Research article
21 Jul 2015
Research article | 21 Jul 2015
Evolution of a highly dilatant fault zone in the grabens of Canyonlands National Park, Utah, USA – integrating fieldwork, ground-penetrating radar and airborne imagery analysis
M. Kettermann et al.
Related authors
Mechanisms of clay smear formation in unconsolidated sediments – insights from 3-D observations of excavated normal faults
Michael Kettermann, Sebastian Thronberens, Oscar Juarez, Janos Lajos Urai, Martin Ziegler, Sven Asmus, and Ulrich Krüger
Solid Earth, 7, 789–815, https://doi.org/10.5194/se-7-789-2016,https://doi.org/10.5194/se-7-789-2016, 2016
Short summary
Mapping the fracture network in the Lilstock pavement, Bristol Channel, UK: manual versus automatic
Christopher Weismüller, Rahul Prabhakaran, Martijn Passchier, Janos L. Urai, Giovanni Bertotti, and Klaus Reicherter
Solid Earth, 11, 1773–1802, https://doi.org/10.5194/se-11-1773-2020,https://doi.org/10.5194/se-11-1773-2020, 2020
Short summary
Mechanisms of clay smear formation in unconsolidated sediments – insights from 3-D observations of excavated normal faults
Michael Kettermann, Sebastian Thronberens, Oscar Juarez, Janos Lajos Urai, Martin Ziegler, Sven Asmus, and Ulrich Krüger
Solid Earth, 7, 789–815, https://doi.org/10.5194/se-7-789-2016,https://doi.org/10.5194/se-7-789-2016, 2016
Short summary
Sediment sequence and site formation processes at the Arbreda Cave, NE Iberian Peninsula, and implications on human occupation and climate change during the Last Glacial
M. Kehl, E. Eckmeier, S. O. Franz, F. Lehmkuhl, J. Soler, N. Soler, K. Reicherter, and G.-C. Weniger
Clim. Past, 10, 1673–1692, https://doi.org/10.5194/cp-10-1673-2014,https://doi.org/10.5194/cp-10-1673-2014, 2014
The SCOPSCO drilling project recovers more than 1.2 million years of history from Lake Ohrid
B. Wagner, T. Wilke, S. Krastel, G. Zanchetta, R. Sulpizio, K. Reicherter, M. J. Leng, A. Grazhdani, S. Trajanovski, A. Francke, K. Lindhorst, Z. Levkov, A. Cvetkoska, J. M. Reed, X. Zhang, J. H. Lacey, T. Wonik, H. Baumgarten, and H. Vogel
Sci. Dril., 17, 19–29, https://doi.org/10.5194/sd-17-19-2014,https://doi.org/10.5194/sd-17-19-2014, 2014
Related subject area
Micro- and nano-porosity of the active Alpine Fault zone, New Zealand
Martina Kirilova, Virginia Toy, Katrina Sauer, François Renard, Klaus Gessner, Richard Wirth, Xianghui Xiao, and Risa Matsumura
Solid Earth, 11, 2425–2438, https://doi.org/10.5194/se-11-2425-2020,https://doi.org/10.5194/se-11-2425-2020, 2020
Short summary
Unraveling the origins and P-T-t evolution of the allochthonous Sobrado unit (Órdenes Complex, NW Spain) using combined U–Pb titanite, monazite and zircon geochronology and rare-earth element (REE) geochemistry
José Manuel Benítez-Pérez, Pedro Castiñeiras, Juan Gómez-Barreiro, José R. Martínez Catalán, Andrew Kylander-Clark, and Robert Holdsworth
Solid Earth, 11, 2303–2325, https://doi.org/10.5194/se-11-2303-2020,https://doi.org/10.5194/se-11-2303-2020, 2020
Short summary
Structural control on fluid flow and shallow diagenesis: insights from calcite cementation along deformation bands in porous sandstones
Leonardo Del Sole, Marco Antonellini, Roger Soliva, Gregory Ballas, Fabrizio Balsamo, and Giulio Viola
Solid Earth, 11, 2169–2195, https://doi.org/10.5194/se-11-2169-2020,https://doi.org/10.5194/se-11-2169-2020, 2020
Short summary
The growth of faults and fracture networks in a mechanically evolving, mechanically stratified rock mass: a case study from Spireslack Surface Coal Mine, Scotland
