Articles | Volume 6, issue 2
Solid Earth, 6, 497–514, 2015
https://doi.org/10.5194/se-6-497-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue: Deformation mechanisms and ductile strain localization in...
Research article
19 May 2015
Research article
| 19 May 2015
Fracturing of ductile anisotropic multilayers: influence of material strength
E. Gomez-Rivas et al.
Related authors
Maria Gema Llorens, Albert Griera, Paul D. Bons, Ilka Weikusat, David Prior, Enrique Gomez-Rivas, Tamara de Riese, Ivone Jimenez-Munt, Daniel García Castellanos, and Ricardo A. Lebensohn
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-224, https://doi.org/10.5194/tc-2021-224, 2021
Revised manuscript accepted for TC
Short summary
Short summary
Polar ice is formed by ice crystals, which form fabrics that are utilized to interpret how ice sheets flow. It is not clear whether fabrics result from the current flow regime or if they are inherited. To understand to what extent ice crystals can be reoriented when the ice flow conditions change, we simulate and evaluate multi-stage ice flow scenarios according to natural cases. We find that second deformation regimes normally overprint inherited fabrics, with a range of transitional fabrics.
Maria Gema Llorens, Albert Griera, Paul D. Bons, Ilka Weikusat, David Prior, Enrique Gomez-Rivas, Tamara de Riese, Ivone Jimenez-Munt, Daniel García Castellanos, and Ricardo A. Lebensohn
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-224, https://doi.org/10.5194/tc-2021-224, 2021
Revised manuscript accepted for TC
Short summary
Short summary
Polar ice is formed by ice crystals, which form fabrics that are utilized to interpret how ice sheets flow. It is not clear whether fabrics result from the current flow regime or if they are inherited. To understand to what extent ice crystals can be reoriented when the ice flow conditions change, we simulate and evaluate multi-stage ice flow scenarios according to natural cases. We find that second deformation regimes normally overprint inherited fabrics, with a range of transitional fabrics.
Paul D. Bons, Tamara de Riese, Steven Franke, Maria-Gema Llorens, Till Sachau, Nicolas Stoll, Ilka Weikusat, Julien Westhoff, and Yu Zhang
The Cryosphere, 15, 2251–2254, https://doi.org/10.5194/tc-15-2251-2021, https://doi.org/10.5194/tc-15-2251-2021, 2021
Short summary
Short summary
The modelling of Smith-Johnson et al. (The Cryosphere, 14, 841–854, 2020) suggests that a very large heat flux of more than 10 times the usual geothermal heat flux is required to have initiated or to control the huge Northeast Greenland Ice Stream. Our comparison with known hotspots, such as Iceland and Yellowstone, shows that such an exceptional heat flux would be unique in the world and is incompatible with known geological processes that can raise the heat flux.
Chao Qi, David J. Prior, Lisa Craw, Sheng Fan, Maria-Gema Llorens, Albert Griera, Marianne Negrini, Paul D. Bons, and David L. Goldsby
The Cryosphere, 13, 351–371, https://doi.org/10.5194/tc-13-351-2019, https://doi.org/10.5194/tc-13-351-2019, 2019
Short summary
Short summary
Ice deformed in nature develops crystallographic preferred orientations, CPOs, which induce an anisotropy in ice viscosity. Shear experiments of ice revealed a transition in CPO with changing temperature/strain, which is due to the change of dominant CPO-formation mechanism: strain-induced grain boundary migration dominates at higher temperatures and lower strains, while lattice rotation dominates at other conditions. Understanding these mechanisms aids the interpretation of CPOs in natural ice.
Florian Steinbach, Paul D. Bons, Albert Griera, Daniela Jansen, Maria-Gema Llorens, Jens Roessiger, and Ilka Weikusat
The Cryosphere, 10, 3071–3089, https://doi.org/10.5194/tc-10-3071-2016, https://doi.org/10.5194/tc-10-3071-2016, 2016
Short summary
Short summary
How glaciers or ice sheets flow is a result of microscopic processes controlled by the properties of individual ice crystals. We performed computer simulations on these processes and the effect of air bubbles between crystals. The simulations show that small-scale ice deformation is locally stronger than in other regions, which is enhanced by bubbles. This causes the ice crystals to recrystallise and change their properties in a way that potentially also affects the large-scale flow properties.
D. Jansen, M.-G. Llorens, J. Westhoff, F. Steinbach, S. Kipfstuhl, P. D. Bons, A. Griera, and I. Weikusat
The Cryosphere, 10, 359–370, https://doi.org/10.5194/tc-10-359-2016, https://doi.org/10.5194/tc-10-359-2016, 2016
Short summary
Short summary
In this study we present examples of typical small-scale folds observed in the NEEM ice core, North Greenland, and discuss their characteristics. Numerical modelling of viscoplastic deformation and dynamic recrystallisation was used to improve the understanding of the formation of the observed structures under simple shear boundary conditions. We conclude that the folds originate from bands of grains with a tilted lattice relative to the strong lattice preferred orientation below 1500 m depth.
