Articles | Volume 14, issue 9
https://doi.org/10.5194/se-14-1005-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-14-1005-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Natural fracture patterns at Swift Reservoir anticline, NW Montana: the influence of structural position and lithology from multiple observation scales
School of Geosciences, University of Aberdeen, King's College,
Aberdeen, AB24 3UE, UK
present address: Space Science Division, Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238-5166, USA
Hannah Watkins
School of Geosciences, University of Aberdeen, King's College,
Aberdeen, AB24 3UE, UK
Clare E. Bond
School of Geosciences, University of Aberdeen, King's College,
Aberdeen, AB24 3UE, UK
Marian J. Warren
Jenner GeoConsulting Inc., 107 Lake Tahoe Place SE, Calgary, Alberta T2J 4B7, Canada
Mark A. Cooper
School of Geosciences, University of Aberdeen, King's College,
Aberdeen, AB24 3UE, UK
Sherwood GeoConsulting Inc., 140 Lake Mead Crescent SE, Calgary, Alberta T2J 4A1, Canada
Related authors
Adam J. Cawood, David A. Ferrill, Kevin J. Smart, and Michael J. Hartnett
EGUsphere, https://doi.org/10.5194/egusphere-2025-4767, https://doi.org/10.5194/egusphere-2025-4767, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
Understanding fault properties is critical for constraining risks associated with fluid flow along these structures but fault dimensions are often underestimated due to low resolution of subsurface data. To address this problem, we quantify relationships between host rock composition and fault displacement gradients at an outcrop near Moab, Utah. We integrate a variety of methods to analyze how mineralogy and mechanical properties influence fault geometry.
Clare E. Bond and Adam J. Cawood
Geosci. Commun., 4, 233–244, https://doi.org/10.5194/gc-4-233-2021, https://doi.org/10.5194/gc-4-233-2021, 2021
Short summary
Short summary
Virtual outcrop models are increasingly used in geoscience teaching, but their efficacy as a training tool for 3D thinking has been little tested. We find that using a virtual outcrop increases the participants' ability to choose the correct geological block model. That virtual outcrops are viewed positively, but only in a blended learning environment and not as a replacement for fieldwork, and virtual outcrop use could improve equality, diversity and inclusivity in geoscience.
Adam J. Cawood, David A. Ferrill, Kevin J. Smart, and Michael J. Hartnett
EGUsphere, https://doi.org/10.5194/egusphere-2025-4767, https://doi.org/10.5194/egusphere-2025-4767, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
Understanding fault properties is critical for constraining risks associated with fluid flow along these structures but fault dimensions are often underestimated due to low resolution of subsurface data. To address this problem, we quantify relationships between host rock composition and fault displacement gradients at an outcrop near Moab, Utah. We integrate a variety of methods to analyze how mineralogy and mechanical properties influence fault geometry.
Clare E. Bond, Jessica H. Pugsley, Lauren Kedar, Sarah R. Ledingham, Marianna Z. Skupinska, Tomasz K. Gluzinski, and Megan L. Boath
Geosci. Commun., 5, 307–323, https://doi.org/10.5194/gc-5-307-2022, https://doi.org/10.5194/gc-5-307-2022, 2022
Short summary
Short summary
Virtual field trips are used to engage students who are unable to go into the field with geological field work. Here, we investigate the perceptions of staff and students before and after a virtual field trip, including the investigation of the success of mitigation measures designed to decrease barriers to engagement and inclusion. We conclude that negative and positive perceptions exist and that effective mitigation measures can be used to improve the student experience.
Lauren Kedar, Clare E. Bond, and David K. Muirhead
Solid Earth, 13, 1495–1511, https://doi.org/10.5194/se-13-1495-2022, https://doi.org/10.5194/se-13-1495-2022, 2022
Short summary
Short summary
Raman spectroscopy of carbon-bearing rocks is often used to calculate peak temperatures and therefore burial history. However, strain is known to affect Raman spectral parameters. We investigate a series of deformed rocks that have been subjected to varying degrees of strain and find that there is a consistent change in some parameters in the most strained rocks, while other parameters are not affected by strain. We apply temperature calculations and find that strain affects them differently.
Alexander Schaaf, Miguel de la Varga, Florian Wellmann, and Clare E. Bond
Geosci. Model Dev., 14, 3899–3913, https://doi.org/10.5194/gmd-14-3899-2021, https://doi.org/10.5194/gmd-14-3899-2021, 2021
Short summary
Short summary
Uncertainty is an inherent property of any model of the subsurface. We show how geological topology information – how different regions of rocks in the subsurface are connected – can be used to train uncertain geological models to reduce uncertainty. More widely, the method demonstrates the use of probabilistic machine learning (Bayesian inference) to train structural geological models on auxiliary geological knowledge that can be encoded in graph structures.
