Articles | Volume 12, issue 4
https://doi.org/10.5194/se-12-1005-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-12-1005-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Emplacement of “exotic” Zechstein slivers along the inverted Sontra Graben (northern Hessen, Germany): clues from balanced cross sections and geometrical forward modeling
Jakob Bolz
Department for Structural Geology & Geodynamics, Geoscience Centre,
University of Göttingen, 37077 Göttingen, Germany
Jonas Kley
CORRESPONDING AUTHOR
Department for Structural Geology & Geodynamics, Geoscience Centre,
University of Göttingen, 37077 Göttingen, Germany
Related authors
No articles found.
Muhammad Anees, David Hindle, Ernesto Meneses Rioseco, Jonas Kley, Bernd Leiss, Mumtaz Muhammad Shah, and Javed Akhter Qureshi
EGUsphere, https://doi.org/10.5194/egusphere-2025-5252, https://doi.org/10.5194/egusphere-2025-5252, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
We studied how heat is distributed underground in the western Himalaya to understand its potential for geothermal energy. Using computer models, we show that heat from radioactive rocks, uplift of mountains, and the shape of the land all influence temperatures in the crust. Deep valleys such as the Indus and Hunza may host accessible hot zones, meaning they could be good places to explore for geothermal energy.
Renas I. Koshnaw, Jonas Kley, and Fritz Schlunegger
Solid Earth, 15, 1365–1383, https://doi.org/10.5194/se-15-1365-2024, https://doi.org/10.5194/se-15-1365-2024, 2024
Short summary
Short summary
This study investigates how Earth's geodynamic processes shaped the NW Zagros mountain belt in the Middle East. The Neogene foreland basin underwent subsidence due to the load of the surface and the subducting slab and was later influenced by the Neotethys horizontal slab tearing and the associated asthenospheric mantle flow during the Late Miocene and onward.
Johannes Rembe, Renjie Zhou, Edward R. Sobel, Jonas Kley, Jie Chen, Jian-Xin Zhao, Yuexing Feng, and Daryl L. Howard
Geochronology, 4, 227–250, https://doi.org/10.5194/gchron-4-227-2022, https://doi.org/10.5194/gchron-4-227-2022, 2022
Short summary
Short summary
Calcite is frequently formed during alteration processes in the basaltic, uppermost layer of juvenile oceanic crust. Weathered oceanic basalts are hard to date with conventional radiometric methods. We show in a case study from the North Pamir, Central Asia, that calcite U–Pb age data, supported by geochemistry and petrological microscopy, have potential to date sufficiently old oceanic basalts, if the time span between basalt extrusion and latest calcite precipitation (~ 25 Myr) is considered.
David Hindle and Jonas Kley
Solid Earth, 12, 2425–2438, https://doi.org/10.5194/se-12-2425-2021, https://doi.org/10.5194/se-12-2425-2021, 2021
Short summary
Short summary
Central western Europe underwent a strange episode of lithospheric deformation, resulting in a chain of small mountains that run almost west–east across the continent and that formed in the middle of a tectonic plate, not at its edges as is usually expected. Associated with these mountains, in particular the Harz in central Germany, are marine basins contemporaneous with the mountain growth. We explain how those basins came to be as a result of the mountains bending the adjacent plate.
Thomas Voigt, Jonas Kley, and Silke Voigt
Solid Earth, 12, 1443–1471, https://doi.org/10.5194/se-12-1443-2021, https://doi.org/10.5194/se-12-1443-2021, 2021
Short summary
Short summary
Basin inversion in central Europe is believed to have started during Late Cretaceous (middle Turonian) and probably proceeded until the Paleogene. Data from different marginal troughs in central Europe point to an earlier start of basin inversion (in the Cenomanian). The end of inversion is overprinted by general uplift but had probably already occurred in the late Campanian to Maastrichtian. Both the start and end of inversion occurred with low rates of uplift and subsidence.
