Articles | Volume 8, issue 4
https://doi.org/10.5194/se-8-817-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/se-8-817-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Breaking supercontinents; no need to choose between passive or active
Martin Wolstencroft
JBA Risk Management, Skipton, BD23 3AE, England, UK
School of Earth and Ocean Sciences, Cardiff University, CF10 3YE, Wales, UK
School of Earth and Ocean Sciences, Cardiff University, CF10 3YE, Wales, UK
Related authors
No articles found.
Gwynfor T. Morgan, J. Huw Davies, Robert Myhill, and James Panton
Solid Earth, 16, 297–314, https://doi.org/10.5194/se-16-297-2025, https://doi.org/10.5194/se-16-297-2025, 2025
Short summary
Short summary
Phase transitions can influence mantle convection, inhibiting or promoting vertical flow. We are motivated by two examples: the post-spinel reaction proceeding via akimotoite at cool temperatures and a curving post-garnet boundary. Some have suggested these could change mantle dynamics. We find this is unlikely for both reactions: the first due to the uniqueness of thermodynamic state and the second due to the low magnitude of the boundary’s slope in pressure–temperature space and density change.
Conor P. B. O'Malley, Gareth G. Roberts, James Panton, Fred D. Richards, J. Huw Davies, Victoria M. Fernandes, and Sia Ghelichkhan
Geosci. Model Dev., 17, 9023–9049, https://doi.org/10.5194/gmd-17-9023-2024, https://doi.org/10.5194/gmd-17-9023-2024, 2024
Short summary
Short summary
We wish to understand how the history of flowing rock within Earth's interior impacts deflection of its surface. Observations exist to address this problem, and mathematics and different computing tools can be used to predict histories of flow. We explore how modeling choices impact calculated vertical deflections. The sensitivity of vertical motions at Earth's surface to deep flow is assessed, demonstrating how surface observations can enlighten flow histories.
Duo Zhang and J. Huw Davies
Solid Earth, 15, 1113–1132, https://doi.org/10.5194/se-15-1113-2024, https://doi.org/10.5194/se-15-1113-2024, 2024
Short summary
Short summary
We numerically model the influence of an arc on back-arc extension. The arc is simulated by placing a hot region on the overriding plate. We investigate how plate ages and properties of the hot region affect back-arc extension and present regime diagrams illustrating the nature of back-arc extension for these models. We find that back-arc extension occurs not only in the hot region but also, surprisingly, away from it, and a hot region facilitates extension on the overriding plate.
Cited articles
Allen, P. A. and Allen, J. R.: Basin Analysis, Principles and Applications, 2nd edn., Blackwell Publishing, Oxford, UK, ISBN: 0632052074, 549 pp., 2005.
Allken, V., Huismans, R. S., and Thieulot, C.: Three-dimensional numerical modeling of upper crustal extensional systems, J. Geophys. Res., 116, B10409, https://doi.org/10.1029/2011JB008319. 2011.
Audet, P. and Bürgmann, R.: Dominant role of tectonics inheritance in supercontinent cycles, Nat. Geosci., 4, 184–187, 2011.
Baumgardner, J. R.: Three dimensional treatment of convective flow in the Earth's mantle, J. Stat. Phys., 39, 501–511, 1985.
Becker, T. W. and Faccenna, C.: Mantle conveyor beneath the Tethyan collisional belt, Earth Planet. Sc. Lett., 3103, 453–461, 2011.
Bercovici, D. and Long, M. D.: Slab rollback instability and supercontinent dispersal, Geophys. Res. Lett., 41, 6659–6666, 2014.
Bercovici, D. and Ricard, Y.: Plate tectonics, damage and inheritance, Nature, 508, 513–516, 2014.
Bialas, R., Buck, W. R., and Qin, R.: How much magma is required to rift a continent?, Earth Planet. Sc. Lett., 292, 68–78, 2010.
Bleeker, W.: The late Archean record: a puzzle in ca. 35 pieces, Lithos, 71, 99–134, 2003.
Bott, M. H. P.: The stress regime associated with continental break-up, in: “Magmatism and the Causes of Continental Break-up”, edited by: Storey, B. C., Alabaster, T., and Pankhurst, R., J., Geol. Soc. Lond. Spec. Pub. 68, 125–136, 1992.
Bott, M. H. P.: Mechanisms of rifting: geodynamic modeling of continental rift systems, in: Continental Rifts: Evolution, Structure, Tectonics, Developments in Geotectonics, edited by: Olsen, K. H., 25, 27–43. Elsevier, Amsterdam, ISBN: 0 444 89567 1, 466 pp., 1995.
