Articles | Volume 15, issue 10
https://doi.org/10.5194/se-15-1281-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-1281-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Localized shear and distributed strain accumulation as competing shear accommodation mechanisms in crustal shear zones: constraining their dictating factors
Pramit Chatterjee
Department of Geological Sciences, Jadavpur University, Kolkata 700032, India
Arnab Roy
Department of Geological Sciences, Jadavpur University, Kolkata 700032, India
Nibir Mandal
CORRESPONDING AUTHOR
Department of Geological Sciences, Jadavpur University, Kolkata 700032, India
Related authors
No articles found.
Ayan Patsa and Nibir Mandal
EGUsphere, https://doi.org/10.5194/egusphere-2025-2909, https://doi.org/10.5194/egusphere-2025-2909, 2025
Short summary
Short summary
Accretionary wedges are the prime locations of exhumed high-pressure (HP) and low-temperature (LT) metamorphic rocks. Previous tectonic models invoked the corner flow theory with a premise of slab-parallel motion to explain the upward return flow of buried metasediments. In this study, we develop a generalized corner flow model with additional kinematic and rheological factors and evaluate the limiting conditions in which a wedge can set in significant return flows.
Cited articles
Adam, J., Urai, J., Wieneke, B., Oncken, O., Pfeiffer, K., Kukowski, N., Lohrmann, J., Hoth, S., Van Der Zee, W., and Schmatz, J.: Shear localisation and strain distribution during tectonic faulting – New insights from granular-flow experiments and high-resolution optical image correlation techniques, J. Struct. Geol., 27, 283–301, https://doi.org/10.1016/j.jsg.2004.08.008, 2005. a
Allison, K. L. and Dunham, E. M.: Influence of shear heating and thermomechanical coupling on earthquake sequences and the brittle-ductile transition, J. Geophys. Res.-Sol. Ea., 126, e2020JB021394, https://doi.org/10.1029/2020JB021394, 2021. a
Anand, L. and Spitzig, W.: Initiation of localized shear bands in plane strain, J. Mech. Phys. Solids, 28, 113–128, https://doi.org/10.1016/0022-5096(80)90017-4, 1980. a
Anand, L. and Spitzig, W.: Shear-band orientations in plane strain, Acta Metall. Water, 30, 553–561, https://doi.org/10.1016/0001-6160(82)90236-X, 1982. a
Anand, L. and Su, C.: A theory for amorphous viscoplastic materials undergoing finite deformations, with application to metallic glasses, J. Mech. Phys. Solids, 53, 1362–1396, https://doi.org/10.1016/j.jmps.2004.12.006, 2005. a
Andersen, T. B., Mair, K., Austrheim, H., Podladchikov, Y. Y., and Vrijmoed, J. C.: Stress release in exhumed intermediate and deep earthquakes determined from ultramafic pseudotachylyte, Geology, 36, 995–998, https://doi.org/10.1130/G25230A.1, 2008. a, b
Beall, A., Fagereng, Å., and Ellis, S.: Fracture and weakening of jammed subduction shear zones, leading to the generation of slow slip events, Geochem. Geophy., Geosy. 20, 4869–4884, https://doi.org/10.1029/2019GC008481, 2019. a
Beall, A., Fagereng, Å., Davies, J. H., Garel, F., and Davies, D. R.: Influence of subduction zone dynamics on interface shear stress and potential relationship with seismogenic behavior, Geochem. Geophy. Geosy., 22, e2020GC009267, https://doi.org/10.1029/2020GC009267, 2021. a, b
Beeler, N., Tullis, T., Blanpied, M., and Weeks, J.: Frictional behavior of large displacement experimental faults, J. Geophys. Res.-Sol. Ea., 101, 8697–8715, https://doi.org/10.1029/96JB00411, 1996. a
Bercovici, D. and Karato, S.-i.: Theoretical analysis of shear localization in the lithosphere, Rev. Mineral. Geochem., 51, 387–420, https://doi.org/10.2138/gsrmg.51.1.387, 2002. a
Berthé, D., Choukroune, P., and Jégouzo, P.: Orthogneiss, mylonite and non coaxial deformation of granites: the example of the South Armorican Shear Zone, J. Struct. Geol., 1, 31–42, https://doi.org/10.1016/0191-8141(79)90019-1, 1979. a, b, c
Beucher, R., Giordani, J., Moresi, L., Mansour, J., Kaluza, O., Velic, M., Farrington, R., Quenette, S., Beall, A., Sandiford, D., Mondy, L., Mallard, C., Rey, P., Duclaux, G., Laik, A., Morón, S., Beall, A., Knight, B., and Lu, N.: Underworld2: Python Geodynamics Modelling for Desktop, HPC and Cloud, Zenodo [code], https://doi.org/10.5281/zenodo.6820562, 2022. a
Bos, B. and Spiers, C.: Experimental investigation into the microstructural and mechanical evolution of phyllosilicate-bearing fault rock under conditions favouring pressure solution, J. Struct. Geol., 23, 1187–1202, https://doi.org/10.1016/S0191-8141(00)00184-X, 2001. a