Hilmar von Eynatten, Jonas Kley, István Dunkl, Veit-Enno Hoffmann, and Annemarie Simon
Solid Earth, 12, 935–958, https://doi.org/10.5194/se-12-935-2021, https://doi.org/10.5194/se-12-935-2021, 2021
Elco Luijendijk, Leo Benard, Sarah Louis, Christoph von Hagke, and Jonas Kley
Solid Earth Discuss., https://doi.org/10.5194/se-2021-22, https://doi.org/10.5194/se-2021-22, 2021
Revised manuscript not accepted
Short summary
Short summary
Our knowledge of the geological history of mountain belts relies strongly on thermochronometers, methods that reconstruct the temperature history of rocks found in mountain belts. Here we provide a new equation that describes the motion of rocks in a simplified, wedge-shaped representation of a mountain belt. The equation can be used to interpret thermochronometers and can help quantify the deformation, uplift and erosion history of mountain belts.
Cited articles
Adam, J., Ge, Z., and Sanchez, M.: Salt-structural styles and kinematic
evolution of the Jequitinhonha deepwater fold belt, central Brazil passive
margin, Mar. Petr. Geol., 37, 101–120,
https://doi.org/10.1016/j.marpetgeo.2012.04.010, 2012.
Arp, G., Tanner, D., and Leiss, B.: Struktur der
Leinetalgraben-Randstörung bei Reiffenhausen, in: Neue Untersuchungen zur
Geologie der Leinetalgrabenstruktur, Universitätsverlag Göttingen, 17–21, 2011.
Baldschuhn, R., Frisch, U., and Kockel, F.: Der Salzkeil, ein strukturelles
Requisit der saxonischen Tektonik, Z. Dtsch. Geol.
Ges., 149, 59–69, 1998.
Becker, F. and Bechstädt, T.: Sequence stratigraphy of a
carbonate-evaporite succession (Zechstein 1, Hessian Basin, Germany),
Sedimentology, 53, 1083–1120,
https://doi.org/10.1111/j.1365-3091.2006.00803.x, 2006.
Betz, D., Fohrer, F., Greiner, G., Plein, E., and Plein, G.: Evolution of the
Lower Saxony Basin, Tectonophysics, 137, 127–170, 1987.
Beyrich, E. and Moesta, F.: Erläuterungen zur geologischen Specialkarte
von Preussen und den Thüringischen Staaten, Blatt Sontra, 1872.
Bosse, H.: Tektonische Untersuchungen an niederhessischen Grabenzonen
südlich des Unterwerrasattels, Abh. des Preuß. Geol. Landesamtes,
Neue Folge, 1–37, 1934.
Brandstetter, A.: Der nordwestliche Sontra-Graben, Unpublished diploma
mapping project report, University of Jena, 2006.
Brochwicz-Lewiński, W. and Poźaryski, W.: The mesozoic and tertiary
evolution of the Polish Trough, Tectonophysics, 137, 1–4, https://doi.org/10.1016/0040-1951(87)90312-X, 1987.
de Jager, J.: Geological development, in: Geology of the Netherlands,
Roy. Netherlands Acad. Arts Sci., Amsterdam, 5–26, 2007.
Demercian, S., Szatmari, P., and Cobbold, P. R.: Style and pattern of salt
diapirs due to thin-skinned gravitational gliding, Campos and Santos basins,
offshore Brazil, Tectonophysics, 228, 393–433,
https://doi.org/10.1016/0040-1951(93)90351-J, 1993.
Drozdzewski, G.: Die Wurzel der Osning-Überschiebung und der Mechanismus
herzynischer Inversionsstörungen in Mitteleuropa, Geol. Rundsch.,
77, 127–141, https://doi.org/10.1007/BF01848680, 1988.