Bradley, D. C.: Secular trends in the geologic record and the supercontinent cycle, Earth-Sci. Rev., 108, 16–33, 2011.
Brandl, P. A., Regelous, M., Beier, C., and Haase, K. M.: High mantle temperatures following rifting caused by continental insulation, Nat. Geosci., 6, 391–394, 2013.
Brune, S., Popov, A. A., and Sobolev, S. V.: Quantifying the thermo-mechanical impact of plume arrival on continental break-up, Tectonophysics, 604, 51–59, 2013.
Buiter, S. J., and Torsvik, T. H.: A review of Wilson Cycle plate margins: a role for mantle plumes in continental break-up along sutures?, Gondwana Res., 26, 627–653, 2014.
Bunge, H. P., Richards, M. A., and Baumgardner, J. R.: A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh number: effects of depth dependent viscosity, heating mode, and an endothermic phase change, J. Geophys. Res.-Sol. Ea., 102, 11991–12007, 1997.
Burov, E. B.: Rheology and strength of the lithosphere, Mar. Petrol. Geol., 28, 1402–1443, 2011.
Burov, E. and Gerya, T.: Asymmetric three-dimensional topography over mantle plumes, Nature, 513, 85–89, 2014.
Cande, S. C. and Stegman, D. R.: Indian and African plate motions driven by the push force of the Reunion plume head, Nature, 4757354, 47–52, 2011.
Christensen, U. R. and Yuen, D. A.: Layered convection induced by phase transitions, J. Geophys. Res., 90, 10291–10300, 1985.
Cloetingh, S., Burov, E., and Francois, T.: Thermo-mechanical controls on intra-plate deformation and the role of plume-folding interactions in continental topography, Gondwana Res., 24, 815–837, 2013.
Condie, K. C.: Episodic continental growth and supercontinents: a mantle avalanche connection?, Earth Planet. Sc. Lett., 163, 97–108, 1998.
Conrad, C. P. and Lithgow Bertelloni, C.: Influence of continental roots and asthenosphere on plate mantle coupling, Geophys. Res. Lett., 33, L05312, https://doi.org/10.1029/2005GL025621, 2006.
Corti, G., Bonini, M., Conticelli, S., Innocenti, F., Manetti, P., and Sokoutis, D.: Analogue modelling of continental extension: a review focused on the relations between the patterns of deformation and the presence of magma, Earth-Sci. Rev., 63, 169–247, 2003.
Corti, G., van Wijk, J., Cloetingh, S., and Morley, C. K.: Tectonic inheritance and continental rift architecture: numerical and analogue models of the East African Rift system, Tectonics, 26, TC6006, 2007.
Dal Zilio, L., Faccenda, M., and Capitanio, F.: The role of deep subduction in supercontinent breakup, Tectonophysics, https://doi.org/10.1016/j.tecto.2017.03.006, in press, 2017.
Davies, D. R. and Davies, J. H.: Thermally-driven mantle plumes reconcile multiple hot-spot observations, Earth Planet. Sc. Lett., 278, 50–54, 2009.
Davies, G. F.: Punctuated tectonic evolution of the Earth, Earth Planet. Sc. Lett., 136, 363–379, 1995.
Davies, J. H. and von Blanckenburg, F.: Thermal controls on slab breakoff and the rise of high-pressure rocks during continental collisions, in: When Continents Collide: Geodynamics and geochemistry of Ultrahigh-Pressure Rocks, edited by: Hacker, B. R. and Liou, J. G., Kluwer Academic Publishers, Dordrecht, the Netherlands, 97–115, ISBN-10: 0412824205, ISBN-13: 978-0412824203, 1998.
Faccenna, C., Oncken, O., Holt, A. F., and Becker, T. W.: Initiation of the Andean orogeny by lower mantle subduction, Earth Planet. Sci. Lett., 463, 189–201, 2017.
Faccenna, M. and Dal Zilio, L.: The role of solid–solid phase transitions in mantle convection, Lithos, 268, 198–224, 2017.
Forsyth, D. and Uyeda, S.: On the relative importance of the driving forces of plate motion, Geophys, J. Roy. Astr. S., 43, 163–200, 1975.
Fourel, L., Milelli, L., Jaupart, C., and Limare, A.: Generation of continental rifts, basins, and swells by lithosphere instabilities, J. Geophys. Res.-Sol. Ea., 118, 1–21, 2013.