Bowden, P. and Raha, S.: The formation of micro shear bands in polystyrene and polymethylmethacrylate, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 22, 463–482, https://doi.org/10.1080/14786437008225837, 1970. a, b
Braeck, S. and Podladchikov, Y.: Spontaneous thermal runaway as an ultimate failure mechanism of materials, Phys. Rev. Lett., 98, 095504, https://doi.org/10.1103/PhysRevLett.98.095504, 2007. a
Bukovská, Z., Jeřábek, P., Lexa, O., Konopásek, J., Janak, M., and Košler, J.: Kinematically unrelated C–S fabrics: an example of extensional shear band cleavage from the Veporic Unit (Western Carpathians), Geol. Carpath., 64, 103–116, https://doi.org/10.2478/geoca-2013-0007, 2013. a, b
Bukovská, Z., Jeřábek, P., and Morales, L. F. G.: Major softening at brittle-ductile transition due to interplay between chemical and deformation processes: An insight from evolution of shear bands in the South Armorican Shear Zone, J. Geophys. Res.-Sol. Ea., 121, 1158–1182, https://doi.org/10.1002/2015JB012319, 2016. a, b
Burlini, L. and Bruhn, D.: High-strain zones: laboratory perspectives on strain softening during ductile deformation, Geological Society, London, Special Publications, 245, 1–24, https://doi.org/10.1144/GSL.SP.2005.245.01.01, 2005. a, b, c, d
Cacciari, S., Pennacchioni, G., Cannaò, E., Scambelluri, M., and Toffol, G.: Fluid-rock interaction in eclogite-facies meta-peridotite (Erro-Tobbio Unit, Ligurian Alps, Italy), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-10481, https://doi.org/10.5194/egusphere-egu24-10481, 2024. a
Carreras, J., Czeck, D. M., Druguet, E., and Hudleston, P. J.: Structure and development of an anastomosing network of ductile shear zones, J. Struct. Geol., 32, 656–666, https://doi.org/10.1016/j.jsg.2010.03.013, 2010. a
Casas, N., Mollon, G., and Daouadji, A.: Influence of Grain-Scale Properties on Localization Patterns and Slip Weakening Within Dense Granular Fault Gouges, J. Geophys. Res.-Sol. Ea., 128, e2022JB025666, https://doi.org/10.1029/2022JB025666, 2023. a
Cawood, T. and Platt, J.: What controls the width of ductile shear zones?, Tectonophysics, 816, 229033, https://doi.org/10.1016/j.tecto.2021.229033, 2021. a
Chatterjee, P., Roy, A., and Mandal, N.: Localized shear versus distributed strain accumulation as shear-accommodation mechanisms in ductile shear zones: Constraining their dictating factors, figshare [data set], https://doi.org/10.6084/m9.figshare.25563030.v2, 2024. a
Collettini, C., Niemeijer, A., Viti, C., Smith, S. A., and Marone, C.: Fault structure, frictional properties and mixed-mode fault slip behavior, Earth Planet. Sc. Lett., 311, 316–327, https://doi.org/10.1016/j.epsl.2011.09.020, 2011. a
Cox, S. F.: Fluid flow in mid-to deep crustal shear systems experimental constraints, observations on exhumed high fluid flux shear systems, and implications for seismogenic processes, Earth Planets Space, 54, 1121–1125, https://doi.org/10.1186/BF03353312, 2002. a
Creus, P. K., Sanislav, I. V., Dirks, P. H., Jago, C. M., and Davis, B. K.: The Dugald River-type, shear zone hosted, Zn-Pb-Ag mineralisation, Mount Isa Inlier, Australia, Ore Geol. Rev., 155, 105369, https://doi.org/10.1016/j.oregeorev.2023.105369, 2023. a
Darve, F., Nicot, F., Wautier, A., and Liu, J.: Slip lines versus shear bands: two competing localization modes, Mech. Res. Commun., 114, 103603, https://doi.org/10.1016/j.mechrescom.2020.103603, 2021. a
Dasgupta, S., Mandal, N., and Bose, S.: How far does a ductile shear zone permit transpression?, Ductile Shear Zones: From Micro-to Macro-scales, Hoboken, NY: John Wiley & Sons, Ltd., 14–29, https://doi.org/10.1002/9781118844953.ch2, 2015. a
del Castillo, E. M., Fávero Neto, A. H., and Borja, R. I.: Fault propagation and surface rupture in geologic materials with a meshfree continuum method, Acta Geotech., 16, 2463–2486, https://doi.org/10.1007/s11440-021-01233-6, 2021. a
Dell'angelo, L. N. and Tullis, J.: Fabric development in experimentally sheared quartzites, Tectonophysics, 169, 1–21, https://doi.org/10.1098/rsta.2019.0416, 1989. a
Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., and Shimamoto, T.: Natural and experimental evidence of melt lubrication of faults during earthquakes, Science, 311, 647–649, https://doi.org/10.1126/science.1121012, 2006. a
Doglioni, C., Barba, S., Carminati, E., and Riguzzi, F.: Role of the brittle–ductile transition on fault activation, Phys. Earth Planet. In., 184, 160–171, https://doi.org/10.1016/j.pepi.2010.11.005, 2011. a