Related subject area
Structural geology
Variscan structures and their control on latest to post-Variscan basin architecture: insights from the westernmost Bohemian Massif and southeastern Germany
Multi-disciplinary characterizations of the BedrettoLab – a new underground geoscience research facility
Biotite supports long-range diffusive transport in dissolution–precipitation creep in halite through small porosity fluctuations
De-risking the energy transition by quantifying the uncertainties in fault stability
Virtual field trip to the Esla Nappe (Cantabrian Zone, NW Spain): delivering traditional geological mapping skills remotely using real data
Marine forearc structure of eastern Java and its role in the 1994 Java tsunami earthquake
Roughness of fracture surfaces in numerical models and laboratory experiments
Impact of basement thrust faults on low-angle normal faults and rift basin evolution: a case study in the Enping sag, Pearl River Basin
Evidence for and significance of the Late Cretaceous Asteroussia event in the Gondwanan Ios basement terranes
Investigating spatial heterogeneity within fracture networks using hierarchical clustering and graph distance metrics
Dating folding beyond folding, from layer-parallel shortening to fold tightening, using mesostructures: lessons from the Apennines, Pyrenees, and Rocky Mountains
Deformation-enhanced diagenesis and bacterial proliferation in the Nankai accretionary prism
Rheological stratification in impure rock salt during long-term creep: morphology, microstructure, and numerical models of multilayer folds in the Ocnele Mari salt mine, Romania
Geodynamic and seismotectonic model of a long-lived transverse structure: The Schio-Vicenza Fault System (NE Italy)
Structural diagenesis in ultra-deep tight sandstones in Kuqa depression, Tarim Basin, China
Neogene kinematics of the Giudicarie Belt and eastern Southern Alpine orogenic front (northern Italy)
Fault interpretation uncertainties using seismic data, and the effects on fault seal analysis: a case study from the Horda Platform, with implications for CO2 storage
Application of anisotropy of magnetic susceptibility (AMS) fabrics to determine the kinematics of active tectonics: examples from the Betic Cordillera, Spain, and the Northern Apennines, Italy
Reply to Norini and Groppelli's comment on “Estimating the depth and evolution of intrusions at resurgent calderas: Los Humeros (Mexico)” by Urbani et al. (2020)
Emplacement of “exotic” Zechstein slivers along the inverted Sontra Graben (northern Hessen, Germany): clues from balanced cross sections and geometrical forward modeling
Kinematics of subduction in the Ibero-Armorican arc constrained by 3D microstructural analysis of garnet and pseudomorphed lawsonite porphyroblasts from Île de Groix (Variscan belt)
Mapping and evaluating kinematics and the stress and strain field at active faults and fissures: a comparison between field and drone data at the NE rift, Mt Etna (Italy)
Frictional properties and microstructural evolution of dry and wet calcite–dolomite gouges
Experimental evidence that viscous shear zones generate periodic pore sheets
Influence of inherited structural domains and their particular strain distributions on the Roer Valley graben evolution from inversion to extension
The Piuquencillo fault system: a long-lived, Andean-transverse fault system and its relationship with magmatic and hydrothermal activity
Extensional reactivation of the Penninic frontal thrust 3 Myr ago as evidenced by U–Pb dating on calcite in fault zone cataclasite
Distribution, microphysical properties, and tectonic controls of deformation bands in the Miocene subduction wedge (Whakataki Formation) of the Hikurangi subduction zone
Analysis of deformation bands associated with the Trachyte Mesa intrusion, Henry Mountains, Utah: implications for reservoir connectivity and fluid flow around sill intrusions
Characterization of discontinuities in potential reservoir rocks for geothermal applications in the Rhine-Ruhr metropolitan area (Germany)
On a new robust workflow for the statistical and spatial analysis of fracture data collected with scanlines (or the importance of stationarity)
Micro- and nano-porosity of the active Alpine Fault zone, New Zealand
Unraveling the origins and P-T-t evolution of the allochthonous Sobrado unit (Órdenes Complex, NW Spain) using combined U–Pb titanite, monazite and zircon geochronology and rare-earth element (REE) geochemistry
Fracture attribute scaling and connectivity in the Devonian Orcadian Basin with implications for geologically equivalent sub-surface fractured reservoirs
Structural control on fluid flow and shallow diagenesis: insights from calcite cementation along deformation bands in porous sandstones
The growth of faults and fracture networks in a mechanically evolving, mechanically stratified rock mass: a case study from Spireslack Surface Coal Mine, Scotland
Relationship between microstructures and resistance in mafic assemblages that deform and transform
Multiphase, decoupled faulting in the southern German Molasse Basin – evidence from 3-D seismic data
Fault-controlled fluid circulation and diagenesis along basin-bounding fault systems in rifts – insights from the East Greenland rift system
Near-surface Palaeocene fluid flow, mineralisation and faulting at Flamborough Head, UK: new field observations and U–Pb calcite dating constraints
Towards the application of Stokes flow equations to structural restoration simulations
Inversion tectonics: a brief petroleum industry perspective
Geologic characterization of nonconformities using outcrop and core analogs: hydrologic implications for injection-induced seismicity
Mapping the fracture network in the Lilstock pavement, Bristol Channel, UK: manual versus automatic
Data acquisition by digitizing 2-D fracture networks and topographic lineaments in geographic information systems: further development and applications
Precambrian faulting episodes and insights into the tectonothermal history of north Australia: microstructural evidence and K–Ar, 40Ar–39Ar, and Rb–Sr dating of syntectonic illite from the intracratonic Millungera Basin
Transverse jointing in foreland fold-and-thrust belts: a remote sensing analysis in the eastern Pyrenees
Regional-scale paleofluid system across the Tuscan Nappe–Umbria–Marche Apennine Ridge (northern Apennines) as revealed by mesostructural and isotopic analyses of stylolite–vein networks
Pre-inversion normal fault geometry controls inversion style and magnitude, Farsund Basin, offshore southern Norway
Uncertainty assessment for 3D geologic modeling of fault zones based on geologic inputs and prior knowledge
Hamed Fazlikhani, Wolfgang Bauer, and Harald Stollhofen
Solid Earth, 13, 393–416, https://doi.org/10.5194/se-13-393-2022, https://doi.org/10.5194/se-13-393-2022, 2022
Short summary
Short summary
Interpretation of newly acquired FRANKEN 2D seismic survey data in southeeastern Germany shows that upper Paleozoic low-grade metasedimentary rocks and possible nappe units are transported by Variscan shear zones to ca. 65 km west of the Franconian Fault System (FFS). We show that the locations of post-Variscan upper Carboniferous–Permian normal faults and associated graben and half-graben basins are controlled by the geometry of underlying Variscan shear zones.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Berit Schwichtenberg, Florian Fusseis, Ian B. Butler, and Edward Andò
Solid Earth, 13, 41–64, https://doi.org/10.5194/se-13-41-2022, https://doi.org/10.5194/se-13-41-2022, 2022
Short summary
Short summary
Hydraulic rock properties such as porosity and permeability are relevant factors that have an impact on groundwater resources, geological repositories and fossil fuel reservoirs. We investigate the influence of chemical compaction upon the porosity evolution in salt–biotite mixtures and related transport length scales by conducting laboratory experiments in combination with 4-D analysis. Our observations invite a renewed discussion of the effect of sheet silicates on chemical compaction.
David Healy and Stephen Paul Hicks
Solid Earth, 13, 15–39, https://doi.org/10.5194/se-13-15-2022, https://doi.org/10.5194/se-13-15-2022, 2022
Short summary
Short summary
The energy transition requires operations in faulted rocks. To manage the technical challenges and public concern over possible induced earthquakes, we need to quantify the risks. We calculate the probability of fault slip based on uncertain inputs, stresses, fluid pressures, and the mechanical properties of rocks in fault zones. Our examples highlight the specific gaps in our knowledge. Citizen science projects could produce useful data and include the public in the discussions about hazards.
Manuel I. de Paz-Álvarez, Thomas G. Blenkinsop, David M. Buchs, George E. Gibbons, and Lesley Cherns
Solid Earth, 13, 1–14, https://doi.org/10.5194/se-13-1-2022, https://doi.org/10.5194/se-13-1-2022, 2022
Short summary
Short summary
We describe a virtual geological mapping course implemented in response to travelling and social restrictions derived from the ongoing COVID-19 pandemic. The course was designed to replicate a physical mapping exercise as closely as possible with the aid of real field data and photographs collected by the authors during previous years in the Cantabrian Zone (NW Spain). The course is delivered through Google Earth via a KMZ file with outcrop descriptions and links to GitHub-hosted photographs.
Yueyang Xia, Jacob Geersen, Dirk Klaeschen, Bo Ma, Dietrich Lange, Michael Riedel, Michael Schnabel, and Heidrun Kopp
Solid Earth, 12, 2467–2477, https://doi.org/10.5194/se-12-2467-2021, https://doi.org/10.5194/se-12-2467-2021, 2021
Short summary
Short summary
The 2 June 1994 Java tsunami earthquake ruptured in a seismically quiet subduction zone and generated a larger-than-expected tsunami. Here, we re-process a seismic line across the rupture area. We show that a subducting seamount is located up-dip of the mainshock in a region that did not rupture during the earthquake. Seamount subduction modulates the topography of the marine forearc and acts as a seismic barrier in the 1994 earthquake rupture.