Jennifer J. Roberts, Clare E. Bond, and Zoe K. Shipton
Geosci. Commun., 4, 303–327, https://doi.org/10.5194/gc-4-303-2021, https://doi.org/10.5194/gc-4-303-2021, 2021
Short summary
Short summary
The potential for hydraulic fracturing (fracking) to induce seismicity is a topic of widespread interest. We find that terms used to describe induced seismicity are poorly defined and ambiguous and do not translate into everyday language. Such bad language has led to challenges in understanding, perceiving, and communicating risks around seismicity and fracking. Our findings and recommendations are relevant to other geoenergy topics that are potentially associated with induced seismicity.
Clare E. Bond and Adam J. Cawood
Geosci. Commun., 4, 233–244, https://doi.org/10.5194/gc-4-233-2021, https://doi.org/10.5194/gc-4-233-2021, 2021
Short summary
Short summary
Virtual outcrop models are increasingly used in geoscience teaching, but their efficacy as a training tool for 3D thinking has been little tested. We find that using a virtual outcrop increases the participants' ability to choose the correct geological block model. That virtual outcrops are viewed positively, but only in a blended learning environment and not as a replacement for fieldwork, and virtual outcrop use could improve equality, diversity and inclusivity in geoscience.
Cited articles
Agosta, F., Alessandroni, M., Antonellini, M., Tondi, E., and Giorgioni, M.:
From fractures to flow: a field-based quantitative analysis of an outcropping carbonate reservoir, Tectonophysics, 490, 197–213, 2010.
Aliverti, E., Biron, M., Francesconi, A., Mattiello, D., Nardon, S., and
Peduzzi, C.: Data analysis, processing and 3D fracture network simulation at
wellbore scale for fractured reservoir description, in: Fracture and In-Situ
Stress Characterization of Hydrocarbon Reservoirs, edited by: Ameen, M.,
Geol. Soc. Spec. Publ., 209, 27–37, 2003.
Awdal, A., Healy, D., and Alsop, G. I.: Fracture patterns and petrophysical
properties of carbonates undergoing regional folding: A case study from
Kurdistan, N Iraq, Mar. Petrol. Geol., 71, 149–167, 2016.
Bachu, S.: Synthesis and model of formation-water flow, Alberta Basin, Canada, Am. Assoc. Petrol. Geol. Bull., 79, 1159–1178, 1995.
Becker, I., Koehrer, B., Waldvogel, M., Jelinek, W., and Hilgers, C.: Comparing fracture statistics from outcrop and reservoir data using conventional manual and t-LiDAR derived scanlines in Ca2 carbonates from the Southern Permian Basin, Germany, Mar. Petrol. Geol., 95, 228–245, 2018.
Bemis, S. P., Micklethwaite, S., Turner, D., James, M. R., Akciz, S., Thiele,
S. T., and Bangash, H. A.: Ground-based and UAV-Based photogrammetry: A
multi-scale, high-resolution mapping tool for structural geology and paleoseismology, J. Struct. Geol., 69, 163–178, 2014.
Bergbauer, S. and Pollard, D. D.: A new conceptual fold-fracture model including prefolding joints, based on the Emigrant Gap anticline, Wyoming,
Geol. Soc. Am. Bull., 116, 294–307, 2004.
Bödvarsson, G. S. and Tsang, C. F.: Injection and thermal breakthrough in
fractured geothermal reservoirs, J. Geophys. Res.-Solid, 87, 1031–1048, 1982.
Bond, C. E., Wightman, R., and Ringrose, P. S.: The influence of fracture
anisotropy on CO2 flow, Geophys. Res. Lett., 40, 1284–1289, 2013.
Bond, C. E., Kremer, Y., Johnson, G., Hicks, N., Lister, R., Jones, D. G.,
Haszeldine, R. S., Saunders, I., Gilfillan, S. M., Shipton, Z. K., and Pearce, J.: The physical characteristics of a CO2 seeping fault: The implications of fracture permeability for carbon capture and storage integrity, Int. J. Greenh. Gas Control, 61, 49–60, 2017.
Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., and
Berkowitz, B.: Scaling of fracture systems in geological media, Rev. Geophys., 39, 347–383, 2001.
Bossennec, C., Frey, M., Seib, L., Bär, K., and Sass, I.: Multiscale
characterisation of fracture patterns of a crystalline reservoir analogue,
Geosciences, 11, 371, https://doi.org/10.3390/geosciences11090371, 2021.
Bowness, N., Cawood, A., Ferrill, D., Smart, K., and Bellow, H: Mineralogy
controls fracture containment in mechanically layered carbonates, Geol. Mag., 159, 1855–1873, 2022.
Burberry, C. M., Cannon, D. L., Cosgrove, J. W., and Engelder, T.: Fracture
patterns associated with the evolution of the Teton anticline, Sawtooth Range, Montana, USA, in: Folding and Fracturing of Rocks: 50 Years of Research since the Seminal Text Book of J. G. Ramsay, edited by: Bond, C. E.
and Lebit, H. D., Geol. Soc. Spec. Publ., 487, 229–261, 2019.