Duretz, T., Schmalholz, S. M., Podladchikov, Y. Y., and Yuen, D. A.: Physics-controlled thickness of shear zones caused by viscous heating: Implications for crustal shear localization, Geophys. Res. Lett., 41, 4904–4911, https://doi.org/10.1002/2014GL060438, 2014. a
Evans, M. W. and Harlow, F. H.: The particle-in-cell method for hydrodynamic calculations, https://www.osti.gov/biblio/4326770 (last access: 22 October 2024), 1957. a
Fagereng, Å., Hillary, G. W., and Diener, J. F.: Brittle-viscous deformation, slow slip, and tremor, Geophys. Res. Lett., 41, 4159–4167, https://doi.org/10.1002/2014GL060433, 2014. a
Finch, M., Bons, P. D., Weinberg, R., Llorens, M.-G., Griera, A., and Gomez-Rivas, E.: A dynamic atlas of interference patterns in superimposed, opposite sense ductile shear zones, J. Struct. Geol., 165, 104739, https://doi.org/10.1016/j.jsg.2022.104739, 2022. a
Fossen, H.: Deformation bands formed during soft-sediment deformation: observations from SE Utah, Mar. Petrol. Geol., 27, 215–222, https://doi.org/10.1016/j.marpetgeo.2009.06.005, 2010. a
Fossen, H. and Cavalcante, G. C. G.: Shear zones – A review, Earth-Sci. Rev., 171, 434–455, https://doi.org/10.1016/j.earscirev.2017.05.002, 2017. a, b, c, d
French, M. E. and Condit, C. B.: Slip partitioning along an idealized subduction plate boundary at deep slow slip conditions, Earth Planet. Sc. Lett., 528, 115828, https://doi.org/10.1016/j.epsl.2019.115828, 2019. a
Frohlich, C.: Deep earthquakes, Cambridge University Press, p. 573, ISBN 9780521828697, 2006. a
Fusseis, F. and Handy, M.: Micromechanisms of shear zone propagation at the brittle–viscous transition, J. Struct. Geol., 30, 1242–1253, https://doi.org/10.1016/j.jsg.2008.06.005, 2008. a
Fusseis, F., Handy, M., and Schrank, C.: Networking of shear zones at the brittle-to-viscous transition (Cap de Creus, NE Spain), J. Struct. Geol., 28, 1228–1243, https://doi.org/10.1016/j.jsg.2006.03.022, 2006. a
Fusseis, F., Regenauer-Lieb, K., Liu, J., Hough, R. M., and De Carlo, F.: Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones, Nature, 459, 974–977, https://doi.org/10.1038/nature08051, 2009. a
Gates, A. E. and Glover III, L.: Alleghanian tectono-thermal evolution of the dextral transcurrent Hylas zone, Virginia Piedmont, USA, J. Struct. Geol., 11, 407–419, https://doi.org/10.1016/0191-8141(89)90018-7, 1989. a
Gerya, T. V. and Yuen, D. A.: Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems, Phys. Earth Planet. In., 163, 83–105, https://doi.org/10.1016/j.pepi.2007.04.015, 2007. a
Ghosh, S. and Sengupta, S.: Progressive development of structures in a ductile shear zone, J. Struct. Geol., 9, 277–287, https://doi.org/10.1016/0191-8141(87)90052-6, 1987. a
Giorgetti, C., Carpenter, B., and Collettini, C.: Frictional behavior of talc-calcite mixtures, J. Geophys. Res.-Sol. Ea., 120, 6614–6633, https://doi.org/10.1002/2015JB011970, 2015. a
Glerum, A., Thieulot, C., Fraters, M., Blom, C., and Spakman, W.: Nonlinear viscoplasticity in ASPECT: benchmarking and applications to subduction, Solid Earth, 9, 267–294, https://doi.org/10.5194/se-9-267-2018, 2018. a, b
Gomez-Rivas, E., Griera, A., Llorens, M.-G., Bons, P. D., Lebensohn, R. A., and Piazolo, S.: Subgrain rotation recrystallization during shearing: insights from full-field numerical simulations of halite polycrystals, J. Geophys. Res.-Sol. Ea., 122, 8810–8827, https://doi.org/10.1002/2017JB014508, 2017. a
Gou, T., Zhao, D., Huang, Z., and Wang, L.: Aseismic deep slab and mantle flow beneath Alaska: Insight from anisotropic tomography, J. Geophys. Res.-Sol. Ea., 124, 1700–1724, https://doi.org/10.1029/2018JB016639, 2019. a
Gueydan, F., Précigout, J., and Montesi, L. G.: Strain weakening enables continental plate tectonics, Tectonophysics, 631, 189–196, https://doi.org/10.1016/j.tecto.2014.02.005, 2014. a
Hacker, B. R., Peacock, S. M., Abers, G. A., and Holloway, S. D.: Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?, J. Geophys. Res.-Sol. Ea., 108, 2001JB001129, https://doi.org/10.1029/2001JB001129, 2003. a
Haines, S. H., Kaproth, B., Marone, C., Saffer, D., and Van der Pluijm, B.: Shear zones in clay-rich fault gouge: A laboratory study of fabric development and evolution, J. Struct. Geol., 51, 206–225, https://doi.org/10.1016/j.jsg.2013.01.002, 2013. a
Hall, S. A.: Characterization of fluid flow in a shear band in porous rock using neutron radiography, Geophys. Res. Lett., 40, 2613–2618, https://doi.org/10.1002/grl.50528, 2013. a