Steffen Abe and Hagen Deckert
Solid Earth, 12, 2407–2424, https://doi.org/10.5194/se-12-2407-2021, https://doi.org/10.5194/se-12-2407-2021, 2021
Short summary
Short summary
We use numerical simulations and laboratory experiments on rock samples to investigate how stress conditions influence the geometry and roughness of fracture surfaces. The roughness of the surfaces was analyzed in terms of absolute roughness and scaling properties. The results show that the surfaces are self-affine but with different scaling properties between the numerical models and the real rock samples. Results suggest that stress conditions have little influence on the surface roughness.
Chao Deng, Rixiang Zhu, Jianhui Han, Yu Shu, Yuxiang Wu, Kefeng Hou, and Wei Long
Solid Earth, 12, 2327–2350, https://doi.org/10.5194/se-12-2327-2021, https://doi.org/10.5194/se-12-2327-2021, 2021
Short summary
Short summary
This study uses seismic reflection data to interpret the geometric relationship and evolution of intra-basement and rift-related structures in the Enping sag in the northern South China Sea. Our observations suggest the primary control of pre-existing thrust faults is the formation of low-angle normal faults, with possible help from low-friction materials, and the significant role of pre-existing basement thrust faults in fault geometry, paleotopography, and syn-rift stratigraphy of rift basins.
Sonia Yeung, Marnie Forster, Emmanuel Skourtsos, and Gordon Lister
Solid Earth, 12, 2255–2275, https://doi.org/10.5194/se-12-2255-2021, https://doi.org/10.5194/se-12-2255-2021, 2021
Short summary
Short summary
We do not know when the ancient Tethys Ocean lithosphere began to founder, but one clue can be found in subduction accreted tectonic slices, including Gondwanan basement terranes on the island of Ios, Cyclades, Greece. We propose a 250–300 km southwards jump of the subduction megathrust with a period of flat-slab subduction followed by slab break-off. The initiation and its subsequent rollback of a new subduction zone would explain the onset of Oligo–Miocene extension and accompanying magmatism.
Rahul Prabhakaran, Giovanni Bertotti, Janos Urai, and David Smeulders
Solid Earth, 12, 2159–2209, https://doi.org/10.5194/se-12-2159-2021, https://doi.org/10.5194/se-12-2159-2021, 2021
Short summary
Short summary
Rock fractures are organized as networks with spatially varying arrangements. Due to networks' influence on bulk rock behaviour, it is important to quantify network spatial variation. We utilize an approach where fracture networks are treated as spatial graphs. By combining graph similarity measures with clustering techniques, spatial clusters within large-scale fracture networks are identified and organized hierarchically. The method is validated on a dataset with nearly 300 000 fractures.
Olivier Lacombe, Nicolas E. Beaudoin, Guilhem Hoareau, Aurélie Labeur, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 12, 2145–2157, https://doi.org/10.5194/se-12-2145-2021, https://doi.org/10.5194/se-12-2145-2021, 2021
Short summary
Short summary
This paper aims to illustrate how the timing and duration of contractional deformation associated with folding in orogenic forelands can be constrained by the dating of brittle mesostructures observed in folded strata. The study combines new and already published absolute ages of fractures to provide, for the first time, an educated discussion about the factors controlling the duration of the sequence of deformation encompassing layer-parallel shortening, fold growth, and late fold tightening.
Vincent Famin, Hugues Raimbourg, Muriel Andreani, and Anne-Marie Boullier
Solid Earth, 12, 2067–2085, https://doi.org/10.5194/se-12-2067-2021, https://doi.org/10.5194/se-12-2067-2021, 2021
Short summary
Short summary
Sediments accumulated in accretionary prisms are deformed by the compression imposed by plate subduction. Here we show that deformation of the sediments transforms some minerals in them. We suggest that these mineral transformations are due to the proliferation of microorganisms boosted by deformation. Deformation-enhanced microbial proliferation may change our view of sedimentary and tectonic processes in subduction zones.
Marta Adamuszek, Dan M. Tămaş, Jessica Barabasch, and Janos L. Urai
Solid Earth, 12, 2041–2065, https://doi.org/10.5194/se-12-2041-2021, https://doi.org/10.5194/se-12-2041-2021, 2021
Short summary
Short summary
We analyse folded multilayer sequences in the Ocnele Mari salt mine (Romania) to gain insight into the long-term rheological behaviour of rock salt. Our results indicate the large role of even a small number of impurities in the rock salt for its effective mechanical behaviour. We demonstrate how the development of folds that occur at various scales can be used to constrain the viscosity ratio in the deformed multilayer sequence.
Dario Zampieri, Paola Vannoli, and Pierfrancesco Burrato
Solid Earth, 12, 1967–1986, https://doi.org/10.5194/se-12-1967-2021, https://doi.org/10.5194/se-12-1967-2021, 2021
Short summary
Short summary
The long-lived Schio-Vicenza Fault System is a major shear zone cross-cutting the foreland and the thrust belt of the eastern southern Alps. We review 150 years of scientific works and explain its activity and kinematics, characterized by sinistral and dextral transcurrent motion along its southern and northern sections, respectively, by a geodynamic model that has the Adria indenter as the main actor and coherently reconciles the available geological and geophysical evidence collected so far.
Jin Lai, Dong Li, Yong Ai, Hongkun Liu, Deyang Cai, Kangjun Chen, Yuqiang Xie, and Guiwen Wang
Solid Earth Discuss., https://doi.org/10.5194/se-2021-85, https://doi.org/10.5194/se-2021-85, 2021
Preprint under review for SE
Short summary
Short summary
(1) Structural diagenesis analysis is performed on the ultra-deep tight sandstone; (2) Fracture and intergranular pores are related to the low in situ stress magnitudes; (3) Dissolution is associated with the presences of fracture.
Vincent F. Verwater, Eline Le Breton, Mark R. Handy, Vincenzo Picotti, Azam Jozi Najafabadi, and Christian Haberland
Solid Earth, 12, 1309–1334, https://doi.org/10.5194/se-12-1309-2021, https://doi.org/10.5194/se-12-1309-2021, 2021
Short summary
Short summary
Balancing along geological cross sections reveals that the Giudicarie Belt comprises two kinematic domains. The SW domain accommodated at least ~ 18 km Late Oligocene to Early Miocene shortening. Since the Middle Miocene, the SW domain experienced at least ~ 12–22 km shortening, whereas the NE domain underwent at least ~ 25–35 km. Together, these domains contributed to ~ 40–47 km of sinistral offset of the Periadriatic Fault along the Northern Giudicarie Fault since the Late Oligocene.