Drozdzewski, G. and Dölling, M.: Elemente der Osning-Störungszone
(NW-Deutschland), Leitstrukturen einer Blattverschiebungszone,
https://www.gd.nrw.de/pr_bs_scriptumonline.htm (last access: 25 March 2021), 2018.
Duval, B., Cramez, C., and Jackson, M. P. A.: Raft tectonics in the Kwanza
Basin, Angola, Mar. Petr. Geol., 9, 389–404,
https://doi.org/10.1016/0264-8172(92)90050-O, 1992.
Engelder, T.: Loading paths to joint propagation during a tectonic cycle: an
example from the Appalachian Plateau, USA, J. Struct. Geol., 74,
459–476, 1985.
Franzke, H.-J., Müller, R., Voigt, T., and von Eynatten, H.: Paleo-Stress
Paths in the Harz Mountains and surrounding areas (Germany) between the
Triassic and the Upper Cretaceous Paläo-Stress Pfade im Harz und
angrenzenden Gebieten (Deutschland) zwischen der Trias und der Oberkreide,
Z. Dtsch. Ges. Geowiss., 35, 141–156, 2007.
Gebhardt, U., Lützner, H., Ehling, B. C., Schneider, J. W., Voigt, S.,
and Walter, H.: Comments on the Stratigraphical Table of Germany
2016–Rotliegend Version B, Z. Dtsch. Ges. Geowiss., 169, 129–137, 2018.
Hayward, A. B. and Graham, R. H.: Some geometrical characteristics of
inversion, Geol. Soc. Spec. Publ., 44, 17–39, 2015.
Hooper, R. J., Goh, L. S., and Dewey, F.: The inversion history of the
northeastern margin of the Broad Fourteens Basin, Geol. Soc. Spec. Publ., 88, 307–317, https://doi.org/10.1144/gsl.sp.1995.088.01.17, 1995.
Jähne, F.: Der Sontra-Graben, NE-Teil, Unpublished diploma mapping
project report, University of Jena, 2004.
Kiersnowski, H., Paul, J., Peryt, T. M., and Smith, D. B.: Facies, Paleogeography, and Sedimentary History of the Southern Permian Basin in Europe, in: The Permian of Northern Pangea, edited by: Scholle, P. A., Peryt, T. M., and Ulmer-Scholle, D. S., 119–136, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-78590-0_7, 1995
Kley, J.: Saxonische Tektonik im 21. Jahrhundert, Z. Dtsch. Ges. Geowiss., 164, 295–311, https://doi.org/10.1127/1860-1804/2013/0022, 2013.
Kley, J. and Voigt, T.: Late Cretaceous intraplate thrusting in central
Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision,
Geology, 36, 839–842, https://doi.org/10.1130/G24930A.1, 2008.
Kockel, F.: Inversion structures in Central Europe – Expressions and
reasons, an open discussion, Geol. en Mijnbouw/Netherlands J. Geosci.,
82, 367–382, https://doi.org/10.1017/s0016774600020187, 2003.
Krzywiec, P.: Mid-Polish Trough inversion–seismic examples, main
mechanisms and its relationship to the Alpine–Carpathian collision, EGU
Stephan Mueller Spec. Publ. Ser., 1, 151–165, 2002a.
Krzywiec, P.: Structural inversion of the Pomeranian and Kuiavian segments of
the Mid-Polish Trough – lateral variations in timing and structural style,
Geol. Q., 51, 151–168, 2006.
Kulick, J., Leifeld, D., and Meisl, S.: Petrofazielle und chemische Erkundung
des Kupferschiefers der Hessischen Senke und des Harz-Westrandes, Geol.
Jahrb. D, 68, 223 pp., Schweizerbart, Stuttgart, Germany, 1984.
Lachmann, R.: Ekzeme und Tektonik, Zentralbl. f. Min. usw, 414,
Schweizerbart'sche Verlagshandlung, Stuttgart, Germany, available at:
https://www.biodiversitylibrary.org/bibliography/110088 (last access: 25 March 2021), 1917.
