joshua Martin Guerrero, Frédéric Deschamps, Yang Li, Wen-Pin Hsieh, and Paul James Tackley
Solid Earth, 14, 119–135, https://doi.org/10.5194/se-14-119-2023,https://doi.org/10.5194/se-14-119-2023, 2023
Short summary
Coupled dynamics and evolution of primordial and recycled heterogeneity in Earth's lower mantle
Anna Johanna Pia Gülcher, Maxim Dionys Ballmer, and Paul James Tackley
Solid Earth, 12, 2087–2107, https://doi.org/10.5194/se-12-2087-2021,https://doi.org/10.5194/se-12-2087-2021, 2021
Short summary
Timescales of chemical equilibrium between the convecting solid mantle and over- and underlying magma oceans
Daniela Paz Bolrão, Maxim D. Ballmer, Adrien Morison, Antoine B. Rozel, Patrick Sanan, Stéphane Labrosse, and Paul J. Tackley
Solid Earth, 12, 421–437, https://doi.org/10.5194/se-12-421-2021,https://doi.org/10.5194/se-12-421-2021, 2021
Short summary
On the self-regulating effect of grain size evolution in mantle convection models: application to thermochemical piles
Jana Schierjott, Antoine Rozel, and Paul Tackley
Solid Earth, 11, 959–982, https://doi.org/10.5194/se-11-959-2020,https://doi.org/10.5194/se-11-959-2020, 2020
Short summary

Related subject area

Geodynamics
Modeling liquid transport in the Earth's mantle as two-phase flow: effect of an enforced positive porosity on liquid flow and mass conservation
Changyeol Lee, Nestor G. Cerpa, Dongwoo Han, and Ikuko Wada
Solid Earth, 15, 23–38, https://doi.org/10.5194/se-15-23-2024,https://doi.org/10.5194/se-15-23-2024, 2024
Short summary
Thrusts control the thermal maturity of accreted sediments
Utsav Mannu, David Fernández-Blanco, Ayumu Miyakawa, Taras Gerya, and Masataka Kinoshita
Solid Earth, 15, 1–21, https://doi.org/10.5194/se-15-1-2024,https://doi.org/10.5194/se-15-1-2024, 2024
Short summary
The crustal structure of the Longmenshan fault zone and its implications for seismogenesis: new insight from aeromagnetic and gravity data
Hai Yang, Shengqing Xiong, Qiankun Liu, Fang Li, Zhiye Jia, Xue Yang, Haofei Yan, and Zhaoliang Li
Solid Earth, 14, 1289–1308, https://doi.org/10.5194/se-14-1289-2023,https://doi.org/10.5194/se-14-1289-2023, 2023
Short summary
Earth's core variability from magnetic and gravity field observations
Anita Thea Saraswati, Olivier de Viron, and Mioara Mandea
Solid Earth, 14, 1267–1287, https://doi.org/10.5194/se-14-1267-2023,https://doi.org/10.5194/se-14-1267-2023, 2023
Short summary
The role of continental lithospheric thermal structure in the evolution of orogenic systems: application to the Himalayan–Tibetan collision zone
Mengxue Liu, Dinghui Yang, and Rui Qi
Solid Earth, 14, 1155–1168, https://doi.org/10.5194/se-14-1155-2023,https://doi.org/10.5194/se-14-1155-2023, 2023
Short summary

Cited articles

Becker, T. W., Faccenna, C., O'Connell, R. J., and Giardini, D.: The development of slabs in the upper mantle: Insights from numerical and laboratory experiments, J. Geophys. Res., 104, 15207, https://doi.org/10.1029/1999JB900140, 1999.
Bellahsen, N.: Dynamics of subduction and plate motion in laboratory experiments: Insights into the “plate tectonics” behavior of the Earth, J. Geophys. Res., 110, B10401, https://doi.org/10.1029/2004JB002999, 2005.
Bercovici, D.: The generation of plate tectonics from mantle convection, Earth Planet. Sc. Lett., 205, 107–121, https://doi.org/10.1016/S0012-821X(02)01009-9, 2003.
Bercovici, D., Schubert, G., and Ricard, Y.: Abrupt tectonics and rapid slab detachment with grain damage, P. Natl. Acad. Sci. USA, 112, 1287–1291, https://doi.org/10.1073/pnas.1415473112, 2015.
Breuer, D. and Spohn, T.: Possible flush instability in mantle convection at the Archaean-Proterozoic transition, Nature, 378, 608–610, https://doi.org/10.1038/378608a0, 1995.
Download
Short summary
In this study we propose a dichotomy in the strength profile of tectonic plates. This apparent dichotomy suggests that plates at the Earth's surface are significantly stronger, by orders of magnitude, than the subducted slabs in the Earth's interior. Strong plates promote single-sided, Earth-like subduction. Once subducted, strong slabs transmit dynamic stresses and disrupt subduction. Slabs which are weakened do not disrupt subduction and furthermore exhibit a variety of observed morphologies.