Emma A. H. Michie, Mark J. Mulrooney, and Alvar Braathen
Solid Earth, 12, 1259–1286, https://doi.org/10.5194/se-12-1259-2021, https://doi.org/10.5194/se-12-1259-2021, 2021
Short summary
Short summary
Generating an accurate model of the subsurface is crucial when assessing a site for CO2 storage, particularly for a fault-bound storage site that may act as a seal or could reactivate upon CO2 injection. However, we have shown how picking strategy, i.e. line spacing, chosen to create the model significantly influences any subsequent fault analyses but is surprisingly rarely discussed. This analysis has been performed on the Vette Fault bounding the Smeaheia potential CO2 storage site.
David J. Anastasio, Frank J. Pazzaglia, Josep M. Parés, Kenneth P. Kodama, Claudio Berti, James A. Fisher, Alessandro Montanari, and Lorraine K. Carnes
Solid Earth, 12, 1125–1142, https://doi.org/10.5194/se-12-1125-2021, https://doi.org/10.5194/se-12-1125-2021, 2021
Short summary
Short summary
The anisotropy of magnetic susceptibility (AMS) technique provides an effective way to interpret deforming mountain belts. In both the Betics, Spain, and Apennines, Italy, weak but well-organized AMS fabrics were recovered from young unconsolidated and unburied rocks that could not be analyzed with more traditional methods. Collectively, these studies demonstrate the novel ways that AMS can be combined with other data to resolve earthquake hazards in space and time.
Stefano Urbani, Guido Giordano, Federico Lucci, Federico Rossetti, and Gerardo Carrasco-Núñez
Solid Earth, 12, 1111–1124, https://doi.org/10.5194/se-12-1111-2021, https://doi.org/10.5194/se-12-1111-2021, 2021
Short summary
Short summary
Structural studies in active calderas have a key role in the exploration of geothermal systems. We reply in detail to the points raised by the comment of Norini and Groppelli (2020), strengthening the relevance of our structural fieldwork for geothermal exploration and exploitation in active caldera geothermal systems including the Los Humeros caldera.
Jakob Bolz and Jonas Kley
Solid Earth, 12, 1005–1024, https://doi.org/10.5194/se-12-1005-2021, https://doi.org/10.5194/se-12-1005-2021, 2021
Short summary
Short summary
To assess the role smaller graben structures near the southern edge of the Central European Basin System play in the basin’s overall deformational history, we take advantage of a feature found on some of these structures, where slivers from older rock units appear along the graben's main fault, surrounded on both sides by younger strata. The implications for the geometry of the fault provide a substantially improved estimate for the magnitude of normal and thrust motion along the fault system.
Domingo G. A. M. Aerden, Alejandro Ruiz-Fuentes, Mohammad Sayab, and Aidan Forde
Solid Earth, 12, 971–992, https://doi.org/10.5194/se-12-971-2021, https://doi.org/10.5194/se-12-971-2021, 2021
Short summary
Short summary
We studied the geometry of foliations and microfolds preserved within metamorphic garnet crystals using X-ray tomography. The studied rocks are blueschists from Ile de Groix formed during Late Devonian subduction of Gondwana under Armorica. Several sets of differently oriented microfabrics were found recording variations in the direction of subduction. Comparison with similar data for Iberia supports that Iberia rotated only 10–20° during the Cretaceous opening of the North Atlantic.
Alessandro Tibaldi, Noemi Corti, Emanuela De Beni, Fabio Luca Bonali, Susanna Falsaperla, Horst Langer, Marco Neri, Massimo Cantarero, Danilo Reitano, and Luca Fallati
Solid Earth, 12, 801–816, https://doi.org/10.5194/se-12-801-2021, https://doi.org/10.5194/se-12-801-2021, 2021
Short summary
Short summary
The Northeast Rift of Mt Etna is affected by ground deformation linked to gravity sliding of the volcano flank and dike injection. Drone surveys show that the rift is affected by NE-striking extensional fractures and normal faults. Given an age of 1614 CE for the offset lavas, we obtained an extension rate of 1.9 cm yr−1 for the last 406 years. The stress field is characterised by a NW–SE σHmin. Drone surveys allow us to quickly collect data with a resolution of 2–3 cm.
Matteo Demurtas, Steven A.F. Smith, Elena Spagnuolo, and Giulio Di Toro
Solid Earth, 12, 595–612, https://doi.org/10.5194/se-12-595-2021, https://doi.org/10.5194/se-12-595-2021, 2021
Short summary
Short summary
We performed shear experiments on calcite–dolomite gouge mixtures to better understand the behaviour of carbonates during sub-seismic to seismic deformation in the shallow crust. The development of a foliation in the gouge was only restricted to coseismic sliding, whereas fluidisation occurred over a wide range of slip velocities (sub-seismic to coseismic) in the presence of water. These observations will contribute to a better interpretation of the rock record.
James Gilgannon, Marius Waldvogel, Thomas Poulet, Florian Fusseis, Alfons Berger, Auke Barnhoorn, and Marco Herwegh
Solid Earth, 12, 405–420, https://doi.org/10.5194/se-12-405-2021, https://doi.org/10.5194/se-12-405-2021, 2021
Short summary
Short summary
Using experiments that simulate deep tectonic interfaces, known as viscous shear zones, we found that these zones spontaneously develop periodic sheets of small pores. The presence of porous layers in deep rocks undergoing tectonic deformation is significant because it requires a change to the current model of how the Earth deforms. Emergent porous layers in viscous rocks will focus mineralising fluids and could lead to the seismic failure of rocks that are never supposed to have this occur.
Jef Deckers, Bernd Rombaut, Koen Van Noten, and Kris Vanneste
Solid Earth, 12, 345–361, https://doi.org/10.5194/se-12-345-2021, https://doi.org/10.5194/se-12-345-2021, 2021
Short summary
Short summary
This study shows the presence of two structural domains in the western border fault system of the Roer Valley graben. These domains, dominated by NW–SE-striking faults, displayed distinctly different strain distributions during both Late Cretaceous compression and Cenozoic extension. The southern domain is characterized by narrow, localized faulting, while the northern domain is characterized by wide, distributed faulting. The non-colinear WNW–ESE Grote Brogel fault links both domains.
José Piquer, Orlando Rivera, Gonzalo Yáñez, and Nicolás Oyarzún
Solid Earth, 12, 253–273, https://doi.org/10.5194/se-12-253-2021, https://doi.org/10.5194/se-12-253-2021, 2021
Short summary
Short summary
A proper recognition of deep, long-lived fault systems is very important for society. They can produce potentially dangerous earthquakes. They can also act as pathways for magmas and hydrothermal fluids, leading to the formation of volcanoes, geothermal systems and mineral deposits. However, the manifestations of these very old faults in the present-day surface can be very subtle. Here, we present a detailed, multi-disciplinary study of a fault system of this type in the Andes of central Chile.
Antonin Bilau, Yann Rolland, Stéphane Schwartz, Nicolas Godeau, Abel Guihou, Pierre Deschamps, Benjamin Brigaud, Aurélie Noret, Thierry Dumont, and Cécile Gautheron
Solid Earth, 12, 237–251, https://doi.org/10.5194/se-12-237-2021, https://doi.org/10.5194/se-12-237-2021, 2021
Short summary
Short summary
As a result of the collision between the European and Apulian plates, the Alps have experienced several evolutionary stages. The Penninic frontal thrust (PFT) (major thrust) was associated with compression, and now seismic studies show ongoing extensional activity. Calcite mineralization associated with shortening and extensional structures was sampled. The last deformation stages are dated by U–Pb on calcite at ~ 3.5 and ~ 2.5 Ma. Isotope analysis evidences deep crustal fluid mobilization.