Caine, J. S., Evans, J. P., and Forster, C. B.: Fault zone architecture and
permeability structure, Geology, 24, 1025–1028, 1996.
Casini, G., Gillespie, P. A., Vergés, J., Romaire, I., Fernández, N.,
Casciello, E., Saura, E., Mehl, C., Homke, S., Embry, J. C., and Aghajari, L.: Sub-seismic fractures in foreland fold and thrust belts: insight from
the Lurestan Province, Zagros Mountains, Iran, Petrol. Geosci., 17, 263–282,
2011.
Castaing, C., Halawani, M. A., Gervais, F., Chilès, J. P., Genter, A.,
Bourgine, B., Ouillon, G., Brosse, J. M., Martin, P., Genna, A., and Janjou,
D.: Scaling relationships in intraplate fracture systems related to Red Sea
rifting, Tectonophysics, 261, 291–314, 1996.
Cawood, A. J., Bond, C. E., Howell, J. A., Butler, R. W., and Totake, Y.: LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models, J. Struct. Geol., 98, 67–82, 2017.
Cawood, A. J., Corradetti, A., Granado, P., and Tavani, S.: Detailed structural analysis of digital outcrops: A learning example from the
Kermanshah-Qulqula radiolarite basin, Zagros Belt, Iran, J. Struct. Geol.,
154, 104489, https://doi.org/10.1016/j.jsg.2021.104489, 2022.
Chabani, A., Trullenque, G., Ledésert, B. A., and Klee, J.: Multiscale
Characterization of fracture patterns: A case study of the Noble Hills Range
(Death Valley, CA, USA), application to geothermal reservoirs, Geosciences,
11, 280, https://doi.org/10.3390/geosciences11070280, 2021.
Cooke, M. L. and Underwood, C. A.: Fracture termination and step-over at
bedding interfaces due to frictional slip and interface opening, J. Struct.
Geol., 23, 223–238, 2001.
Cooke, M. L., Simo, J. A., Underwood, C. A., and Rijken, P.: Mechanical
stratigraphic controls on fracture patterns within carbonates and implications for groundwater flow, Sediment. Geol., 184, 225–239, 2006.
Cooper, M. A.: The analysis of fracture systems in subsurface thrust structures from the Foothills of the Canadian Rockies, in: Thrust Tectonics,
edited by: McClay, K. R., Chapman & Hall, London, 391–406, https://doi.org/10.1007/978-94-011-3066-0_35, 1991.
Cooper, S. P., Goodwin, L. B., and Lorenz, J. C.: Fracture and fault patterns
associated with basement-cored anticlines: The example of Teapot Dome, Wyoming, AAPG Bull., 90, 1903–1920, 2006.
Corradetti, A., Tavani, S., Parente, M., Iannace, A., Vinci, F., Pirmez, C.,
Torrieri, S., Giorgioni, M., Pignalosa, A., and Mazzoli, S.: Distribution
and arrest of vertical through-going joints in a seismic-scale carbonate
platform exposure (Sorrento peninsula, Italy): insights from integrating field survey and digital outcrop model, J. Struct. Geol., 108, 121–136, 2018.
Cosgrove, J. W. and Ameen, M. S. (Eds.): A comparison of the geometry, spatial organization and fracture patterns associated with forced folds and buckle folds, in: Forced Folds and Fractures, Geol. Soc. Spec. Publ., 169, 7–21, 1999.
De Marsily, G., Delay, F., Gonçalvès, J., Renard, P., Teles, V., and
Violette, S.: Dealing with spatial heterogeneity, Hydrogeol. J., 13, 161–183, 2005.
Dimmen, V., Rotevatn, A., and Lecomte, I.: Imaging of small-scale faults in
seismic reflection data: Insights from seismic modelling of faults in
outcrop, Mar. Petrol. Geol., 147, 105980, https://doi.org/10.1016/j.marpetgeo.2022.105980, 2023.
Dunn, D. E., LaFountain, L. J., and Jackson, R. E.: Porosity dependence and
mechanism of brittle fracture in sandstones, J. Geophys. Res., 78,
2403–2417, 1973.
Ferrill, D. A., Winterle, J., Wittmeyer, G., Sims, D. W., Colton, S., Armstrong, A., and Morris, A. P.: Stressed rock strains groundwater at Yucca
Mountain, Nevada, GSA Today, 9, 1–8, 1999.
Ferrill, D. A., Smart, K. J., Cawood, A. J., and Morris, A. P.: The fold-thrust belt stress cycle: Superposition of normal, strike-slip, and thrust faulting deformation regimes, J. Struct. Geol., 148, 104362, https://doi.org/10.1016/j.jsg.2021.104362, 2021.
Fischer, M. P. and Wilkerson, M. S.: Predicting the orientation of joints from fold shape: Results of pseudo–three-dimensional modeling and curvature
analysis, Geology, 28, 15–18, 2000.
Fox, D. B., Sutter, D., Beckers, K. F., Lukawski, M. Z., Koch, D. L., Anderson, B. J., and Tester, J. W.: Sustainable heat farming: Modeling extraction and recovery in discretely fractured geothermal reservoirs, Geothermics, 46, 42–54, 2013.