Holtzman, B. K.: Questions on the existence, persistence, and mechanical effects of a very small melt fraction in the asthenosphere, Geochem. Geophy. Geosy., 17, 470–484, https://doi.org/10.1002/2015GC006102, 2016. a
Hughes, A., Kendrick, J. E., Salas, G., Wallace, P. A., Legros, F., Toro, G. D., and Lavallée, Y.: Shear localisation, strain partitioning and frictional melting in a debris avalanche generated by volcanic flank collapse, J. Struct. Geol., 140, 104132, https://doi.org/10.1016/j.jsg.2020.104132, 2020. a
Hutchinson, J. W. and Tvergaard, V.: Shear band formation in plane strain, Int. J. Solids Struct., 17, 451–470, https://doi.org/10.1016/0020-7683(81)90053-6, 1981. a
Jacquey, A. B. and Cacace, M.: Multiphysics modeling of a brittle-ductile lithosphere: 1. Explicit visco-elasto-plastic formulation and its numerical implementation, J. Geophys. Res.-Sol. Ea., 125, e2019JB018474, https://doi.org/10.1029/2019JB018474, 2020. a
John, T., Medvedev, S., Rüpke, L. H., Andersen, T. B., Podladchikov, Y. Y., and Austrheim, H.: Generation of intermediate-depth earthquakes by self-localizing thermal runaway, Nat. Geosci., 2, 137–140, https://doi.org/10.1038/ngeo419, 2009. a
Kachanov, L. M.: Fundamentals of the Theory of Plasticity, Courier Corporation, ISBN 978-0486435831, 2004. a
Katz, R. F., Spiegelman, M., and Holtzman, B.: The dynamics of melt and shear localization in partially molten aggregates, Nature, 442, 676–679, https://doi.org/10.1038/nature05039, 2006. a, b, c, d
Kaus, B. J.: Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation, Tectonophysics, 484, 36–47, https://doi.org/10.1016/j.tecto.2009.08.042, 2010. a
Kelemen, P. and Hirth, G.: Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Possible Mechanism for Intermediate Depth Earthquakes and Slow Earthquakes?, in: AGU Fall Meeting Abstracts, vol. 2004, T23A–0563, https://ui.adsabs.harvard.edu/abs/2004AGUFM.T23A0563K/abstract (last access: 22 October 2024), 2004. a, b
Kelemen, P. B. and Hirth, G.: A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle, Nature, 446, 787–790, https://doi.org/10.1038/nature05717, 2007. a
Kirkpatrick, J. D., Fagereng, Å., and Shelly, D. R.: Geological constraints on the mechanisms of slow earthquakes, Nature Reviews Earth & Environment, 2, 285–301, https://doi.org/10.1038/s43017-021-00148-w, 2021. a
Koizumi, T., Tsunogae, T., van Reenen, D. D., Smit, C. A., and Belyanin, G. A.: Fluid migration along deep-crustal shear zone: A case study of the Rhenosterkoppies Greenstone Belt in the northern Kaapvaal Craton, South Africa, Geol. J., 58, 3928–3947, https://doi.org/10.1002/gj.4818, 2023. a
Korup, O., Clague, J. J., Hermanns, R. L., Hewitt, K., Strom, A. L., and Weidinger, J. T.: Giant landslides, topography, and erosion, Earth Planet. Sc. Lett., 261, 578–589, https://doi.org/10.1016/j.epsl.2007.07.025, 2007. a
Kotowski, A. J. and Behr, W. M.: Length scales and types of heterogeneities along the deep subduction interface: Insights from exhumed rocks on Syros Island, Greece, Geosphere, 15, 1038–1065, https://doi.org/10.1130/GES02037.1, 2019. a
Lavier, L. L., Tong, X., and Biemiller, J.: The mechanics of creep, slow slip events, and earthquakes in mixed brittle-ductile fault zones, J. Geophys. Res.-Sol. Ea., 126, e2020JB020325, https://doi.org/10.1029/2020JB020325, 2021. a
Lemiale, V., Mühlhaus, H.-B., Moresi, L., and Stafford, J.: Shear banding analysis of plastic models formulated for incompressible viscous flows, Phys. Earth Planet. In., 171, 177–186, https://doi.org/10.1016/j.pepi.2008.07.038, 2008. a
Lin, A.: S–C cataclasite in granitic rock, Tectonophysics, 304, 257–273, https://doi.org/10.1016/S0040-1951(99)00026-8, 1999. a
Lloyd, G. E. and Kendall, J.-M.: Petrofabric-derived seismic properties of a mylonitic quartz simple shear zone: implications for seismic reflection profiling, Geological Society, London, Special Publications, 240, 75–94, https://doi.org/10.1144/GSL.SP.2005.240.01.07, 2005. a
Logan, J., Dengo, C., Higgs, N., and Wang, Z.: Fabrics of experimental fault zones: Their development and relationship to mechanical behavior, in: International geophysics, vol. 51, Elsevier, 33–67, https://doi.org/10.1016/S0074-6142(08)62814-4, 1992. a, b
Logan, J. M.: Brittle phenomena, Rev. Geophys., 17, 1121–1132, https://doi.org/10.1029/RG017i006p01121, 1979. a, b, c
Logan, J. M. and Rauenzahn, K. A.: Frictional dependence of gouge mixtures of quartz and montmorillonite on velocity, composition and fabric, Tectonophysics, 144, 87–108, https://doi.org/10.1016/0040-1951(87)90010-2, 1987. a