Martini, H. J.: Großschollen und Gräben zwischen Habichtswald und
Rheinischem Schiefergebirge, Geotekt. Forsch., 1, 69–123, 1937.
Maystrenko, Y. P. and Scheck-Wenderoth, M.: 3D lithosphere-scale density
model of the Central European Basin System and adjacent areas,
Tectonophysics, 601, 53–77, https://doi.org/10.1016/j.tecto.2013.04.023,
2013.
Mazur, S., Scheck-Wenderoth, M., and Krzywiec, P.: Different modes of the
Late Cretaceous–Early Tertiary inversion in the North German and Polish
basins, Int. J. Earth Sci., 94, 782–798, https://doi.org/10.1007/s00531-005-0016-z, 2005.
Menning, M.: Die Stratigraphische Tabelle von Deutschland 2016 (STD 2016),
The Stratigraphic Table of Germany 2016 (STG 2016), Z. Dtsch. Ges. Geowiss., 169, 105–128, 2018.
Möbus, H.-M.: Die Hessischen Gräben als mehrfach duktil entkoppelte
“pull apart”-Strukturen, Geol. Jb. Hessen, 135, 2–23, 2007.
Moesta, F.: Erläuterungen zur geologischen Specialkarte von Preussen und
den Thüringischen Staaten, Blatt Waldkappel, 1876.
Motzka-Noering, R., Anderle, H.-J., Blum, R., Diederich, G., Grundlach, H.,
Hentschel, G., Herrmann, A., Horn, M., Kulick, J., Lindstedt, H.-J.,
Malzahn, E., Prinz, H., Reichmann, H., Schade, H., Stoppel, D., and
Theuerjahr, A.-K.: Geologische Karte von Hessen 1 : 25 000 Erläuterungen,
Blatt 4925 Sontra, 2. Aufl., 1987.
Navabpour, P., Malz, A., Kley, J., Siegburg, M., Kasch, N., and Ustaszewski,
K.: Intraplate brittle deformation and states of paleostress constrained by
fault kinematics in the central German platform, Tectonophysics, 694,
146–163, https://doi.org/10.1016/j.tecto.2016.11.033, 2017.
Paul, J., Heggemann, H., Dittrich, D., Hug-Diegel, N., Huckriede, H.,
Nitsch, E., and der SKPT/DSK, A G Zechstein: Comments to the Stratigraphic
Chart of Germany 2016: the Zechstein Group, Z. Dtsch. Ges. Geowiss., 169, 139–145, https://doi.org/10.1127/zdgg/2018/0136, 2018.
QGIS Development Team: QGIS Geographic Information System, QGIS Association, available at: http://www.qgis.org (last access: 25 March 2021), 2015.
Rauche, H. and Franzke, H. J.: Stress field evolution at the northern part
of the south German Block on the territory of the GDR, Gerlands Beitr.
Geophys., 99, 441–461, 1990.
Richter-Bernburg, G.: Stratigraphische Gliederung des deutschen Zechsteins,
Z. Dtsch. Geol. Ges., 105, 843–854, 1953.
Schröder, E.: Tektonische Studien an niederhessischen Gräben, Abh. preuß. geol. L-Anst. NF, 95, 57–82, 1925.
Seidel, G.: Die Dislokationszonen zwischen Bonenburg und Volkmarsen,
Geotekt. Forsch., 3, 1–32, 1938.
Sippel, J., Scheck-Wenderoth, M., Reicherter, K., and Mazur, S.: Paleostress
states at the south-western margin of the Central European Basin System –
Application of fault-slip analysis to unravel a polyphase deformation
pattern, Tectonophysics, 470, 129–146,
https://doi.org/10.1016/j.tecto.2008.04.010, 2009.