Francioni, M., Pace, P., Vitulli, M., Sciarra, N., and Calamita, F.:
Distribution of joints in the hinge-line culmination of foreland-verging
overturned anticlines: an example from the Montagna dei Fiori structure in
the Central Apennines of Italy, Geol. Mag., 156, 1445–1454, 2019.
Fuentes, F., DeCelles, P. G., and Constenius, K. N.: Regional structure and
kinematic history of the Cordilleran fold-thrust belt in northwestern Montana, USA, Geosphere, 8, 1104–1128, 2012.
Gautschi, A.: Hydrogeology of a fractured shale (Opalinus Clay): Implications for deep geological disposal of radioactive wastes, Hydrogeol. J., 9, 97–107, 2001.
Gholami, R., Raza, A., and Iglauer, S.: Leakage risk assessment of a CO2
storage site: A review, Earth-Sci. Rev., 223, 103849, https://doi.org/10.1016/j.earscirev.2021.103849, 2021.
Ghosh, K. and Mitra, S.: Structural controls of fracture orientations,
intensity, and connectivity, Teton anticline, Sawtooth Range, Montana, Geol.
Soc. Am. Bull., 93, 995–1014, 2009.
Gillespie, P. A., Howard, C. B., Walsh, J. J., and Watterson, J.: Measurement
and characterisation of spatial distributions of fractures, Tectonophysics,
226, 113–141, 1993.
Gillespie, P. A., Walsh, J. J., Watterson, J., Bonson, C. G., and Manzocchi,
T.: Scaling relationships of joint and vein arrays from The Burren, Co. Clare, Ireland, J. Struct. Geol., 23, 183–201, 2001.
Glaas, C., Vidal, J., and Genter, A.: Structural characterization of naturally fractured geothermal reservoirs in the central Upper Rhine Graben,
J. Struct. Geol., 148, 104370, https://doi.org/10.1016/j.jsg.2021.104370, 2021.
Gong, L., Wang, J., Gao, S., Fu, X., Liu, B., Miao, F., Zhou, X., and Meng,
Q.: Characterization, controlling factors and evolution of fracture
effectiveness in shale oil reservoirs, J. Petrol. Sci. Eng., 203, 108655, https://doi.org/10.1016/j.petrol.2021.108655, 2021.
Green, A. G. and Mair, J. A.: Subhorizontal fractures in a granitic pluton:
Their detection and implications for radioactive waste disposal, Geophysics,
48, 1428–1449, 1983.
Hancock, P. L.: Brittle microtectonics: principles and practice, J. Struct.
Geol., 7, 437–457, 1985.
Hanks, C. L., Lorenz, J., Teufel, L., and Krumhardt, A. P.: Lithologic and
structural controls on natural fracture distribution and behavior within the
Lisburne Group, northeastern Brooks Range and North Slope subsurface, Alaska, AAPG Bull., 81, 1700–1720, 1997.
Hardebol, N. J., Maier, C., Nick, H., Geiger, S., Bertotti, G., and Boro, H.:
Multiscale fracture network characterization and impact on flow: A case study on the Latemar carbonate platform, J. Geophys. Res.-Solid, 120, 8197–8222, 2015.
Harris, J. F., Taylor, G. L., and Walper, J. L.: Relation of deformational
fractures in sedimentary rocks to regional and local structure, AAPG Bull.,
44, 1853–1873, 1960.
Healy, D., Rizzo, R. E., Cornwell, D. G., Farrell, N. J., Watkins, H., Timms,
N. E., Gomez-Rivas, E., and Smith, M.: FracPaQ: A MATLABTM
toolbox for the quantification of fracture patterns, J. Struct. Geol., 95,
1–16, 2017.
Hennings, P. H., Olson, J. E., and Thompson, L. B.: Combining outcrop data and three-dimensional structural models to characterise fractured reservoirs: an example from Wyoming, AAPG Bull., 84, 830–849, 2000.
Holl, J. E. and Anastasio, D. J.: Deformation of a foreland carbonate thrust
system, Sawtooth Range, Montana, Geol. Soc. Am. Bull., 104, 994–953, 1992.
Hooker, J. N., Laubach, S. E., and Marrett, R.: Fracture-aperture size – Frequency, spatial distribution, and growth processes in strata-bounded and non-strata-bounded fractures, Cambrian Mesón Group, NW Argentina, J. Struct. Geol., 54, 54–71, 2013.
Hugman, R. H. H. and Friedman, M.: Effects of texture and composition on
mechanical behaviour of experimentally deformed carbonate rocks, AAPG Bull.,
63, 1478–1489, 1979.
Humair, F., Abellan, A., Carrea, D., Matasci, B., Epard, J. L., and
Jaboyedoff, M.: Geological layers detection and characterisation using high
resolution 3D point clouds: example of a box-fold in the Swiss Jura
Mountains, Eur. J. Remote Sens., 48, 541–568, 2015.