Mair, K. and Abe, S.: 3D numerical simulations of fault gouge evolution during shear: Grain size reduction and strain localization, Earth Planet. Sc. Lett., 274, 72–81, https://doi.org/10.1016/j.epsl.2008.07.010, 2008. a
Malik, J. N., Murty, C., and Rai, D. C.: Landscape changes in the Andaman and Nicobar Islands (India) after the December 2004 great Sumatra earthquake and Indian Ocean tsunami, Earthq. Spectra, 22, 43–66, https://doi.org/10.1193/1.2206792, 2006. a
Maltman, A. J.: Some microstructures of experimentally deformed argillaceous sediments, Tectonophysics, 39, 417–436, https://doi.org/10.1016/0040-1951(77)90107-X, 1977. a
Mancktelow, N. S., Camacho, A., and Pennacchioni, G.: Time-Lapse Record of an Earthquake in the Dry Felsic Lower Continental Crust Preserved in a Pseudotachylyte-Bearing Fault, J. Geophys. Res.-Sol. Ea., 127, e2021JB022878, https://doi.org/10.1029/2021JB022878, 2022. a
Mansour, J., Giordani, J., Moresi, L., Beucher, R., Kaluza, O., Velic, M., Farrington, R., Quenette, S., and Beall, A.: Underworld2: Python geodynamics modelling for desktop, HPC and cloud, Journal of Open Source Software, 5, 1797, https://doi.org/10.21105/joss.01797, 2020. a, b
Marone, C. and Scholz, C.: Particle-size distribution and microstructures within simulated fault gouge, J. Struct. Geol., 11, 799–814, https://doi.org/10.1016/0191-8141(89)90099-0, 1989. a
Marone, C., Raleigh, C. B., and Scholz, C.: Frictional behavior and constitutive modeling of simulated fault gouge, J. Geophys. Res.-Sol. Ea., 95, 7007–7025, https://doi.org/10.1029/JB095iB05p07007, 1990. a
Marques, F., Burlini, L., and Burg, J.-P.: Microstructure and mechanical properties of halite/coarse muscovite synthetic aggregates deformed in torsion, J. Struct. Geol., 33, 624–632, https://doi.org/10.1016/j.jsg.2011.01.003, 2011a.
Marques, F. O., Burlini, L., and Burg, J.-P.: Microstructural and mechanical effects of strong fine-grained muscovite in soft halite matrix: Shear strain localization in torsion, J. Geophys. Res.-Sol. Ea., 116, 2010JB008080, https://doi.org/10.1029/2010JB008080, 2011b. a
Marques, F., Burg, J.-P., Armann, M., and Martinho, E.: Rheology of synthetic polycrystalline halite in torsion, Tectonophysics, 583, 124–130, https://doi.org/10.1016/j.tecto.2012.10.024, 2013. a
Marti, S., Stünitz, H., Heilbronner, R., Plümper, O., and Drury, M.: Experimental investigation of the brittle-viscous transition in mafic rocks – Interplay between fracturing, reaction, and viscous deformation, J. Struct. Geol., 105, 62–79, https://doi.org/10.1016/j.jsg.2017.10.011, 2017. a
Marti, S., Stünitz, H., Heilbronner, R., Plümper, O., and Kilian, R.: Syn-kinematic hydration reactions, grain size reduction, and dissolution–precipitation creep in experimentally deformed plagioclase–pyroxene mixtures, Solid Earth, 9, 985–1009, https://doi.org/10.5194/se-9-985-2018, 2018. a
Marti, S., Stünitz, H., Heilbronner, R., and Plümper, O.: Amorphous material in experimentally deformed mafic rock and its temperature dependence: Implications for fault rheology during aseismic creep and seismic rupture, J. Struct. Geol., 138, 104081, https://doi.org/10.1016/j.jsg.2020.104081, 2020. a
Mazumder, R., Van Loon, A., Mallik, L., Reddy, S., Arima, M., Altermann, W., Eriksson, P., and De, S.: Mesoarchaean–Palaeoproterozoic stratigraphic record of the Singhbhum crustal province, eastern India: a synthesis, Geological Society, London, Special Publications, 365, 31–49, https://doi.org/10.1144/SP365.3, 2012. a
Menegon, L., Campbell, L., Mancktelow, N., Camacho, A., Wex, S., Papa, S., Toffol, G., and Pennacchioni, G.: The earthquake cycle in the dry lower continental crust: insights from two deeply exhumed terranes (Musgrave Ranges, Australia and Lofoten, Norway), Philos. T. R. Soc. A, 379, 20190416, https://doi.org/10.1098/rsta.2019.0416, 2021. a, b
Meyer, S. E., Kaus, B. J., and Passchier, C.: Development of branching brittle and ductile shear zones: A numerical study, Geochem. Geophy. Geosy., 18, 2054–2075, https://doi.org/10.1002/2016GC006793, 2017. a, b, c
Mildon, Z. K., Roberts, G. P., Faure Walker, J. P., Joakim, B., Papanikolaou, I., Michetti, A. M., Toda, S., Iezzi, F., Campbell, L., McCaffrey, K. J. W., Shanks, R., and Sgambato, C.: Surface faulting earthquake clustering controlled by fault and shear-zone interactions, Nat. Commun., 13, 7126, https://doi.org/10.1038/s41467-022-34821-5, 2022. a
Misra, S., Burlini, L., and Burg, J. P.: Strain localization and melt segregation in deforming metapelites, Phys. Earth Planet. In., 177, 173–179, https://doi.org/10.1016/j.pepi.2009.08.011, 2009. a, b, c
