Articles | Volume 14, issue 2
https://doi.org/10.5194/se-14-213-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-14-213-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analogue modelling of the inversion of multiple extensional basins in foreland fold-and-thrust belts
Nicolás Molnar
CORRESPONDING AUTHOR
Tectonics and Geodynamics, RWTH Aachen University, 52064 Aachen,
Germany
Susanne Buiter
Tectonics and Geodynamics, RWTH Aachen University, 52064 Aachen,
Germany
Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Related authors
Pauline Gayrin, Thilo Wrona, Sascha Brune, Derek Neuharth, Nicolas Molnar, Alessandro La Rosa, and John Naliboff
EGUsphere, https://doi.org/10.5194/egusphere-2025-3989, https://doi.org/10.5194/egusphere-2025-3989, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
When in extension, the Earth's crust accommodates deformation by breaking. Through time, faults grow into an intricate network that can be detected by changes in topography, or through modelling (numerical or analogue). This study demonstrates how the Python library Fatbox, the fault analysis toolbox, can extract the network pattern automatically from said datasets and characterise the geometry and kinematics of the fault network.
Zoltán Erdős, Susanne J. H. Buiter, and Joya L. Tetreault
Solid Earth, 16, 841–863, https://doi.org/10.5194/se-16-841-2025, https://doi.org/10.5194/se-16-841-2025, 2025
Short summary
Short summary
We used computer models to study how mountains formed by the collision of tectonic plates can later affect the breakup of these same plates. Our results show that in large, warm mountain belts, new faults form due to the orogen being weak overall, while in smaller, colder belts, breakup follows old fault zones. Microcontinents that were accreted during collision can create new continental fragments during extension. These findings help explain how past geological events shape continent margins.
Pauline Gayrin, Thilo Wrona, Sascha Brune, Derek Neuharth, Nicolas Molnar, Alessandro La Rosa, and John Naliboff
EGUsphere, https://doi.org/10.5194/egusphere-2025-3989, https://doi.org/10.5194/egusphere-2025-3989, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
When in extension, the Earth's crust accommodates deformation by breaking. Through time, faults grow into an intricate network that can be detected by changes in topography, or through modelling (numerical or analogue). This study demonstrates how the Python library Fatbox, the fault analysis toolbox, can extract the network pattern automatically from said datasets and characterise the geometry and kinematics of the fault network.
Natalie Hummel, Susanne Buiter, and Zoltán Erdős
Solid Earth, 15, 567–587, https://doi.org/10.5194/se-15-567-2024, https://doi.org/10.5194/se-15-567-2024, 2024
Short summary
Short summary
Simulations of subducting tectonic plates often use material properties extrapolated from the behavior of small rock samples in a laboratory to conditions found in the Earth. We explore several typical approaches to simulating these extrapolated material properties and show that they produce very rigid subducting plates with unrealistic dynamics. Our findings imply that subducting plates deform by additional mechanisms that are less commonly implemented in simulations.
Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendricks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann
Geosci. Model Dev., 16, 7375–7409, https://doi.org/10.5194/gmd-16-7375-2023, https://doi.org/10.5194/gmd-16-7375-2023, 2023
Short summary
Short summary
In geosciences, we often use simulations based on physical laws. These simulations can be computationally expensive, which is a problem if simulations must be performed many times (e.g., to add error bounds). We show how a novel machine learning method helps to reduce simulation time. In comparison to other approaches, which typically only look at the output of a simulation, the method considers physical laws in the simulation itself. The method provides reliable results faster than standard.
Frank Zwaan, Guido Schreurs, Susanne J. H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf, and Ernst Willingshofer
Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022, https://doi.org/10.5194/se-13-1859-2022, 2022
Short summary
Short summary
When a sedimentary basin is subjected to compressional tectonic forces after its formation, it may be inverted. A thorough understanding of such
basin inversionis of great importance for scientific, societal, and economic reasons, and analogue tectonic models form a key part of our efforts to study these processes. We review the advances in the field of basin inversion modelling, showing how the modelling results can be applied, and we identify promising venues for future research.
Susanne J. H. Buiter, Sascha Brune, Derek Keir, and Gwenn Peron-Pinvidic
EGUsphere, https://doi.org/10.5194/egusphere-2022-139, https://doi.org/10.5194/egusphere-2022-139, 2022
Preprint archived
Short summary
Short summary
Continental rifts can form when and where continents are stretched. Rifts are characterised by faults, sedimentary basins, earthquakes and/or volcanism. If rifting can continue, a rift may break a continent into conjugate margins such as along the Atlantic and Indian Oceans. In some cases, however, rifting fails, such as in the West African Rift. We discuss continental rifting from inception to break-up, focussing on the processes at play, and illustrate these with several natural examples.