Gao, S. S., Liu, K. H., Reed, C. A., Massinque, B., Mdala, H., Moidaki, M., Mutamina, D., Atekwana, E. A., Shane Ingate, S., and Reusch, A. M.: Seismic arrays to study african rift initiation, EOS T. Am. Geophys. Un., 94, 213–214, 2013.
Goes, S., Capitanio, F. A., and Morra, G.: Evidence of lower-mantle slab penetration phases in plate motions, Nature, 451, 981–984, 2008.
Gueydan, F. and Précigout, J.: Modes of continental rifting as a function of ductile strain localization in the lithospheric mantle, Tectonophysics, 612–613, 18–25, 2014.
Gurnis, M.: Large-scale mantle convection and the aggregation and dispersal of supercontinents, Nature, 332, 695–699, 1988.
Herein, M., Galsa, A., and Lenkey, L.: Impact of the Rayleigh number and endothermic phase transition on the time behaviour of mantle avalanches, J. Geodyn., 66, 103–113, 2013.
Heron, P. J. and Lowman, J. P.: The impact of Rayleigh number on assessing the significance of supercontinent insulation, J. Geophys. Res.-Sol. Ea., 119, 711–733, 2014.
Höink, T., Lenardic, A., and Richards, M.: Depth-dependent viscosity and mantle stress amplification: implications for the role of the asthenosphere in maintaining plate tectonics, Geophys. J. Int., 191, 30–41, 2012.
Hooper, P., R.: The timing of crustal extension and the eruption of continental flood basalts, Nature, 345, 246–249, 1990.
Huismans, R. S., Podladchikov, Y. Y., and Cloetingh, S.: Transition from passive to active rifting: relative importance of asthenospheric doming and passive extension of the lithosphere, J. Geophys. Res., 106, 11271–11291, 2001.
Kodaira, S., Fujie, G., Yamashita, M., Sato, T., Takahashi, T., and Takahashi, N.: Seismological evidence of mantle flow driving plate motions at a palaeo-spreading centre. Nat. Geosci., 7, 371–375, 2014.
Koptev, A., Calais, E., Burov, E., Leroy, S., and Gerya, T.: Dual continental rift systems generated by plume-lithosphere interaction, Nat. Geosci., 8, 388–392, 2015.
Kusznir, N. J.: The distribution of stress with depth in the lithosphere: thermo-rheological and geodynamics constraints, Philos. T. R. Soc. A, 337, 95–110, 1991.
Le Pourhiet, L., Huet, B., Labrousse, L., Yao, K., Agard, P., and Jolivet, L.: Strain localisation in mechanically layered rocks beneath detachment zones: insights from numerical modelling, Solid Earth, 4, 135–152, https://doi.org/10.5194/se-4-135-2013, 2013.
Lowman, J. P. and Jarvis, G. T.: Continental collisions in wide aspect ratio and high Rayleigh number two dimensional mantle convection models, J. Geophys. Res-Sol. Ea., 101, 25485–25497, 1996.
Machetel, P. and Weber, P.: Intermittent layered convection in a model mantle with an endothermic phase change at 670 km, Nature, 350, 55–57, 1991.
Mitrovica, J. X. and Forte, A. M.: A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data, Earth Planet. Sc. Lett., 225, 177–189, 2004.
Moresi, L., Quenette, S., Lemiale, V., Mériaux, C., Appelbe, B., and Mühlhaus, H.-B.: Computational approaches to studying non-linear dynamics of the crust and mantle, Phys. Earth Planet. In., 163, 69–82, 2007.
Oldham, D. and Davies, J. H.: Numerical investigation of layered convection in a three-dimensional shell with application to planetary mantles, Geochem. Geophy. Geosy., 512, 1–25, 2004.
O'Neill, C., Lenardic, A., Moresi, L., Torsvik, T. H., and Lee, C. T.: Episodic Precambrian subduction, Earth Planet. Sc. Lett., 262, 552–562, 2007.
Peltier, W. R.: Phase-transition modulated mixing in the mantle of the Earth, Philos. T. Roy. Soc. A, 354, 1425–1447, 1996.
Regenauer-Lieb, K., Rosenbaum, G., and Weinberg, R. F.: Strain localisation and weakening of the lithosphere during extension, Tectonophysics, 458, 96–104, 2008
Rogers, J. J. W. and Santosh, M.: Supercontinents in Earth History, Gondwana Res., 6, 357–368, 2003.