Moresi, L., Mühlhaus, H.-B., Lemiale, V., and May, D.: Incompressible viscous formulations for deformation and yielding of the lithosphere, Geological Society, London, Special Publications, 282, 457–472, https://doi.org/10.1144/SP282.19, 2007a. a, b
Moresi, L., Quenette, S., Lemiale, V., Meriaux, C., Appelbe, B., and Mühlhaus, H.-B.: Computational approaches to studying non-linear dynamics of the crust and mantle, Phys. Earth Planet. In., 163, 69–82, https://doi.org/10.1016/j.pepi.2007.06.009, 2007b. a, b
Morgenstern, N. and Tchalenko, J.: Microstructural observations on shear zones from slips in natural clays, Proceedings of the Geotechnical Conference on Shear Strength Properties of Natural Soils and Rocks, 1, 147–152, https://trid.trb.org/View/124931 (last access: 22 October 2024), 1967. a
Mukherjee, S. and Koyi, H. A.: Higher Himalayan Shear Zone, Zanskar Indian Himalaya: microstructural studies and extrusion mechanism by a combination of simple shear and channel flow, Int. J. Earth Sci., 99, 1083–1110, https://doi.org/10.1007/s00531-009-0447-z, 2010. a
Mukhopadhyay, D. and Deb, G. K.: Structural and textural development in Singhbhum shear zone, eastern India, P. Indian As.-Earth, 104, 385–405, https://doi.org/10.1007/BF02843404, 1995. a, b, c
Mukhopadhyay, M., Roy, A., and Mandal, N.: Mechanisms of Shear Band Formation in Heterogeneous Materials Under Compression: The Role of Pre-Existing Mechanical Flaws, J. Geophys. Res.-Sol. Ea., 128, e2022JB026169, https://doi.org/10.1029/2022JB026169, 2023. a, b
Niemeijer, A. and Spiers, C.: Velocity dependence of strength and healing behaviour in simulated phyllosilicate-bearing fault gouge, Tectonophysics, 427, 231–253, https://doi.org/10.1016/j.tecto.2006.03.048, 2006. a
Niemeijer, A. R. and Spiers, C. J.: Influence of phyllosilicates on fault strength in the brittle-ductile transition: Insights from rock analogue experiments, Geological Society, London, Special Publications, 245, 303–327, https://doi.org/10.1144/GSL.SP.2005.245.01.15, 2005. a
Okamoto, A. S., Verberne, B. A., Niemeijer, A. R., Takahashi, M., Shimizu, I., Ueda, T., and Spiers, C. J.: Frictional properties of simulated chlorite gouge at hydrothermal conditions: Implications for subduction megathrusts, J. Geophys. Res.-Sol. Ea., 124, 4545–4565, https://doi.org/10.1029/2018JB017205, 2019. a
Ord, A., Hobbs, B., and Regenauer-Lieb, K.: Shear band emergence in granular materials – A numerical study, Int. J. Numer. Anal. Met., 31, 373–393, https://doi.org/10.1002/nag.590, 2007. a
Orellana, L., Scuderi, M., Collettini, C., and Violay, M.: Frictional properties of Opalinus Clay: Implications for nuclear waste storage, J. Geophys. Res.-Sol. Ea., 123, 157–175, https://doi.org/10.1002/2017JB014931, 2018. a
Papa, S., Pennacchioni, G., Camacho, A., and Larson, K. P.: Pseudotachylytes in felsic lower-crustal rocks of the Calabrian Serre massif: A record of deep-or shallow-crustal earthquakes?, Lithos, 460, 107375, https://doi.org/10.1016/j.lithos.2023.107375, 2023. a
Passchier, C. W. and Trouw, R. A. J.: Microtectonics, Springer-Verlag, https://doi.org/10.1007/3-540-29359-0, 2005. a
Paterson, M. S. and Wong, T.-F.: Experimental rock deformation: the brittle field, vol. 348, Springer, https://doi.org/10.1007/b137431, 2005. a
Pec, M., Stünitz, H., Heilbronner, R., and Drury, M.: Semi-brittle flow of granitoid fault rocks in experiments, J. Geophys. Res.-Sol. Ea., 121, 1677–1705, https://doi.org/10.1002/2015JB012513, 2016. a
Pennacchioni, G. and Mancktelow, N.: Small-scale ductile shear zones: neither extending, nor thickening, nor narrowing, Earth-Sci. Rev., 184, 1–12, https://doi.org/10.1016/j.earscirev.2018.06.004, 2018. a, b, c
Platt, J. P., Xia, H., and Schmidt, W. L.: Rheology and stress in subduction zones around the aseismic/seismic transition, Progress in Earth and Planetary Science, 5, 1–12, https://doi.org/10.1186/s40645-018-0183-8, 2018. a, b
Précigout, J., Prigent, C., Palasse, L., and Pochon, A.: Water pumping in mantle shear zones, Nat. Commun., 8, 15736, https://doi.org/10.1038/ncomms15736, 2017. a
Prieto, G. A., Froment, B., Yu, C., Poli, P., and Abercrombie, R.: Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle, Science Advances, 3, e1602642, https://doi.org/10.1126/sciadv.1602642, 2017. a
Ranalli, G.: Rheology of the Earth, Springer Science & Business Media, ISBN 978-0-412-54670-9 1995. a