Hazel Gibson, Sam Illingworth, and Susanne Buiter
Geosci. Commun., 4, 437–451, https://doi.org/10.5194/gc-4-437-2021, https://doi.org/10.5194/gc-4-437-2021, 2021
Short summary
Short summary
In the spring of 2020, in response to the escalating global COVID-19 Coronavirus pandemic, the European Geosciences Union (EGU) moved its annual General Assembly online in a matter of weeks. This paper explores the feedback provided by participants who attended this experimental conference and identifies four key themes that emerged from analysis of the survey (connection, engagement, environment, and accessibility). The responses raise important questions about the format of future conferences.
Cited articles
Badley, M. E., Price, J. D., and Backshall, L. C.: Inversion, reactivated
faults and related structures: seismic examples from the southern North Sea,
Geol. Soc. Spec. Publ., 44, 201–219,
https://doi.org/10.1144/GSL.SP.1989.044.01.12, 1989.
Bally, A. W.: Tectogénèse et sismique réflexion, B. Soc. Geol.
Fr., 29, 279–285, 1984.
Beauchamp, W., Allmendinger, R .W., Barazangi, M., Demnatie, A., El Alji, M., and
Dahmani, M.: Inversion tectonics and the evolution of the High Atlas
Mountains, Morocco, based on a geological–geophysical transect, Tectonics,
19, 163–184, 1999.
Bonini, M., Sani, F., and Antonielli, B.: Basin inversion and contractional
reactivation of inherited normal faults: A review based on previous and new
experimental models, Tectonophysics, 522–523, 55–88,
https://doi.org/10.1016/j.tecto.2011.11.014, 2012.
Bosworth, W. and Tari, G.: Hydrocarbon accumulation in basins with multiple phases of extension and inversion: examples from the Western Desert (Egypt) and the western Black Sea, Solid Earth, 12, 59–77, https://doi.org/10.5194/se-12-59-2021, 2021.
Bracène R. and de Lamotte D. F.: The origin of intraplate deformation in
the Atlas system of western and central Algeria: from Jurassic rifting to
Cenozoic–Quaternary inversion, Tectonophysics, 357, 207–226,
https://doi.org/10.1016/S0040-1951(02)00369-4, 2002.
Brewer, J. A. and Turcotte, D. L.: On the stress system that formed the
Laramide Wind River Mountains, Wyoming, Geophys. Res. Lett., 7, 449–452,
https://doi.org/10.1029/GL007i006p00449, 1980.
Brun, J. P.: Narrow rifts versus wide rifts: inferences for the mechanics of
rifting from laboratory experiments, Philos. T. R. Soc. Lond., 357,
695–712, 1999.
Brun, J. P. and Nalpas, T.: Graben inversion in nature and experiments,
Tectonics, 15, 677–687,
https://doi.org/10.3969/j.issn.1008-0589.2016.04.07, 1996.
Buchanan, P. G. and McClay, K. R.: Sandbox experiments of inverted listric
and planar fault systems, in: Experimental and
Numerical Modelling of Continental Deformation, edited by: Cobbold, P. R., Tectonophysics, 188, 97–115,
1991.
Buck, W. R.: Modes of continental lithospheric extension, J. Geophys. Res.,
96, 20161, https://doi.org/10.1029/91JB01485, 1991.
Buiter, S. J. H.: A review of brittle compressional wedge models,
Tectonophysics, 530–531, 1–17, https://doi.org/10.1016/j.tecto.2011.12.018,
2012.
Buiter, S. J. H., Pfiffner, O. A., and Beaumont, C.: Inversion of
extensional sedimentary basins: A numerical evaluation of the localisation
of shortening, Earth Planet. Sci. Lett., 288, 492–504,
https://doi.org/10.1016/j.epsl.2009.10.011, 2009.
Butler, R. and Bond, C.: Thrust systems and contractional tectonics, chap.
9, Regional Geology and Tectonics, edited by: Scarselli, N., Adam, J., Chiarella, D.,
Roberts, D. G., and Bally, A. W., 2nd Edn.,
Elsevier, 149–167, https://doi.org/10.1016/B978-0-444-64134-2.00008-0, 2020.