Stewart, S. A.: Salt tectonics in the North Sea Basin: a structural style
template for seismic interpreters, Geol. Soc. Spec. Pub., 272–361, https://doi.org/10.1144/GSL.SP.2007.272.01.30, 2007.
Stewart, S. A. and Coward, M. P.: Synthesis of salt tectonics in the
southern North Sea, UK, Mar. Petr. Geol., 12, 457–475,
https://doi.org/10.1016/0264-8172(95)91502-G, 1995.
Voigt, T., Reicherter, K., von Eynatten, H., Littke, R., Voigt, S., and Kley,
J.: Sedimentation during basin inversion, in: Dynamics of Complex Sedimentary
Basins, The Example of the Central European Basin System, edited by: Littke, S. N. R., Bayer, U., and Gajewski, D., Springer-Verlag, Berlin
Heidelberg, 211–232, 2008.
Voigt, T., VonEynatten, H., and Kley, J.: Kommentar zu, Nördliche
Harzrandstorung: Diskussionsbeitrage zu Tiefenstruktur, Zeitlichkeit und
Kinematik von Volker Wrede (ZDGG 159/2: 293316), Z. Dtsch. Ges. Geowiss., 93–99, 2009.
von Eynatten, H., Voigt, T., Meier, A., Franzke, H. J., and Gaupp, R.:
Provenance of Cretaceous clastics in the Subhercynian Basin: Constraints to
exhumation of the Harz Mountains and timing of inversion tectonics in
Central Europe, Int. J. Earth Sci., 97, 1315–1330,
https://doi.org/10.1007/s00531-007-0212-0, 2008.
von Eynatten, H., Dunkl, I., Brix, M., Hoffmann, V.-E., Raab, M., Thomson,
S. N., and Kohn, B.: Late Cretaceous exhumation and uplift of the Harz
Mountains, Germany: a multi-method thermochronological approach, Int. J.
Earth Sci., 108, 2097–2111, https://doi.org/10.1007/s00531-019-01751-5,
2019.
von Eynatten, H., Kley, J., Dunkl, I., Hoffmann, V.-E., and Simon, A.: Late Cretaceous to Paleogene exhumation in Central Europe – localized inversion vs. large-scale domal uplift, Solid Earth Discuss. [preprint], https://doi.org/10.5194/se-2020-183, in review, 2020.
Wrede, V.: Der nördliche Harzrand – flache Abscherbahn oder
wrench-fault-system?, Geol. Rundsch., 77, 101–114,
https://doi.org/10.1007/BF01848678, 1988.
Wrede, V.: Nördliche Harzrandstörung: Diskussionsbeiträge zu
Tiefenstruktur, Zeitlichkeit und Kinematik [The northern border fault of the
Harz Mountains–contributions to the discussion on deep structure, timing
and kinematics], Z. Dtsch. Ges. Geow., 159, 293–316, 2008.
Wrede, V.: Antwort auf den Kommentar von T. Voigt, H. von Eynatten J. Kley
zu, Nördliche Harzrandstörung: Diskussionsbeitrage zu
Tiefenstruktur, Zeitlichkeit und Kinematik, Z. Dtsch. Ges. Geow., 160, 100–106, 2009.
Ziegler, P.: Geological Atlas of Western and Central Europe (2nd Edition),
Shell Internationale Petroleum Mij, BV and Geological Society of London
(London), 1990.
Ziegler, P. A.: Late Cretaceous and Cenozoic intra-plate compressional
deformations in the Alpine foreland – a geodynamic model, Tecronophysics,
137, 389–420, 1987.
Short summary
To assess the role smaller graben structures near the southern edge of the Central European Basin System play in the basin’s overall deformational history, we take advantage of a feature found on some of these structures, where slivers from older rock units appear along the graben's main fault, surrounded on both sides by younger strata. The implications for the geometry of the fault provide a substantially improved estimate for the magnitude of normal and thrust motion along the fault system.
To assess the role smaller graben structures near the southern edge of the Central European...
Special issue