Kathryn E. Elphick, Craig R. Sloss, Klaus Regenauer-Lieb, and Christoph E. Schrank
Solid Earth, 12, 141–170, https://doi.org/10.5194/se-12-141-2021, https://doi.org/10.5194/se-12-141-2021, 2021
Short summary
Short summary
We analysed a sedimentary rock package located in Castlepoint, New Zealand, to test the control of the tectonic setting on the observed deformation structures. In extension and contraction, we observed faults and small fault-like structures characterised by complex spatial patterns and a reduction in porosity and grain size compared with the host rock. With these properties, the structures are likely to act as barriers to fluid flow and cause compartmentalisation of the sedimentary sequence.
Penelope I. R. Wilson, Robert W. Wilson, David J. Sanderson, Ian Jarvis, and Kenneth J. W. McCaffrey
Solid Earth, 12, 95–117, https://doi.org/10.5194/se-12-95-2021, https://doi.org/10.5194/se-12-95-2021, 2021
Short summary
Short summary
Magma accommodation in the shallow crust leads to deformation of the surrounding host rock through the creation of faults, fractures and folds. This deformation will impact fluid flow around intrusive magma bodies (including sills and laccoliths) by changing the porosity and permeability network of the host rock. The results may have important implications for industries where fluid flow within the subsurface adds value (e.g. oil and gas, hydrology, geothermal and carbon sequestration).
Martin Balcewicz, Benedikt Ahrens, Kevin Lippert, and Erik H. Saenger
Solid Earth, 12, 35–58, https://doi.org/10.5194/se-12-35-2021, https://doi.org/10.5194/se-12-35-2021, 2021
Short summary
Short summary
The geothermal potential of a carbonate reservoir in the Rhine-Ruhr area, Germany, was investigated by field and laboratory investigations. The carbonate layer of interest is approx. 150 m thick; located at 4 to 6 km depth; and might extend below Essen, Bochum, and Dortmund. We proposed focusing on discontinuities striking NNW–SSE for geothermal applications, as these are the most common, strike in the direction of the main horizontal stress, and dominate reservoir fluid flow.
Andrea Bistacchi, Silvia Mittempergher, Mattia Martinelli, and Fabrizio Storti
Solid Earth, 11, 2535–2547, https://doi.org/10.5194/se-11-2535-2020, https://doi.org/10.5194/se-11-2535-2020, 2020
Short summary
Short summary
We present an innovative workflow for the statistical analysis of fracture data collected along scanlines. Our methodology is based on performing non-parametric statistical tests, which allow detection of important features of the spatial distribution of fractures, and on the analysis of the cumulative spacing function (CSF) and cumulative spacing derivative (CSD), which allows the boundaries of stationary domains to be defined in an objective way.
Martina Kirilova, Virginia Toy, Katrina Sauer, François Renard, Klaus Gessner, Richard Wirth, Xianghui Xiao, and Risa Matsumura
Solid Earth, 11, 2425–2438, https://doi.org/10.5194/se-11-2425-2020, https://doi.org/10.5194/se-11-2425-2020, 2020
Short summary
Short summary
Processes associated with open pores can change the physical properties of rocks and cause earthquakes. In borehole samples from the Alpine Fault zone, we show that many pores in these rocks were filled by weak materials that can slide easily. The amount of open spaces was thus reduced, and fluids circulating within them built up high pressures. Both weak materials and high pressures within pores reduce the rock strength; thus the state of pores here can trigger the next Alpine Fault earthquake.
José Manuel Benítez-Pérez, Pedro Castiñeiras, Juan Gómez-Barreiro, José R. Martínez Catalán, Andrew Kylander-Clark, and Robert Holdsworth
Solid Earth, 11, 2303–2325, https://doi.org/10.5194/se-11-2303-2020, https://doi.org/10.5194/se-11-2303-2020, 2020
Short summary
Short summary
The Sobrado unit represents an allochthonous tectonic slice of exhumed high-grade metamorphic rocks formed during a complex sequence of orogenic processes in the middle to lower crust. We have combined U–Pb geochronology and REE analyses (LASS-ICP-MS) of accessory minerals in migmatitic paragneiss (monazite, zircon) and mylonitic amphibolites (titanite) to constrain the evolution. A Middle Devonian minimum age for HP metamorphism has been obtained.
Anna M. Dichiarante, Ken J. W. McCaffrey, Robert E. Holdsworth, Tore I. Bjørnarå, and Edward D. Dempsey
Solid Earth, 11, 2221–2244, https://doi.org/10.5194/se-11-2221-2020, https://doi.org/10.5194/se-11-2221-2020, 2020
Short summary
Short summary
We studied the characteristics of fracture systems in the Devonian rocks of the Orcadian Basin in Caithness. These mineral-filled fractures have properties that may be used to predict the size and spatial arrangement of similar structures in offshore basins. This includes the Clair field in the Faroe–Shetland Basin.
Leonardo Del Sole, Marco Antonellini, Roger Soliva, Gregory Ballas, Fabrizio Balsamo, and Giulio Viola
Solid Earth, 11, 2169–2195, https://doi.org/10.5194/se-11-2169-2020, https://doi.org/10.5194/se-11-2169-2020, 2020
Short summary
Short summary
This study focuses on the impact of deformation bands on fluid flow and diagenesis in porous sandstones in two different case studies (northern Apennines, Italy; Provence, France) by combining a variety of multiscalar mapping techniques, detailed field and microstructural observations, and stable isotope analysis. We show that deformation bands buffer and compartmentalize fluid flow and foster and localize diagenesis, recorded by carbonate cement nodules spatially associated with the bands.
Billy James Andrews, Zoe Kai Shipton, Richard Lord, and Lucy McKay
Solid Earth, 11, 2119–2140, https://doi.org/10.5194/se-11-2119-2020, https://doi.org/10.5194/se-11-2119-2020, 2020
Short summary
Short summary
Through geological mapping we find that fault zone internal structure depends on whether or not the fault cuts multiple lithologies, the presence of shale layers, and the orientation of joints and coal cleats at the time of faulting. During faulting, cementation of fractures (i.e. vein formation) is highest where the fractures are most connected. This leads to the counter-intuitive result that the highest-fracture-density part of the network often has the lowest open-fracture connectivity.
Nicolas Mansard, Holger Stünitz, Hugues Raimbourg, Jacques Précigout, Alexis Plunder, and Lucille Nègre
Solid Earth, 11, 2141–2167, https://doi.org/10.5194/se-11-2141-2020, https://doi.org/10.5194/se-11-2141-2020, 2020
Short summary
Short summary
Our rock deformation experiments (solid-medium Griggs-type apparatus) on wet assemblages of mafic compositions show that the ability of minerals to react controls the portions of rocks that deform and that minor chemical and mineralogical variations can considerably modify the strength of deformed assemblages. Our study suggests that the rheology of mafic rocks, which constitute a large part of the oceanic crust, cannot be summarized as being rheologically controlled by monophase materials.