Butler, R. W. H.: The influence of pre-existing basin structure on thrust
system evolution in the western Alps, in: Inversion Tectonics, edited by:
Cooper, M. A. and Williams, G. D., Spec. Publ. Geol. Soc., 44, 105–122, https://doi.org/10.1144/GSL.SP.1989.044.01.0, 1989.
Chadwick, R. A.: Aspects of basin inversion in southern Britain, J. Geol.
Soc., 150, 311–322, https://doi.org/10.1144/gsjgs.150.2.0311, 1993.
Cooper, M. and Warren, M. J.: Inverted fault systems and inversion tectonic
settings, in: Regional Geology and Tectonics, 2nd Edn., Elsevier, 169–204,
https://doi.org/10.1016/b978-0-444-64134-2.00009-2, 2020.
Cooper, M. A. and Williams, G. D. (Eds.): Inversion tectonics, Geological Society, London, UK, Geol. Soc.
Spec. Publ. 44, 1485, 375 pp.,
https://doi.org/10.1144/GSL.SP.1989.044.01.25, 1989.
Coulomb, C. A.: Sur l'application des régles de maximis et
minimis à quelques problèmes de statique, relatifs à l'architecture,
Acad. R. Sci. Paris Mem. Math. Phys., 7, 343–382, 1773.
Coward, M. P.: Inversion tectonics, in: Continental
Deformation, edited by: Hancock, P. L., Pergamon Press, Oxford, 289–304, ISBN
0080379303, 1994.
Cubas, N., Barnes C., and Maillot B.: Inverse method applied to a sand
wedge: Estimation of friction parameters and uncertainty analysis, J.
Struct. Geol., 55, 101–113, https://doi.org/10.1016/j.jsg.2013.07.003,
2013.
Dahlen, F. A.: Noncohesive Critical Coulomb Wedges: an Exact Solution., J.
Geophys. Res., 89, 10125–10133, https://doi.org/10.1029/JB089iB12p10125,
1984.
Dahlen, F. A.: Critical taper model of fold-and-thrust belts and
accretionary wedges, Annu. Rev. Earth Pl. Sc., 18, 55–99,
https://doi.org/10.1146/annurev.earth.18.1.55, 1990.
Delvaux, D.,: Tectonic and palaeostress evolution of the Tanganyika-Rukwa-Malawi rift segment, East African
Rift System, in: Peri-Tethys Memoir 6: Peri- Tethyan Rift/Wrench Basins and Passive Margins, edited by: Ziegler, P. A., Cavazza, W., Robertson, A. H. F., and Crasquin-Soleau, S., Mem. Mus. natn. Hist. nat., Paris, 186, 545–567, ISBN 2-85653-528-3, 2001.
Del Ventisette, C., Montanari, D., Sani, F., and Bonini, M.: Basin inversion
and fault reactivation in laboratory experiments, J. Struct. Geol., 28,
2067–2083, https://doi.org/10.1016/j.jsg.2006.07.012, 2006.
Di Domenica, A., Bonini, L., Calamita, F., Toscani, G., Galuppo, C., and
Seno, S.: Analogue modeling of positive inversion tectonics along
differently oriented pre-thrusting normal faults: An application to the
Central-Northern Apennines of Italy, Bull. Geol. Soc. Am., 126, 943–955,
https://doi.org/10.1130/B31001.1, 2014.
England, P.: Constraints on extension of continental lithosphere, J.
Geophys. Res., 88, 1145, https://doi.org/10.1029/JB088iB02p01145, 1983.
Gillcrist, R., Coward, M., and Mugnier, J. L.: Structural inversion and its
controls: examples from the Alpine foreland and the French Alps, Geodin.
Acta, 1, 5–34, 1987.
Gottron, D.: The influence of basement structure on the geometry of
fold-thrust-belts – an analog modelling study, MSc Thesis, RWTH Aachen
University, Aachen, Germany, 2018.
Granado, P. and Ruh, J. B.: Numerical modelling of inversion tectonics in
fold-and-thrust belts, Tectonophysics, 763, 14–29,
https://doi.org/10.1016/j.tecto.2019.04.033, 2019.
Granado, P., Ferrer, O., Muñoz, J. A., Thöny, W., and Strauss, P.:
Basin inversion in tectonic wedges: Insights from analogue modelling and the
Alpine-Carpathian fold-and-thrust belt, Tectonophysics, 703–704, 50–68,
https://doi.org/10.1016/j.tecto.2017.02.022, 2017.