Iding, M. and Ringrose, P.: Evaluating the impact of fractures on the
performance of the In Salah CO2 storage site, Int. J. Greenh. Gas Control, 4, 242–248, 2010.
Inks, T. L., Engelder, T., Jenner, E., Golob, B., Hocum, J. S., and O'Brien,
D. G.: Marcellus fracture characterization using P-wave azimuthal velocity
attributes: Comparison with production and outcrop data, Interpretation, 3, SU1–SU15, 2015.
Ishii, E.: Constant-head step injection tests to quantify the stress dependence of fracture transmissivity in an excavation damaged zone: A case
study from the Horonobe Underground Research Laboratory, Int. J. Rock Mech.
Min. Sci., 159, 105229, https://doi.org/10.1016/j.ijrmms.2022.105229, 2022.
James, M. R. and Robson, S.: Straightforward reconstruction of 3D surfaces
and topography with a camera: Accuracy and geoscience application, J. Geophys. Res.-Earth, 117, F03017, https://doi.org/10.1029/2011jf002289, 2012.
Kou, Z., Wang, T., Chen, Z., and Jiang, J.: A fast and reliable methodology
to evaluate maximum CO2 storage capacity of depleted coal seams: A case
study, Energy, 231, 120992, https://doi.org/10.1016/j.energy.2021.120992, 2021.
Ladeira, F. L. and Price, N. J.: Relationship between fracture spacing and bed thickness, J. Struct. Geol., 3, 179–183, 1981.
Laubach, S. E., Olson, J. E., and Gross, M. R.: Mechanical and fracture
stratigraphy, AAPG Bull., 93, 1413–1426, 2009.
Laubach, S. E., Lander, R. H., Criscenti, L. J., Anovitz, L. M., Urai, J. L.,
Pollyea, R. M., Hooker, J. N., Narr, W., Evans, M. A., Kerisit, S. N., and
Olson, J. E.: The role of chemistry in fracture pattern development and
opportunities to advance interpretations of geological materials, Rev. Geophys., 57, 1065–1111, 2019.
Li, L. and Lee, S. H.: Efficient field-scale simulation of black oil in a
naturally fractured reservoir through discrete fracture networks and homogenized media, SPE Reserv. Eval. Eng., 11, 750–758, 2008.
Lisle, R. J.: Constant bed-length folding: three-dimensional geometrical
implications, J. Struct. Geol., 14, 245–252, 1992.
Lisle, R. J.: Detection of zones of abnormal strains in structures using
Gaussian curvature analysis, AAPG Bull., 78, 1811–1819, 1994.
Ma, J., Vaszi, A. Z., Couples, G. D., and Harris, S. D.: The link between a
heterogeneous model and its flow response: examples from fault damage zones
highlighting issues in domain discretization and flow simulation, in:
Structurally Complex Reservoirs, edited by: Jolley, S. J., Barr, D., Walsh,
J. J., and Knipe, R. J., Geol. Soc. Spec. Publ., 292, 337–352, 2007.
Mäkel, G. H.: The modelling of fractured reservoirs: Constraints and
potential for fracture network geometry and hydraulics analysis, in:
Structurally Complex Reservoirs, edited by: Jolley, S. J., Barr, D., Walsh,
J. J., and Knipe, R. J., Geol. Soc. Spec. Publ., 292, 375–403, 2007.
Marrett, R. and Allmendinger, R. W.: Amount of extension on “small” faults:
An example from the Viking graben, Geology, 20, 47–50, 1992.
Marshak, S., Karlstrom, K., and Timmons, J. M.: Inversion of Proterozoic
extensional faults: An explanation for the pattern of Laramide and Ancestral
Rockies intracratonic deformation, United States, Geology, 28, 735–738, 2000.
Mauldon, M., Dunne, W. M., and Rohrbaugh Jr., M. B.: Circular Scanlines and
circular windows: new tools for characterizing the geometry of fracture traces, J. Struct. Geol., 23, 247–258, 2001.
McGinnis, R. N., Ferrill, D. A., Smart, K. J., Morris, A. P., Higuera-Diaz, C., and Prawica, D.: Pitfalls of using entrenched fracture relationships:
Fractures in bedded carbonates of the Hidden Valley Fault Zone, Canyon Lake
Gorge, Comal County, Texas, AAPG Bull., 99, 2221–2245, 2015.
McGinnis, R. N., Ferrill, D. A., Morris, A. P., Smart, K. J., and Lehrmann, D.: Mechanical stratigraphic controls on natural fracture spacing and
penetration, J. Struct. Geol., 95, 160–170, 2017.
McQuillan, H.: Small-scale fracture density in Asmari Formation of Southwest
Iran and its relation to bed thickness and structural setting, AAPG Bull., 57, 2367–2385, 1973.
McQuillan, H.: Fracture patterns on Kuh-e Asmari anticline, southwest Iran,
AAPG Bull., 58, 236–246, 1974.