Vladimir Shipilin, David C. Tanner, Hartwig von Hartmann, and Inga Moeck
Solid Earth, 11, 2097–2117, https://doi.org/10.5194/se-11-2097-2020, https://doi.org/10.5194/se-11-2097-2020, 2020
Short summary
Short summary
In our work, we carry out an in-depth structural analysis of a geometrically decoupled fault system in the southern German Molasse Basin using a high-resolution 3-D seismic dataset. Based on this analysis, we reconstruct the tectonic history and changes in the stress regimes to explain the structure and evolution of faults. The results contribute in understanding the driving mechanisms behind formation, propagation, and reactivation of faults during foreland basin formation.
Eric Salomon, Atle Rotevatn, Thomas Berg Kristensen, Sten-Andreas Grundvåg, Gijs Allard Henstra, Anna Nele Meckler, Richard Albert, and Axel Gerdes
Solid Earth, 11, 1987–2013, https://doi.org/10.5194/se-11-1987-2020, https://doi.org/10.5194/se-11-1987-2020, 2020
Short summary
Short summary
This study focuses on the impact of major rift border faults on fluid circulation and hanging wall sediment diagenesis by investigating a well-exposed example in NE Greenland using field observations, U–Pb calcite dating, clumped isotope, and minor element analyses. We show that fault-proximal sediments became calcite cemented quickly after deposition to form a near-impermeable barrier along the fault, which has important implications for border fault zone evolution and reservoir assessments.
Nick M. W. Roberts, Jack K. Lee, Robert E. Holdsworth, Christopher Jeans, Andrew R. Farrant, and Richard Haslam
Solid Earth, 11, 1931–1945, https://doi.org/10.5194/se-11-1931-2020, https://doi.org/10.5194/se-11-1931-2020, 2020
Short summary
Short summary
We characterise a well-known fractured and faulted exposure of Cretaceous chalk in NE England, combining field observations with novel U–Pb calcite dating. We show that the faulting and associated fluid flow occurred during the interval of ca. 64–56 Ma, predating earlier estimates of Alpine-related tectonic inversion. We demonstrate that the main extensional fault zone acted as a conduit linking voluminous fluid flow and linking deeper sedimentary layers with the shallow subsurface.
Melchior Schuh-Senlis, Cedric Thieulot, Paul Cupillard, and Guillaume Caumon
Solid Earth, 11, 1909–1930, https://doi.org/10.5194/se-11-1909-2020, https://doi.org/10.5194/se-11-1909-2020, 2020
Short summary
Short summary
This paper presents a numerical method for restoring models of the subsurface to a previous state in their deformation history, acting as a numerical time machine for geological structures. The method relies on the assumption that rock layers can be modeled as highly viscous fluids. It shows promising results on simple setups, including models with faults and non-flat topography. While issues still remain, this could open a way to add more physics to reverse time structural modeling.
Gábor Tari, Didier Arbouille, Zsolt Schléder, and Tamás Tóth
Solid Earth, 11, 1865–1889, https://doi.org/10.5194/se-11-1865-2020, https://doi.org/10.5194/se-11-1865-2020, 2020
Short summary
Short summary
Inversion tectonics has been studied in detail by both academic researchers and industry experts around the world for the last 30 years. Inverted structures provide important traps for petroleum exploration which can be categorized into two end-member modes of evolution. This paper attempts to provide a brief synoptic view of inversion tectonics from the point of view of the petroleum industry, emphasizing the main subsurface challenges of understanding this structural geology phenomenon.
Elizabeth S. Petrie, Kelly K. Bradbury, Laura Cuccio, Kayla Smith, James P. Evans, John P. Ortiz, Kellie Kerner, Mark Person, and Peter Mozley
Solid Earth, 11, 1803–1821, https://doi.org/10.5194/se-11-1803-2020, https://doi.org/10.5194/se-11-1803-2020, 2020
Short summary
Short summary
A summary of observed rock properties across the contact between crystalline basement rock and the overlying younger sedimentary rocks from outcrop and core samples is presented. The data span a range of tectonic settings and describe the rock types immediately adjacent to the contact. The range of features observed at these contacts can influence the migration of fluids. The observations presented here are critical for the safe implementation of fluid injection and geothermal production.
Christopher Weismüller, Rahul Prabhakaran, Martijn Passchier, Janos L. Urai, Giovanni Bertotti, and Klaus Reicherter
Solid Earth, 11, 1773–1802, https://doi.org/10.5194/se-11-1773-2020, https://doi.org/10.5194/se-11-1773-2020, 2020
Short summary
Short summary
We photographed a fractured limestone pavement with a drone to compare manual and automatic fracture tracing and analyze the evolution and spatial variation of the fracture network in high resolution. We show that automated tools can produce results comparable to manual tracing in shorter time but do not yet allow the interpretation of fracture generations. This work pioneers the automatic fracture mapping of a complete outcrop in detail, and the results can be used as fracture benchmark.
Romesh Palamakumbura, Maarten Krabbendam, Katie Whitbread, and Christian Arnhardt
Solid Earth, 11, 1731–1746, https://doi.org/10.5194/se-11-1731-2020, https://doi.org/10.5194/se-11-1731-2020, 2020
Short summary
Short summary
The aim of this paper is to describe, evaluate and develop a simple but robust low-cost method for capturing 2-D fracture network data in GIS and make them more accessible to a broader range of users in both academia and industry. We present a breakdown of the key steps in the methodology, which provides an understanding of how to avoid error and improve the accuracy of the final dataset. The 2-D digital method can be used to interpret traces of 2-D linear features on a wide variety of scales.
I. Tonguç Uysal, Claudio Delle Piane, Andrew James Todd, and Horst Zwingmann
Solid Earth, 11, 1653–1679, https://doi.org/10.5194/se-11-1653-2020, https://doi.org/10.5194/se-11-1653-2020, 2020
Short summary
Short summary
This study represents an integrated approach to radiometric age dating using potassium-bearing clay minerals formed during faulting and provides insights into the enigmatic time–space distribution of Precambrian tectonic zones in north-central Australia. Specifically, our work firmly indicates a late Mesoproterzoic minimum age for the Millungera Basin in north Australia and a previously unrecorded concealed late Mesoproterozoic–early Neoproterozoic tectonic event in north-central Australia.
Stefano Tavani, Pablo Granado, Amerigo Corradetti, Thomas Seers, Josep Maria Casas, and Josep Anton Muñoz
Solid Earth, 11, 1643–1651, https://doi.org/10.5194/se-11-1643-2020, https://doi.org/10.5194/se-11-1643-2020, 2020
Short summary
Short summary
Using orthophotos, we manually digitized 30 000 joints in the eastern Ebro Basin of the Pyrenees. Joints are perpendicular to the belt in the frontal portion of the belt and in the inner and central portion of the foredeep basin. Joint orientations in the external portion of the foredeep become less clustered. Joints in the studied area formed in the foredeep in response to foredeep-parallel stretching, which becomes progressively less intense within the external portion of the foredeep basin.