Granado, P., Tavani, S., Carrera, N., and Muñoz, J. A.: Deformation pattern
around the Conejera fault blocks (Asturian Basin, North Iberian Margin),
Geol. Acta, 16, 357–373,
https://doi.org/10.1344/GeologicaActa2018.16.4.2, 2018.
Granado, P., Ruh J. B., Santolaria P., Strauss P., and Muñoz J. A.: Stretching and Contraction of Extensional Basins With Pre-Rift Salt: A Numerical Modeling Approach, Front. Earth. Sci., 9, https://doi.org/10.3389/feart.2021.648937, 2021.
Guiraud, R. and Bosworth, W.: Senonian basin inversion and rejuvenation of
rifting in Africa and Arabia: synthesis and implications to plate-scale
tectonics, Tectonophysics, 282, 39–82,
https://doi.org/10.1016/S0040-1951(97)00212-6, 1997.
Guiraud, R. and Maurin, J. C.: Early Cretaceous rifts of Western and Central
Africa: an overview, Tectonophysics, 213, 153–168,
https://doi.org/10.1016/0040-1951(92)90256-6, 1992.
Handin, J.: On the Coulomb-Mohr failure criterion, J. Geophys. Res., 74,
5343, https://doi.org/10.1029/JB074i022p05343, 1969.
Hansen, T. H., Clausen, O. R., and Andresen, K. J.: Thick- and thin-skinned basin inversion in the Danish Central Graben, North Sea – the role of deep evaporites and basement kinematics, Solid Earth, 12, 1719–1747, https://doi.org/10.5194/se-12-1719-2021, 2021.
Hubbert, M. K.: Theory of scale models as applied to the study of geologic
structures, Geol. Soc. Am. Bull., 48, 1459–1520,
https://doi.org/10.1130/GSAB-48-1459, 1937.
Jackson, J.: Reactivation of basement faults and crustal shortening in
orogenic belts, Nature, 283, 343–346, https://doi.org/10.1038/283343a0,
1980.
Jaeger, J. C. and Cook, N. G. W.: Fundamentals of Rock Mechanics. Chapman and
Hall, Wiley, New York, 585 pp., ISBN
978-0-632-05759-7, 1976.
Jagger, L. J. and McClay, K. R.: Analogue modelling of inverted domino-style
basement fault systems, Basin Res., 30, 363–381,
https://doi.org/10.1111/bre.12224, 2018.
Jara, P., Likerman, J., Charrier, R., Herrera, S., Pinto, L., Villarroel,
M., and Winocur, D.: Closure type effects on the structural pattern of an
inverted extensional basin of variable width: Results from analogue models,
J. South Am. Earth Sci., 87, 157–173,
https://doi.org/10.1016/j.jsames.2017.10.018, 2018.
Kley, J.: Timing and spatial patterns of Cretaceous and Cenozoic inversion
in the Southern Permian Basin, Geol. Soc. Spec. Publ., 469, 19–31,
https://doi.org/10.1144/SP469.12, 2018.
Klinkmüller, M., Rosenau, M., and Kemnitz, H.: Properties of granular
analogue model materials: A community wide survey, Tectonophysics, 684, 23–38,
https://doi.org/10.1016/j.tecto.2016.01.017, 2016.
Korsch, R. J., Totterdell, J. M., Cathro, D. L., and Nicoll, M. G.: Early
Permian East Australian Rift System, Aust. J. Earth Sci., 56, 381–400,
2009.
Koyi, H.: Analogue modelling: From a qualitative to a quantitative technique
– A historical outline, J. Petrol. Geol., 20, 223–238, 1997.
Krantz, R. W.: Measurements of friction coefficients and cohesion for faulting and fault reactivation in laboratory models using sand and sand mixtures, Tectonophysics, 188, 203–207, https://doi.org/10.1016/0040-1951(91)90323-K, 1991.
Krzywiec, P., Kufrasa, M., Poprawa, P., Mazur, S., Koperska, M., and Ślemp, P.: Together but separate: decoupled Variscan (late Carboniferous) and Alpine (Late Cretaceous–Paleogene) inversion tectonics in NW Poland, Solid Earth, 13, 639–658, https://doi.org/10.5194/se-13-639-2022, 2022.
Lacombe, O. and Bellahsen, N.: Thick-skinned tectonics and basement-involved
fold-thrust belts. Insights from selected Cenozoic orogens, Geol.
Mag., 153, 763–810, 2016.