Medici, G., Smeraglia, L., Torabi, A., and Botter, C.: Review of modeling
approaches to groundwater flow in deformed carbonate aquifers, Groundwater,
59, 334–351, 2021.
Mitra, S.: Duplex structures and imbricate thrust systems: geometry, structural position, and hydrocarbon potential, AAPG Bull., 70, 1087–1112,
1986.
Moore, J. P. and Walsh, J. J.: Quantitative analysis of Cenozoic faults and
fractures and their impact on groundwater flow in the bedrock aquifers of
Ireland, Hydrogeol. J., 29, 2613–2632, 2021.
Morris, A. P., Ferrill, D. A., Sims, D. W., Franklin, N., and Waiting, D. J.:
Patterns of fault displacement and strain at Yucca Mountain, Nevada, J. Struct. Geol., 26, 1707–1725, 2004.
Mudge, M. R.: A résumé of the structural geology of the Northern
Disturbed Belt, northwest Montana, Geological Studies of the Cordilleran
Thrust Belt, 1, 91–122, 1982.
Mudge, M. R. and Earhart, R. L.: Bedrock geologic map of part of the northern Disturbed Belt, Lewis and Clark, Teton, Pondera, Glacier, Flathead, Cascade, and Powell counties, Montana: US Geological Survey Miscellaneous Investigation Series Map I-1375, scale , https://doi.org/10.3133/i1375, 1983.
Nadimi, S., Forbes, B., Moore, J., Podgorney, R., and McLennan, J. D.: Utah
FORGE: Hydrogeothermal modeling of a granitic based discrete fracture
network, Geothermics, 87, 101853, https://doi.org/10.1016/j.geothermics.2020.101853, 2020.
Narr, W. and Suppe, J.: Joint spacing in sedimentary rocks, J. Struct. Geol., 13, 1037–1048, 1991.
Nelson, R.: Geologic analysis of naturally fractured reservoirs, Elsevier,
ISBN 978-0-88415-317-7, 2001.
Nichols, K. M.: Stratigraphy of the upper part of The Madison Group, Sawtooth Range, northwestern
Montana, Montana Geological Society, 1984 Field Conference, Northwestern Montana, I27-I4A, 1984.
Nichols, K. M.: Regional Significance of Lithologic Correlation of Mississippian Rocks at Pentagon Mountain and the Sawtooth Range, Northwestern Montana, USGS Open-File Report 86-39 (one Plate), USGS, https://doi.org/10.3133/ofr8639, 1986.
Odling, N. E.: Scaling and connectivity of joint systems in sandstones from
western Norway, J. Struct. Geol., 19, 1257–1271, 1997.
Price, N. J.: Fault and Joint Development in Brittle and Semi-Brittle Rock,
Pergamon, New York, ISBN 978-0-08-011275-6, 1966.
Ramsay, J. G.: Folding and fracturing of rocks, McGraw Hill Book Company, 568 pp., ISBN 193066589X, 1967.
Rawnsley, K., De Keijzer, M., Wei, L., Bettembourg, S., Asyee, W., Massaferro, J. L., Swaby, P., Drysdale, D., and Boettcher, D.: Characterizing
fracture and matrix heterogeneities in folded Devonian carbonate thrust sheets, Waterton tight gas fields, Western Canada, in: Fractured Reservoirs,
edited by: Lonergan, L., Jolly, R. J. H., Rawnsley, K., and Sanderson, D. J.,
Geol. Soc. Spec. Publ., 270, 265–279, 2007.
Scheiber, T., Fredin, O., Viola, G., Jarna, A., Gasser, D., and Łapińska-Viola, R.: Manual extraction of bedrock lineaments from
high-resolution LiDAR data: methodological bias and human perception, GFF, 137, 362–372, 2015.
Seers, T. D. and Hodgetts, D.: Comparison of digital outcrop and conventional
data collection approaches for the characterization of naturally fractured
reservoir analogues, in: Advances in the Study of Fractured Reservoirs,
edited by: Spence, G. H., Redfern, J., Aguilera, R., Bevan, T. G., Cosgrove,
J. W., Couples, G. D., and Daniel, J.-M., Geol. Soc. Spec. Publ., 374, 51–77, 2014.
Shaik, A. R., Rahman, S. S., Tran, N. H., and Tran, T.: Numerical simulation of fluid-rock coupling heat transfer in naturally fractured geothermal system, Appl. Therm. Eng., 31, 1600–1606, 2011.
Sinclair, S.: Analysis of macroscopic fractures on Teton anticline, northwestern Montana, MS thesis, Texas A&M University, College Station,
Texas, 102 pp., https://hdl.handle.net/1969.1/ETD-TAMU-1980-THESIS-S616 (last access: 23 June 2022), 1980.
Singdahlsen, D. S.: Structural geology of the Swift Reservoir Culmination,
Sawtooth Range, Montana, MSc Thesis, Montana State University, Bozeman,
Montana, 124 pp., https://scholarworks.montana.edu/xmlui/handle/1/4005 (last access: 23 June 2022), 1986.