Ranalli, G.: Rheology of the lithosphere in space and time, Geological Society, London, Special Publications, 121, 19–37, https://doi.org/10.1144/GSL.SP.1997.121.01.02, 1997. a
Rast, M. and Ruh, J. B.: Numerical shear experiments of quartz-biotite aggregates: Insights on strain weakening and two-phase flow laws, J. Struct. Geol., 149, 104375, https://doi.org/10.1016/j.jsg.2021.104375, 2021. a
Reber, J. E., Lavier, L. L., and Hayman, N. W.: Experimental demonstration of a semi-brittle origin for crustal strain transients, Nat. Geosci., 8, 712–715, https://doi.org/10.1038/ngeo2496, 2015. a
Regenauer-Lieb, K. and Yuen, D.: Modeling shear zones in geological and planetary sciences: solid-and fluid-thermal–mechanical approaches, Earth-Sci. Rev., 63, 295–349, https://doi.org/10.1016/S0012-8252(03)00038-2, 2003. a
Rice, J. R.: Heating and weakening of faults during earthquake slip, J. Geophys. Res.-Sol. Ea., 111, 2005JB004006, https://doi.org/10.1029/2005JB004006, 2006. a
Rodriguez Padilla, A. M.: Decoding earthquake mechanics with repeat pass airborne lidar, Nature Reviews Earth & Environment, 4, 355–355, https://doi.org/10.1038/s43017-023-00430-z, 2023. a
Rodriguez Padilla, A. M., Oskin, M. E., Milliner, C. W., and Plesch, A.: Accrual of widespread rock damage from the 2019 Ridgecrest earthquakes, Nat. Geosci., 15, 222–226, https://doi.org/10.1038/s41561-021-00888-w, 2022. a
Roscoe, K. H.: The influence of strains in soil mechanics, Geotechnique, 20, 129–170, https://doi.org/10.1680/geot.1970.20.2.129, 1970. a
Roy, A., Ghosh, D., and Mandal, N.: Dampening effect of global flows on Rayleigh–Taylor instabilities: implications for deep-mantle plumes vis-à-vis hotspot distributions, Geophys. J. Int., 236, 119–138, https://doi.org/10.1093/gji/ggad414, 2024. a
Roy, N., Roy, A., Saha, P., and Mandal, N.: On the origin of shear-band network patterns in ductile shear zones, P. R. Soc. A, 478, 20220146, https://doi.org/10.1098/rspa.2022.0146, 2022. a, b
Rudnicki, J. W. and Rice, J.: Conditions for the localization of deformation in pressure-sensitive dilatant materials, J. Mech. Phys. Solids, 23, 371–394, https://doi.org/10.1016/0022-5096(75)90001-0, 1975. a
Ruggieri, R., Scuderi, M. M., Trippetta, F., Tinti, E., Brignoli, M., Mantica, S., Petroselli, S., Osculati, L., Volontè, G., and Collettini, C.: The role of shale content and pore-water saturation on frictional properties of simulated carbonate faults, Tectonophysics, 807, 228811, https://doi.org/10.1016/j.tecto.2021.228811, 2021. a
Rutter, E., Maddock, R., Hall, S., and White, S.: Comparative microstructures of natural and experimentally produced clay-bearing fault gouges, Pure Appl. Geophys., 124, 3–30, https://doi.org/10.1007/BF00875717, 1986. a, b
Saffer, D. M. and Marone, C.: Comparison of smectite-and illite-rich gouge frictional properties: application to the updip limit of the seismogenic zone along subduction megathrusts, Earth Planet. Sc. Lett., 215, 219–235, https://doi.org/10.1016/S0012-821X(03)00424-2, 2003. a
Sandiford, D. and Moresi, L.: Improving subduction interface implementation in dynamic numerical models, Solid Earth, 10, 969–985, https://doi.org/10.5194/se-10-969-2019, 2019. a
Schmocker, M., Bystricky, M., Kunze, K., Burlini, L., Stünitz, H., and Burg, J.-P.: Granular flow and Riedel band formation in water-rich quartz aggregates experimentally deformed in torsion, J. Geophys. Res.-Sol. Ea., 108, 2002JB001958, https://doi.org/10.1029/2002JB001958, 2003. a
Schubnel, A., Brunet, F., Hilairet, N., Gasc, J., Wang, Y., and Green, H. W.: Deep-focus earthquake analogs recorded at high pressure and temperature in the laboratory, Science, 341, 1377–1380, https://doi.org/10.1126/science.1240206, 2013. a
Schueller, S., Gueydan, F., and Davy, P.: Mechanics of the transition from localized to distributed fracturing in layered brittle-ductile systems, Tectonophysics, 484, 48–59, https://doi.org/10.1016/j.tecto.2009.09.008, 2010. a, b
Shimamoto, T.: Transition between frictional slip and ductile flow for halite shear zones at room temperature, Science, 231, 711–714, https://doi.org/10.1126/science.231.4739.711, 1986. a
Shimamoto, T.: The origin of SC mylonites and a new fault-zone model, J. Struct. Geol., 11, 51–64, https://doi.org/10.1016/0191-8141(89)90035-7, 1989. a
Sibson, R. H.: Generation of pseudotachylyte by ancient seismic faulting, Geophys. J. Int., 43, 775–794, https://doi.org/10.1111/j.1365-246X.1975.tb06195.x, 1975. a
Sibson, R. H.: Fault rocks and fault mechanisms, J. Geol. Soc., 133, 191–213, https://doi.org/10.1144/gsjgs.133.3.0191, 1977. a