Likerman, J., Burlando, J. F., Cristallini, E. O., and Ghiglione, M. C.:
Along-strike structural variations in the Southern Patagonian Andes:
Insights from physical modelling, Tectonophysics, 590, 106–120,
https://doi.org/10.1016/j.tecto.2013.01.018, 2013.
López, C., Del Ventisette, C., Bonini, M., Montanari, D., Maestrelli, D., Martínez, F., González R., Riquelme, R., Montenegro, D., Muñoz, B., and Guzmán‐Marusic, G.: The Relationship Between Inverted Normal Faults and Pure Thrusting During the Tectonic Inversion of the Domeyko Cordillera, Northern Chile: Structural and Seismic Interpretation and Analogue Modelling Experiments, Tectonics, 41, 12, https://doi.org/10.1029/2022TC007378, 2022.
Maillot, B.: A sedimentation device to produce uniform sand packs,
Tectonophysics, 593, 85–94, https://doi.org/10.1016/j.tecto.2013.02.028,
2013.
Mattauer, M., Tapponnier, P., and Proust, F.: Sur les mécanismes de
formation des chaînes intracontinentales: l'exemple des chaînes
atlasiques du Maroc, Bull. Soc. Géol. France, 521–526, https://doi.org/10.2113/gssgfbull.S7-XIX.3.521, 1977.
McClay, K. R.: The geometries and kinematics of inverted fault systems: A
review of analogue model studies, Geol. Soc. Spec. Publ., 88, 97–118,
https://doi.org/10.1144/GSL.SP.1995.088.01.07, 1995.
McClay, K. R.: Recent advances in analogue modelling: Uses in section
interpretation and validation, Geol. Soc. Spec. Publ., 99, 201–225,
https://doi.org/10.1144/GSL.SP.1996.099.01.16, 1996.
Molnar, N. and Buiter, S.: Analogue modelling of the inversion of
multiple extensional basins in foreland fold-and-thrust belts: PIV-processed
dataset and experiment evolution videos, GFZ Data Services [data set],
https://doi.org/10.5880/fidgeo.2023.011, 2023.
Nalpas, T., Le Douaran, S., Brun, J. P., Unternehr, P., and Richert, J. P.:
Inversion of the Broad Fourteens Basin (offshore Netherlands), a small-scale
model investigation, Sediment. Geol., 95, 237–250,
https://doi.org/10.1016/0037-0738(94)00113-9, 1995.
Panien, M., Schreurs, G., and Pfiffner, A.: Sandbox experiments on basin
inversion: Testing the influence of basin orientation and basin fill, J.
Struct. Geol., 27, 433–445, https://doi.org/10.1016/j.jsg.2004.11.001,
2005.
Panien, M., Buiter, S. J. H., Schreurs, G., and Pfiffner, O. A.: Inversion
of a symmetric basin: Insights from a comparison between analogue and
numerical experiments, Geol. Soc. Spec. Publ., 253, 253–270,
https://doi.org/10.1144/GSL.SP.2006.253.01.13, 2006.
Pfiffner, O. A.: Geologie der Alpen, Haupt Verlag/UTB, Bern-Stuttgart-Wien,
360 pp., ISBN
9783825286101, 2009.
Phillips, T. B., Jackson, C. A.-L., Bell, R. E., and Duffy, O. B.: Oblique reactivation of lithosphere-scale lineaments controls rift physiography – the upper-crustal expression of the Sorgenfrei–Tornquist Zone, offshore southern Norway, Solid Earth, 9, 403–429, https://doi.org/10.5194/se-9-403-2018, 2018.
Picha, F. J., Stránik, Z., and Krejči, O.: Geology and Hydrocarbon Resources of the Outer Western Carpathians and Their Foreland, Czech Republic, The Carpathians and Their Foreland: Geology and Hydrocarbon Resources, American Association of Petroleum Geologists, https://doi.org/10.1306/985607m843067, 2006.
Ramberg, H.: Gravity, Deformation and the Earth's Crust, Academic Press,
London, 452 pp., ISBN
9780125768603, 1981.
Ritter, M. C., Leever, K., Rosenau, M., and Oncken, O.: Scaling the
sandbox – Mechanical (dis) similarities of granular materials and brittle
rock, J. Geophys. Res.-Sol. Ea., 121, 6863–6879,
https://doi.org/10.1002/2016JB012915, 2016.
Roca, E., Frizon de Lamotte, D., Mauffret, A., Bracène, R., Vergés,
J., Benaouali, N., Fernandez, M., Munoz, J. A., Zeyen, H.: The Transmed
Atlas – The Mediterranean Region from Crust to Mantle, edited by: Cavazza, W.,
Roure, F. M., Spakman W., Stampfli, G. M., Ziegler, P. A., Springer, Berlin,
Heidelberg, ISBN
978-3-642-18919-7, 2004.