Smeraglia, L., Mercuri, M., Tavani, S., Pignalosa, A., Kettermann, M., Billi, A., and Carminati, E.: 3D Discrete Fracture Network (DFN) models of damage zone fluid corridors within a reservoir-scale normal fault in carbonates: multiscale approach using field data and UAV imagery, Mar. Petrol. Geol., 126, 104902, https://doi.org/10.1016/j.marpetgeo.2021.104902, 2021.
Spence, G. H., Couples, G. D., Bevan, T. G., Aguilera, R., Cosgrove, J. W.,
Daniel, J. M., and Redfern, J. (Eds.): Advances in the study of naturally fractured hydrocarbon reservoirs: a broad integrated interdisciplinary applied topic, in: Advances in the Study of Fractured Reservoirs, Geol. Soc. Spec. Publ., 374, 1–22, 2014.
Spooner, J. A.: Field and laboratory study of fracture characteristics as a
function of bed curvature in folded dolomites, Sawtooth Mountains, Montana,
MS thesis, University of Oklahoma, Norman, Oklahoma, 135 pp., 1984.
Stearns, D. W.: Macrofracture patterns on Teton Anticline, northwest Montana,
Trans. Am. Geophys. Union, 45, 107–108, 1964.
Stearns, D. W.: Fracture as a mechanism of flow in naturally deformed layered
rocks. In Proceedings of the Conference on Research in Tectonics, Kink Bands
and Brittle Deformation, Geol. Surv. Can. Pap., 68, 79–96, 1969.
Stearns, D. W. and Friedman, M.: Reservoirs in fractured rock: Geologic
exploration methods, in: Stratigraphic Oil and Gas Fields: Classification,
Exploration Methods, and Case Histories, edited by: King, R. E., AAPG Memoirs, 16, 82–106, 1972.
Stewart, J. H., Anderson, R. E., Aranda-Gómez, J. J., Beard, L. S.,
Billingsley, G. H., Cather, S. M., Dilles, J. H., Dokka, R. K., Faulds, J. E., Ferrari, L., and Grose, T. L.: Map showing Cenozoic tilt domains and
associated structural features, western North America. Accommodation zones
and transfer zones: The regional segmentation of the Basin and Range province, Geol. Soc. Am. Spec. Pap., 323, 1998.
Streltsova, T. D.: Hydrodynamics of groundwater flow in a fractured formation, Water Resour. Res., 12, 405–414, 1976.
Strijker, G., Bertotti, G., and Luthi, S. M.: Multi-scale fracture network
analysis from an outcrop analogue: A case study from the Cambro-Ordovician
clastic succession in Petra, Jordan, Mar. Petrol. Geol., 38, 104–116, 2012.
Sun, J., Gamboa, E. S., Schechter, D., and Rui, Z.: An integrated workflow
for characterization and simulation of complex fracture networks utilizing
microseismic and horizontal core data, J. Nat. Gas Sci. Eng., 34, 1347–1360,
2016.
Sun, X., Gomez-Rivas, E., Alcalde, J., Martín-Martín, J. D., Ma, C., Muñoz-López, D., Cruset, D., Cantarero, I., Griera, A., and Travé, A.: Fracture distribution in a folded fluvial succession: the
Puig-reig anticline (South-eastern Pyrenees), Mar. Petrol. Geol., 132, 105169, https://doi.org/10.31223/x5j31s, 2021.
Tamagawa, T. and Pollard, D. D.: Fracture permeability created by perturbed
stress fields around active faults in a fractured basement reservoir, AAPG
Bull., 92, 743–764, 2008.
Tavani, S., Storti, F., Lacombe, O., Corradetti, A., Muñoz, J. A., and
Mazzoli, S.: A review of deformation pattern templates in foreland basin
systems and fold-and-thrust belts: Implications for the state of stress in
the frontal regions of thrust wedges, Earth-Sci. Rev., 141, 82–104, 2015.
Thomas, L. K., Dixon, T. N., and Pierson, R. G.: Fractured reservoir simulation, Soc. Petrol. Eng. J., 23, 42–54, 1983.
Triantafyllou, A., Watlet, A., Le Mouélic, S., Camelbeeck, T., Civet, F., Kaufmann, O., Quinif, Y., and Vandycke, S.: 3-D digital outcrop model for analysis of brittle deformation and lithological mapping (Lorette cave, Belgium), J. Struct. Geol., 120, 55–66, 2019.
Ukar, E., Laubach, S. E., and Hooker, J. N.: Outcrops as guides to subsurface
natural fractures: Example from the Nikanassin Formation tight-gas sandstone, Grande Cache, Alberta foothills, Canada, Mar. Petrol. Geol., 103, 255–275, 2019.
Vollgger, S. A. and Cruden, A. R.: Mapping folds and fractures in basement and cover rocks using UAV photogrammetry, Cape Liptrap and Cape Paterson,
Victoria, Australia, J. Struct. Geol., 85, 168–187, 2016.