Spruzeniece, L. and Piazolo, S.: Strain localization in brittle–ductile shear zones: fluid-abundant vs. fluid-limited conditions (an example from Wyangala area, Australia), Solid Earth, 6, 881–901, https://doi.org/10.5194/se-6-881-2015, 2015. a
Tesei, T., Collettini, C., Carpenter, B. M., Viti, C., and Marone, C.: Frictional strength and healing behavior of phyllosilicate-rich faults, J. Geophys. Res.-Sol. Ea., 117, 2012JB009204, https://doi.org/10.1029/2012JB009204, 2012. a
Tesei, T., Collettini, C., Barchi, M. R., Carpenter, B. M., and Di Stefano, G.: Heterogeneous strength and fault zone complexity of carbonate-bearing thrusts with possible implications for seismicity, Earth Planet. Sc. Lett., 408, 307–318, https://doi.org/10.1016/j.epsl.2014.10.021, 2014. a
Thielmann, M. and Kaus, B. J.: Shear heating induced lithospheric-scale localization: Does it result in subduction?, Earth Planet. Sc. Lett., 359, 1–13, https://doi.org/10.1016/j.epsl.2012.10.002, 2012. a
Tokle, L., Hirth, G., and Stünitz, H.: The effect of muscovite on the microstructural evolution and rheology of quartzite in general shear, J. Struct. Geol., 169, 104835, https://doi.org/10.1016/j.jsg.2023.104835, 2023. a, b
Torki, M. E. and Benzerga, A. A.: A mechanism of failure in shear bands, Extreme Mechanics Letters, 23, 67–71, https://doi.org/10.1016/j.eml.2018.06.008, 2018. a, b
Tulley, C. J., Fagereng, Ujiie, K., Diener, J. F., and Harris, C.: Embrittlement Within Viscous Shear Zones Across the Base of the Subduction Thrust Seismogenic Zone, Geochem. Geophy. Geosy. 23, e2021GC010208, https://doi.org/10.1029/2021GC010208, 2022. a, b
Ujiie, K., Saishu, H., Fagereng, Å., Nishiyama, N., Otsubo, M., Masuyama, H., and Kagi, H.: An explanation of episodic tremor and slow slip constrained by crack-seal veins and viscous shear in subduction mélange, Geophys. Res. Lett., 45, 5371–5379, https://doi.org/10.1029/2018GL078374, 2018. a
Vardoulakis, I., Goldscheider, M., and Gudehus, G.: Formation of shear bands in sand bodies as a bifurcation problem, Int. J. Numer. Anal. Met., 2, 99–128, https://doi.org/10.1002/nag.1610020203, 1978. a
Vauchez, A., Tommasi, A., and Mainprice, D.: Faults (shear zones) in the Earth's mantle, Tectonophysics, 558, 1–27, https://doi.org/10.1016/j.tecto.2012.06.006, 2012. a
Vissers, R. L., Ganerød, M., Pennock, G. M., and van Hinsbergen, D. J.: Eocene seismogenic reactivation of a Jurassic ductile shear zone at Cap de Creus, Pyrenees, NE Spain, J. Struct. Geol., 134, 103994, https://doi.org/10.1016/j.jsg.2020.103994, 2020. a
Volpe, G., Pozzi, G., and Collettini, C.: YBPR or SCC′? Suggestion for the nomenclature of experimental brittle fault fabric in phyllosilicate-granular mixtures, J. Struct. Geol., 165, 104743, https://doi.org/10.1016/j.jsg.2022.104743, 2022. a, b
Wang, J., Howarth, J. D., McClymont, E. L., Densmore, A. L., Fitzsimons, S. J., Croissant, T., Gröcke, D. R., West, M. D., Harvey, E. L., Frith, N. V., Garnett, M. H., and Hilton, R. G.: Long-term patterns of hillslope erosion by earthquake-induced landslides shape mountain landscapes, Science Advances, 6, eaaz6446, https://doi.org/10.1126/sciadv.aaz6446, 2020. a
Wang, Q. and Lade, P. V.: Shear banding in true triaxial tests and its effect on failure in sand, J. Eng. Mech., 127, 754–761, https://doi.org/10.1061/(ASCE)0733-9399(2001)127:8(754), 2001. a, b
Wijeyesekera, D. C. and De Freitas, M.: High-Pressure Consolidation of Kaolinitic Clay: GEOLOGIC NOTES, AAPG Bull., 60, 293–298, https://doi.org/10.1306/83D922C6-16C7-11D7-8645000102C1865D, 1976. a
Willett, S. D.: Dynamic and kinematic growth and change of a Coulomb wedge, in: Thrust tectonics, Springer, 19–31, https://doi.org/10.1007/978-94-011-3066-0_2, 1992. a
Wu, G. and Lavier, L. L.: The effects of lower crustal strength and preexisting midcrustal shear zones on the formation of continental core complexes and low-angle normal faults, Tectonics, 35, 2195–2214, https://doi.org/10.1002/2016TC004245, 2016. a
Short summary
Understanding strain accumulation processes in shear zones is essential for explaining failure mechanisms at great crustal depths. This study explores the rheological and kinematic factors determining the varying modes of shear accommodation in natural shear zones. Numerical simulations suggest that an interplay of parameters – initial viscosity, bulk shear rate, and internal cohesion – governs the dominance of one accommodation mechanism over another.
Understanding strain accumulation processes in shear zones is essential for explaining failure...