Sassi, W., Colletta, B., Balé, P., and Paquereau, T.: Modelling of
structural complexity in sedimentary basins: The role of pre-existing faults
in thrust tectonics, Tectonophysics, 226, 97–112,
https://doi.org/10.1016/0040-1951(93)90113-X, 1993.
Scisciani, V.: Styles of positive inversion tectonics in the Central
Apennines and in the Adriatic foreland: Implications for the evolution of
the Apennine chain (Italy), J. Struct. Geol., 31, 1276–1294,
https://doi.org/10.1016/j.jsg.2009.02.004, 2009.
Scisciani, V., Patruno, S., Tavarnelli, E., Calamita, F., Pace, P., and
Iacopini, D.: Multi-phase reactivations and inversions of
paleozoic–mesozoic extensional basins during the Wilson cycle: Case studies
from the north sea (UK) and the northern apennines (Italy), Geol. Soc. Spec.
Publ., 470, 205–243, https://doi.org/10.1144/SP470-2017-232, 2019.
Sibson, R. H.: Rupture nucleation on unfavorably oriented faults, Bull.
Seismol. Soc. Am., 80, 1580–1604, https://doi.org/10.1785/BSSA08006A1580, 1990.
Souloumiac, P., Maillot, B., and Leroy, Y. M.: Bias due to side wall friction in
sand box experiments, J. Struct. Geol., 35, 90–101, 2012.
Stockmal, G. S., Beaumont, C., Nguyen, M., and Lee, B.: Mechanics of thin-skinned
fold- and-thrust belts: insights from numerical models, in: Whence the mountains? Inquiries into
the evolution of orogenic systems, edited by: Sears, J. W.,
Harms, T. A., and Evenchick, C. A., Geol. S. Am. S., 433, 63–98, 2007.
Teixell, A., Arboleya, M.-L., Julivert, M., and Charroud, M.: Tectonic
shortening and topography in the central High Atlas (Morocco), Tectonics,
22, 1051, https://doi.org/10.1029/2002TC001460, 2003.
Teixell, A. and Koyi, H. A.: Experimental and Field study of the effects of
lithological contrasts on thrust related deformation, Tectonics, 22,
1054–1073, 2003.
Twiss, R. J. and Moores, E. M.: Structural Geology, W.H. Freeman and Company, New
York, 532 pp., ISBN
9780716749516, 1992.
Vermeer, P.: Orientation of shear bands in biaxial tests, Geotechnique,
40, 223–236, 1990.
Yagupsky, D. L., Cristallini, E. O., Fantin, J., Valcarce, G., Bottesi, G., and
Varade, R.: Oblique half-graben inversion of the Mesozoic Neuquén Rift
in the Malargüe fold and thrust belt, Mendoza, Argentina: new insights
from analogue models, J. Struct. Geol., 30, 839–853,
https://doi.org/10.1016/j.jsg.2008.03.007, 2008.
Ziegler, P. A.: Geodynamic model for Alpine intra-plate compressional
deformation in Western and Central Europe, Geol. Soc. Spec. Publ., 44,
63–85, https://doi.org/10.1144/GSL.SP.1989.044.01.05, 1989.
Ziegler, P. A., Cloetingh, S., and van Wees, J.-D.: Dynamics of intraplate
compressional deformation: the Alpine foreland and other examples,
Tectonophysics, 252, 7–59, 1995.
Ziegler, P. A., van Wees, J.-D., and Cloetingh, S.: Mechanical controls on
collision-related compressional intraplate deformation, Tectonophysics, 300,
103–129, 1998.
Zwaan, F., Schreurs, G., Buiter, S. J. H., Ferrer, O., Reitano, R., Rudolf, M., and Willingshofer, E.: Analogue modelling of basin inversion: a review and future perspectives, Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022, 2022.
Short summary
Progression of orogenic wedges over pre-existing extensional structures is common in nature, but deciphering the spatio-temporal evolution of deformation from the geological record remains challenging. Our laboratory experiments provide insights on how horizontal stresses are transferred across a heterogeneous crust, constrain which pre-shortening conditions can either favour or hinder the reactivatation of extensional structures, and explain what implications they have on critical taper theory.
Progression of orogenic wedges over pre-existing extensional structures is common in nature, but...
Special issue