Nicolas E. Beaudoin, Aurélie Labeur, Olivier Lacombe, Daniel Koehn, Andrea Billi, Guilhem Hoareau, Adrian Boyce, Cédric M. John, Marta Marchegiano, Nick M. Roberts, Ian L. Millar, Fanny Claverie, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 11, 1617–1641, https://doi.org/10.5194/se-11-1617-2020, https://doi.org/10.5194/se-11-1617-2020, 2020
Short summary
Short summary
This paper reports a multiproxy approach to reconstruct the depth, timing, and extent of the past fluid flow during the formation of a fold-and-thrust belt in the Northern Apennines, Italy. The unique combination of paleopiezometry and absolute dating returns the absolute timing of the sequence of deformation. Combined with burial models, this leads to predict the expected temperatures for fluid, highlighting a limited hydrothermal fluid flow we relate to the large-scale subsurface geometry.
Thomas B. Phillips, Christopher A.-L. Jackson, and James R. Norcliffe
Solid Earth, 11, 1489–1510, https://doi.org/10.5194/se-11-1489-2020, https://doi.org/10.5194/se-11-1489-2020, 2020
Short summary
Short summary
Normal faults often reactivate under compression, in a process called inversion. The 3D geometry of these structures (and the effect on resultant inversion structural style) is often not considered. Using seismic reflection data, we examine how stresses form different inversion styles that are controlled by the geometry of the pre-existing structure. Geometrically simple faults are preferentially reactivated; more complex areas are typically not reactivated and instead experience bulk uplift.
Ashton Krajnovich, Wendy Zhou, and Marte Gutierrez
Solid Earth, 11, 1457–1474, https://doi.org/10.5194/se-11-1457-2020, https://doi.org/10.5194/se-11-1457-2020, 2020
Short summary
Short summary
In this paper, a novel methodology of 3D geologic model uncertainty assessment that considers both input data and prior knowledge is developed and applied to characterize fault zones – areas of damaged rock surrounding a fault surface that are important to subsurface engineering projects. The results of the study demonstrate how existing frameworks can be expanded to incorporate new types of information to arrive at a realistic and straightforward model of fault zone geometry in the subsurface.
Cited articles
Anderson, T. L.: Fracture mechanics: fundamentals and applications, 3rd Edition, CRC Press Taylor & Francis, 640 pp., 2005.
Arslan, A., Passchier, C. W., and Koehn, D.: Foliation boudinage, J. Struct. Geol., 30, 291–309, 2008.
Behrmann, J. H.: A precautionary note on shear bands as kinematic indicators, J. Struct. Geol., 9, 659–666, 1987.
Bons, P. D., Druguet, E., Hamann, I., Carreras, J., and Passchier, C. W.: Apparent boudinage in dykes, J. Struct. Geol., 26, 625–636, 2004.
Bons, P. D., Druguet, E., Castaño, L. M., and Elburg, M. A.: Finding what is not there anymore: recognizing missing fluid and magma volumes, Geology, 36, 851–854, 2008.
Bons, P. D., Becker, J. K., Elburg, M. A., and Urtson, K.: Granite formation: Stepwise accumulation of melt or connected networks?, Earth. Env. Sci. T. R. So., 100, 105–115, 2010.
Carreras, J., Julivert, M., Soldevila, A., Griera, A., and Soler, D.: A deformation stage for analogue modelling of structures developed under variable degree of non-coaxiality, in: Geoscience 2000 Abstracts volume, University of Manchester, section Modelling in Structural Geology, 126, 2000.
Cobbold, P. R., Cosgrove, J. W., and Summers, J. M.: Development of internal structures in deformed anisotropic rocks, Tectonophysics, 12, 23–53, 1971.
Davidson, C., Schmid, S. M., and Hollister, L. S.: Role of melt during deformation in the deep crust, Terra Nova, 6, 133–142, 1994.
Druguet, E. and Carreras, J.: Analogue modelling of syntectonic leucosomes in migmatitic schists, J. Struct. Geol., 28, 1734–1747, 2006.
Druguet, E. and Castaño, L. M.: Analysis of syntectonic magmatic veins at the mesoscale, J. Geol. Soc. India, 75, 60–73, 2010.
Exner, U., Mancktelow, N. S., and Grasemann, B.: Progressive development of s-type flanking folds in simple shear, J. Struct. Geol., 26, 2191–2201, 2004.
Fagereng, Å.: On stress and strain in a continuous-discontinuous shear zone undergoing simple shear and volume loss, J. Struct. Geol., 50, 44–53, 2013.
Fusseis, F., Handy, M. R., and Schrank, C.: Networking of shear zones at the brittle-to-viscous transition (Cap de Creus, NE Spain), J. Struct. Geol., 28, 1228–1243, 2006.
Fusseis, F., Regenauer-Lieb, K., Liu, J., Hough, R. M., and De Carlo, F.: Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones, Nature, 459, 974–977, 2009.
Gomez-Rivas, E.: Localización de deformación en medios dúctiles y anisótropos: estudio de campo, experimental y numérico, Ph.D. thesis, Universitat Autònoma de Barceloma, 247 pp, available at: http://www.tesisenxarxa.net/TDX-1120108-151236/ (last access: 11 May 2015), 2008.
Gomez-Rivas, E. and Griera, A.: Influence of mechanical anisotropy on shear fracture development, Trab. Geol., 29, 305–311, 2009.
Gomez-Rivas, E. and Griera, A.: Strain rate influence on fracture development in experimental ductile multilayers, Tectonophysics, 502, 351–363, 2011.
Gomez-Rivas, E. and Griera, A.: Shear fractures in anisotropic ductile materials: an experimental approach, J. Struct. Geol., 34, 61–76, 2012.
Gomez-Rivas, E., Bons, P. D., Griera, A., Carreras, J., Druguet, E., and Evans, L.: Strain and vorticity analysis using small-scale faults and associated drag folds, J. Struct. Geol., 29, 1882–1899, 2007.
Grasemann, B., Exner, U., and Tschegg, C.: Displacement–length scaling of brittle faults in ductile shear, J. Struct. Geol., 33, 1650–1661, 2011.
Griera, A., Bons, P. D., Jessell, M. W., Lebensohn, R. A., Evans, L., and Gomez-Rivas, E.: Strain localization and porphyroclast rotation, Geology, 39, 275–278, 2011.
Griera, A., Llorens, M.-G., Gomez-Rivas, E., Bons, P. D., Jessell, M. W., Evans, L. A., and Lebensohn, R.: Numerical modelling of porphyroclast and porphyroblast rotation in anisotropic rocks, Tectonophysics, 587, 4–29, 2013.
Guermani, A. and Pennacchioni, G.: Brittle precursors of plastic deformation in a granite: an example from the Mont Blanc Massif (Helvetic, Western Alps), J. Struct. Geol., 20, 135–148, 1998.