Wallace, C. A., Lidke, D. J., and Schmidt, R. G.: Faults of the central part of the Lewis and Clark line and fragmentation of the Late Cretaceous foreland
basin in west-central Montana, Geol. Soc. Am. Bull., 102, 1021–1037, 1990.
Wang, Q., Narr, W., and Laubach, S. E.: Quantitative characterization of
fracture spatial arrangement and intensity in a reservoir anticline using
horizontal wellbore image logs and an outcrop analogue, Mar. Petrol. Geol.,
152, 106238, https://doi.org/10.1016/j.marpetgeo.2023.106238, 2023.
Ward, E. G. and Sears, J. W.: Reinterpretation of fractures at Swift Reservoir, Rocky Mountain thrust front, Montana: Passage of a Jurassic forebulge?, Geol. Soc. Am. Spec. Pap., 433, 197–210, 2007.
Watanabe, K. and Takahashi, H.: Fractal geometry characterization of geothermal reservoir fracture networks, J. Geophys. Res.-Solid, 100, 521–528, 1995.
Watkins, H., Butler, R. W., Bond, C. E., and Healy, D.: Influence of structural position on fracture networks in the Torridon Group, Achnashellach fold and thrust belt, NW Scotland, J. Struct. Geol., 74, 64–80, 2015.
Watkins, H., Healy, D., Bond, C. E., and Butler, R. W.: Implications of
heterogeneous fracture distribution on reservoir quality; an analogue from
the Torridon Group sandstone, Moine Thrust Belt, NW Scotland, J. Struct.
Geol., 108, 180–197, 2018.
Watkins, H., Bond, C. E., Cawood, A. J., Cooper, M. A., and Warren, M. J.:
Fracture distribution on the Swift Reservoir Anticline, Montana: Implications for structural and lithological controls on fracture intensity, in: Folding and Fracturing of Rocks: 50 Years of Research since the Seminal Text Book of J. G. Ramsay, edited by: Bond, C. E. and Lebit, H. D., Geol. Soc. Spec. Publ., 487, 209–228, 2019.
Weil, A. B. and Yonkee, A.: The Laramide orogeny: Current understanding of
the structural style, timing, and spatial distribution of the classic foreland thick-skinned tectonic system. In: Laurentia: Turning Points in the
Evolution of a Continent, edited by: Whitmeyer, S. J., Williams, M. L.,
Kellett, D. A., and Tikoff, B., Geol. Soc. Am. Memoirs, 220, https://doi.org/10.1130/2022.1220(33), 2023.
Wennberg, O. P., Svånå, T., Azizzadeh, M., Aqrawi, A. M. M., Brockbank, P., Lyslo, K. B., and Ogilvie, S.: Fracture intensity vs. mechanical stratigraphy in platform top carbonates: the Aquitanian of the Asmari Formation, Khaviz Anticline, Zagros, SW Iran, Petrol. Geosci., 12, 235–246, 2006.
Wennberg, O. P., Azizzadeh, M., Aqrawi, A. A. M., Blanc, E., Brockbank, P.,
Lyslo, K. B., Pickard, N., Salem, L. D., and Svånå, T.: The Khaviz
Anticline: an outcrop analogue to giant fractured Asmari Formation reservoirs in SW Iran, in: Fractured Reservoirs, edited by: Lonergan, L., Jolly, R. J. H., Rawnsley, K., and Sanderson, D. J., Geol. Soc. Spec. Publ., 270, 23–42, 2007.
Worthington, M. H. and Lubbe, R.: The scaling of fracture compliance, in:
Fractured Reservoirs, edited by: Lonergan, L., Jolly, R. J. H., Rawnsley, K.,
and Sanderson, D. J., Geol. Soc. Spec. Publ., 270, 73–82, 2007.
Wu, H. and Pollard, D. D.: An experimental study of the relationship between
joint spacing and layer thickness, J. Struct. Geol., 17, 887–905, 1995.
Yielding, G., Needham, T., and Jones, H.: Sampling of fault populations using
sub-surface data: a review, J. Struct. Geol., 18, 135–146, 1996.
Yin, T. and Chen, Q.: Simulation-based investigation on the accuracy of discrete fracture network (DFN) representation, Comput. Geotech., 121, 103487, https://doi.org/10.1016/j.compgeo.2020.103487, 2020.
Yu, H., Lu, C., Chen, W., and Li, H.: Permeability changes in fractured Tamusu mudstone in the context of radioactive waste disposal, Bull. Eng. Geol. Environ., 80, 7945–7957, 2021.
Short summary
Here we test conceptual models of fracture development by investigating fractures across multiple scales. We find that most fractures increase in abundance towards the fold hinge, and we interpret these as being fold related. Other fractures at the site show inconsistent orientations and are unrelated to fold formation. Our results show that predicting fracture patterns requires the consideration of multiple geologic variables.
Here we test conceptual models of fracture development by investigating fractures across...