Articles | Volume 14, issue 4
https://doi.org/10.5194/se-14-409-2023
https://doi.org/10.5194/se-14-409-2023
Research article
 | 
19 Apr 2023
Research article |  | 19 Apr 2023

Water release and homogenization by dynamic recrystallization of quartz

Junichi Fukuda, Takamoto Okudaira, and Yukiko Ohtomo

Related authors

Experimental grain growth of quartz aggregates under wet conditions and its application to deformation in nature
Junichi Fukuda, Hugues Raimbourg, Ichiko Shimizu, Kai Neufeld, and Holger Stünitz
Solid Earth, 10, 621–636, https://doi.org/10.5194/se-10-621-2019,https://doi.org/10.5194/se-10-621-2019, 2019
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Structural geology
Natural fracture patterns at Swift Reservoir anticline, NW Montana: the influence of structural position and lithology from multiple observation scales
Adam J. Cawood, Hannah Watkins, Clare E. Bond, Marian J. Warren, and Mark A. Cooper
Solid Earth, 14, 1005–1030, https://doi.org/10.5194/se-14-1005-2023,https://doi.org/10.5194/se-14-1005-2023, 2023
Short summary
Rapid hydration and weakening of anhydrite under stress: implications for natural hydration in the Earth's crust and mantle
Johanna Heeb, David Healy, Nicholas E. Timms, and Enrique Gomez-Rivas
Solid Earth, 14, 985–1003, https://doi.org/10.5194/se-14-985-2023,https://doi.org/10.5194/se-14-985-2023, 2023
Short summary
Analogue experiments on releasing and restraining bends and their application to the study of the Barents Shear Margin
Roy Helge Gabrielsen, Panagiotis Athanasios Giannenas, Dimitrios Sokoutis, Ernst Willingshofer, Muhammad Hassaan, and Jan Inge Faleide
Solid Earth, 14, 961–983, https://doi.org/10.5194/se-14-961-2023,https://doi.org/10.5194/se-14-961-2023, 2023
Short summary
Structural framework and timing of the Pahtohavare Cu ± Au deposits, Kiruna mining district, Sweden
Leslie Logan, Ervin Veress, Joel B. H. Andersson, Olof Martinsson, and Tobias E. Bauer
Solid Earth, 14, 763–784, https://doi.org/10.5194/se-14-763-2023,https://doi.org/10.5194/se-14-763-2023, 2023
Short summary
Does the syn- versus post-rift thickness ratio have an impact on the inversion-related structural style?
Alexandra Tamas, Dan M. Tamas, Gabor Tari, Csaba Krezsek, Alexandru Lapadat, and Zsolt Schleder
Solid Earth, 14, 741–761, https://doi.org/10.5194/se-14-741-2023,https://doi.org/10.5194/se-14-741-2023, 2023
Short summary

Cited articles

Aines, R. D. and Rossman, G. R.: Water in minerals? A peak in the infrared, J. Geophys. Res.-Sol. Ea., 89, 4059–4071, https://doi.org/10.1029/JB089iB06p04059, 1984. 
Aines, R. D., Kirby, S. H., and Rossman, G. R.: Hydrogen speciation in synthetic quartz, Phys. Chem. Miner., 11, 204–212, https://doi.org/10.1007/BF00308135, 1984. 
Blacic, J. D.: Plastic deformation mechanisms in quartz: the effect of water, Tectonophysics, 27, 271–294, https://doi.org/10.1016/0040-1951(75)90021-9, 1975. 
Bürgmann, R. and Dresen, G.: Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations, Annu. Rev. Earth Pl. Sc., 36, 531–567, https://doi.org/10.1146/annurev.earth.36.031207.124326, 2008. 
Chernak, L. J., Hirth, G., Selverstone, J., and Tullis, J.: Effect of aqueous and carbonic fluids on dislocation creep strength of quartz, J. Geophys. Res.-Sol. Ea., 114, B04201, https://doi.org/10.1029/2008JB005884, 2009. 
Download
Short summary
We measured water distributions in deformed quartz by infrared spectroscopy mapping and used the results to discuss changes in water distribution resulting from textural development. Because of the grain size reduction process (dynamic recrystallization), water contents decrease from 40–1750 wt ppm in host grains of ~2 mm to 100–510 wt ppm in recrystallized regions composed of fine grains of ~10 µm. Our results indicate that water is released and homogenized by dynamic recrystallization.