Rolf, T., Coltice, N., and Tackley, P. J.: Linking continental drift, plate tectonics and the thermal state of the Earth's mantle, Earth Planet. Sc. Lett., 351–352, 134–146, 2012.
Rolf, T., Coltice, N., and Tackley, P. J.: Statistical cyclicity of the supercontinent cycle, Geophys. Res. Lett., 41, 2351–2358, 2014.
Şengör, A. M. C. and Burke, K.: Relative timing of rifting and volcanism on Earth and its tectonic implications, Geophys. Res. Lett., 5, 419–421, 1978.
Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., Krivolutskaya, N. A., Petrunin, A. G., Arndt, N. T., Radko, A., and Vasiliev, Y. R.: Linking mantle plumes, large igneous provinces and environmental catastrophes, Nature, 4777364, 312–316, 2011.
Stamps, D. S., Flesch, L. M., and Calais, E.: Lithospheric buoyancy forces in Africa from a thin sheet approach, Int. J. Earth Sci. (Geol. Rundsch.), 99, 1525, https://doi.org/10.1007/s00531-010-0533-2, 2010.
Storey, B. C.: The role of mantle plumes in continental breakup: case histories from Gondwanaland, Nature, 377, 301–308, 1995.
Storey, M., Mahoney, J. J., Saunders, A. D., Duncan, R. A., Kelley, S. P., and Coffin, M. F.: Timing of hot spot-related volcanism and the breakup of Madagascar and India, Science, 267, 852–855, 1995.
Sutton, J.: Long-term cycles in evolution of continents, Nature, 198, 731–735, 1963.
Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A., and Schubert, G.: Effects of an endothermic phase change at 670 km depth in a spherical model of convection in the Earth's mantle, Nature, 361, 699–704, 1993.
Turcotte, D. L. and Emerman, S. H.: Mechanisms of active and passive rifting, Tectonophysics, 94, 39–50, 1983.
Weeraratne, D. and Manga, M.: Transitions in the style of mantle convection at high Rayleigh numbers, Earth Planet. Sc. Lett., 160, 563–568, 1998.
White, R. and McKenzie, D. P.: Magmatism at rift zones: the generation of volcanic continental margins and flood basalts, J. Geophys. Res., 94, 7685–7729, 1989
Wilson, J. T.: Did the Atlantic close and then re-open?, Nature, 211, 676–681, 1966.
Wolstencroft, M.: Understanding the thermal evolution of Earth, Ph.D. diss., Cardiff University, Cardiff UK, 2008.
Wolstencroft, M. and Davies, J. H.: Influence of the Ringwoodite-Perovskite transition on mantle convection in spherical geometry as a function of Clapeyron slope and Rayleigh number, Solid Earth, 2, 315–326, 2011.
Yanagisawa, T., Yamagishi, Y., Hamano, Y., and Stegman, D. R.: Mechanism for generating stagnant slabs in 3-D spherical mantle convection models at Earth-like conditions, Phys. Earth Planet. In., 183, 342–352, 2010.
Ye, Y., Gu, C., Shim, S. H., Meng, Y., and Prakapenka, V.: The postspinel boundary in pyrolitic compositions determined in the laser-heated diamond anvil cell, Geophys. Res. Lett., 4111, 3833–3841, 2014.
Zhong, S., Zhang, N., Li, Z. X., and Roberts, J. H.: Supercontinent cycles, true polar wander, and very long-wavelength mantle convection, Earth Planet. Sc. Lett., 261, 551–564, 2007.
Yoshida, M.: Mantle convection with longest wavelength thermal heterogeneity in a 3D spherical model: degree one or two?, Geophys. Res. Lett., 35, L23302, https://doi.org/10.1029/2008GL036059, 2008.
Yoshida, M. and Santosh, M.: Mantle convection modeling of the supercontinent cycle: introversion, extroversion, or a combination?, Geosci. Front., 5, 77–81, 2014.
Ziegler, P. A. and Cloetingh, S.: Dynamic processes controlling evolution of rifted basins, Earth-Sci. Rev., 64, 1–50, 2004.
Short summary
A key aspect of plate tectonics is the periodic assembly and subsequent break-up of supercontinents. There is strong evidence that this has happened repeatedly over geological history, but exactly how a supercontinent breaks up is still debated. In this paper, we use computer modelling of Earth's interior to show that the force needed to break a supercontinent should always arise from a combination of global-scale passive
pulling apartand active
pushing apartforces driven by the mantle.
A key aspect of plate tectonics is the periodic assembly and subsequent break-up of...