Hanmer, S., Corrigan, D., and Ganas, A.: Orientation of nucleating faults in anisotropic media: insights from three-dimensional deformation experiments, Tectonophysics, 267, 275–290, 1996.
Harris, L. B. and Cobbold, P. R.: Development of conjugate shear bands during bulk simple shearing, J. Struct. Geol., 7, 37–44, 1985.
Hobbs, B. E., Ord, A., and Teyssier, C.: Earthquakes in the ductile regime?, Pure Appl. Geophys., 124, 309–336, 1986.
Kidan, T. W. and Cosgrove, J. W.: The deformation of multilayers by layer-normal compression: an experimental investigation, J. Struct. Geol., 18, 461–474, 1996.
Kim, Y.-S. and Sanderson, D. J.: The relationship between displacement and length of faults: a review, Earth-Sci. Rev., 68, 317–334, 2005.
Kocher, T. and Mancktelow, N. S.: Dynamic reverse modelling of flanking structures: a source of quantitative kinematic information, J. Struct. Geol., 27, 1346–1354, 2005.
Kocher, T. and Mancktelow, N. S.: Flanking structure development in anisotropic viscous rock, J. Struct. Geol., 28, 1139–1145, 2006.
Mancktelow, N. S.: The rheology of paraffin wax and its usefulness as an analogue for rocks, Bull. Geol. Institutions Univ. Uppsala, 14, 181–193, 1988.
Mancktelow, N. S.: How ductile are ductile shear zones?, Geology, 34, 345–348, 2006.
Mancktelow, N. S.: Interaction between brittle fracture and ductile flow during crustal deformation, B. Soc. Geol. Ital., 127, 217–220, 2008.
Mancktelow, N. S. and Pennacchioni, G.: The control of precursor brittle fracture and fluid–rock interaction on the development of single and paired ductile shear zones, J. Struct. Geol., 27, 645–661, 2005.
Mancktelow, N. S.: Fracture and flow in natural rock deformation, Trabajos de Geología, 29, 29–35, 2009.
Mandl, G.: Faulting in Brittle Rocks, Springer-Verlag, Berlin–Heidelberg–New York, 434 pp., 2000.
McClay, K. R.: The rheology of plasticine, Tectonophysics, 33, T7–T15, 1976.
Misra, S., Mandal, N., Dhar, R., and Chakraborty, C.: Mechanisms of deformation localization at the tips of shear fractures: Findings from analogue experiments and field evidence, J. Geophys. Res., 114, B04204, https://doi.org/10.1029/2008JB005737, 2009,
Passchier, C. W.: The generation of ductile and brittle shear bands in a low-angle mylonite zone, J. Struct. Geol., 6, 273–281, 1984.
Passchier, C. W.: Flanking structures, J. Struct. Geol., 23, 951–962, 2001.
Paterson, M. S.: Experimental rock deformation: the brittle field, 2nd Edition, Springer-Verlag, Berlin, Germany, 1978.
Pennacchioni, G.: Control of the geometry of precursor brittle structures on the type of ductile shear zone in the Adamello tonalites, Southern Alps (Italy), J. Struct. Geol., 27, 627–644, 2005.
Pennacchioni, G. and Cesare, B.: Ductile-brittle transition in pre-Alpine amphibolite facies mylonites during evolution from water-present to water-deficient conditions (Mont Mary Nappe, Italian Western Alps), J. Metamorph. Geol., 15, 777–791, 1997.
Pennacchioni, G. and Mancktelow, N. S.: Nucleation and initial growth of a shear zone network within compositionally and structurally heterogeneous granitoids under amphibolite facies conditions, J. Struct. Geol., 29, 1757–1780, 2007.
Perez, N.: Fracture Mechanics, 284 pp., ISBN 978-1-4020-7861-3, Springer, New York, USA, 2004.
Pfiffner, O. and Ramsay, J.: Constraints on geological strain rates: arguments from finite strain states of naturally deformed rocks, J. Geophys. Res.-Sol. Ea., 87, 311–321, 1982.
Platt, J. P. and Vissers, R. L. M.: Extensional structures in anisotropic rocks, J. Struct. Geol., 2, 397–410, 1980.
Poliakov, A. N. B., Cundall, P. A., Podladchikov, Y. Y., and Lyakhovsky, V. A.: An explicit inertial method for the simulation of viscoelastic flow: an evaluation of elastic effects on diapiric flow in two- and three-layers models, in: Flow and Creep in the Solar System: Observations, Modeling and Theory, edited by: Stone, D. B. and Runcorn, S. K., Kluwer Academic Publishers, Dordrecht, the Netherlands, 175–195, 1993.
Ramberg, H.: Gravity, Deformation and the Earth's Crust, Academic Press, London, UK, 214 pp., 1981.
Ranalli, G.: Rheology of the Earth, Chapman & Hall, London, UK, 414 pp., 1995.
Reiner, M.: The Deborah Number, Physics Today, 17, p. 62, 1964.
Rybacki, E., Wirth, R., and Dresen, G.: High-strain creep of feldspar rocks: Implications for cavitation and ductile failure in the lower crust, Geophys. Res. Lett., 35, L04304, https://doi.org/10.1029/2007GL032478, 2008.
Schmalholz, S. M. and Maeder, X.: Pinch-and-swell structure and shear zones in viscoplastic layers, J. Struct. Geol., 37, 75–88, 2012.
Schöpfer, M. and Zulauf, G.: Strain-dependent rheology and the memory of plasticine, Tectonophysics, 354, 85–99, 2002.
Segall, P. and Simpson, C.: Nucleation of ductile shear zones on dilatant fractures, Geology, 14, 56–59, 1986.
Simpson, C.: Deformation of granitic rocks across the brittle-ductile transition. J. Struct. Geol., 7, 503–511, 1985.
Smithson, S. B.: Densities of metamorphic rocks, Geophysics, 36, 690–694, 1971.
Talbot, C. J.: Can field data constrain rock viscosities?, J. Struct. Geol., 21, 949–957, 1999.
Treagus, S. H.: Deformation partitioning in folds: implications for fold geometry and cleavage patterns, in: Evolution of Geological Structures in Micro- to Macro-Scales, edited by: Sengupta, S., Chapman & Hall, London, UK, 341–372, 1997.
Twiss, R. J. and Moores, E. M.: Structural Geology, W. H. Freeman, New York, USA, 544 pp., 1992.
Walsh, J. J. and Watterson, J.: Distributions of cumulative displacement and seismic slip on a single normal fault surface, J. Struct. Geol., 9, 1039–1046, 1987.
Walsh, J. J., Nicol, A., and Childs, C.: An alternative model for the growth of faults, J. Struct. Geol., 24, 1669–1675, 2002.
Weijermars, R.: Principles of rock mechanics, Alboran Science Publishing, Amsterdam, the Netherlands, 359 pp., 1997.
Weijermars, R. and Schmeling, H.: Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity), Phys. Earth Planet. In., 43, 316–330, 1986.
Zulauf, J. and Zulauf, G.: Rheology of plasticine used as rock analogue: the impact of temperature, composition and strain, J. Struct. Geol., 26, 725–737, 2004.