Billy James Andrews, Zoe Kai Shipton, Richard Lord, and Lucy McKay
Solid Earth, 11, 2119–2140, https://doi.org/10.5194/se-11-2119-2020,https://doi.org/10.5194/se-11-2119-2020, 2020
Short summary
Relationship between microstructures and resistance in mafic assemblages that deform and transform
Nicolas Mansard, Holger Stünitz, Hugues Raimbourg, Jacques Précigout, Alexis Plunder, and Lucille Nègre
Solid Earth, 11, 2141–2167, https://doi.org/10.5194/se-11-2141-2020,https://doi.org/10.5194/se-11-2141-2020, 2020
Short summary
Fault-controlled fluid circulation and diagenesis along basin-bounding fault systems in rifts – insights from the East Greenland rift system
Eric Salomon, Atle Rotevatn, Thomas Berg Kristensen, Sten-Andreas Grundvåg, Gijs Allard Henstra, Anna Nele Meckler, Richard Albert, and Axel Gerdes
Solid Earth, 11, 1987–2013, https://doi.org/10.5194/se-11-1987-2020,https://doi.org/10.5194/se-11-1987-2020, 2020
Short summary
Near-surface Palaeocene fluid flow, mineralisation and faulting at Flamborough Head, UK: new field observations and U–Pb calcite dating constraints
Nick M. W. Roberts, Jack K. Lee, Robert E. Holdsworth, Christopher Jeans, Andrew R. Farrant, and Richard Haslam
Solid Earth, 11, 1931–1945, https://doi.org/10.5194/se-11-1931-2020,https://doi.org/10.5194/se-11-1931-2020, 2020
Short summary
Geologic characterization of nonconformities using outcrop and core analogs: hydrologic implications for injection-induced seismicity
Elizabeth S. Petrie, Kelly K. Bradbury, Laura Cuccio, Kayla Smith, James P. Evans, John P. Ortiz, Kellie Kerner, Mark Person, and Peter Mozley
Solid Earth, 11, 1803–1821, https://doi.org/10.5194/se-11-1803-2020,https://doi.org/10.5194/se-11-1803-2020, 2020
Short summary
Mapping the fracture network in the Lilstock pavement, Bristol Channel, UK: manual versus automatic
Christopher Weismüller, Rahul Prabhakaran, Martijn Passchier, Janos L. Urai, Giovanni Bertotti, and Klaus Reicherter
Solid Earth, 11, 1773–1802, https://doi.org/10.5194/se-11-1773-2020,https://doi.org/10.5194/se-11-1773-2020, 2020
Short summary
Precambrian faulting episodes and insights into the tectonothermal history of north Australia: microstructural evidence and K–Ar, 40Ar–39Ar, and Rb–Sr dating of syntectonic illite from the intracratonic Millungera Basin
I. Tonguç Uysal, Claudio Delle Piane, Andrew James Todd, and Horst Zwingmann
Solid Earth, 11, 1653–1679, https://doi.org/10.5194/se-11-1653-2020,https://doi.org/10.5194/se-11-1653-2020, 2020
Short summary
Extensional reactivation of the Penninic Frontal Thrust 3 Ma ago as evidenced by U-Pb dating on calcite in fault zone cataclasite
Antonin Bilau, Yann Rolland, Stéphane Schwartz, Nicolas Godeau, Abel Guihou, Pierre Deschamps, Benjamin Brigaud, Aurélie Noret, Thierry Dumont, and Cécile Gautheron
Solid Earth Discuss., https://doi.org/10.5194/se-2020-119,https://doi.org/10.5194/se-2020-119, 2020
Revised manuscript accepted for SE
Short summary
Transverse jointing in foreland fold-and-thrust belts: a remote sensing analysis in the eastern Pyrenees
Stefano Tavani, Pablo Granado, Amerigo Corradetti, Thomas Seers, Josep Maria Casas, and Josep Anton Muñoz
Solid Earth, 11, 1643–1651, https://doi.org/10.5194/se-11-1643-2020,https://doi.org/10.5194/se-11-1643-2020, 2020
Short summary
Regional-scale paleofluid system across the Tuscan Nappe–Umbria–Marche Apennine Ridge (northern Apennines) as revealed by mesostructural and isotopic analyses of stylolite–vein networks
Nicolas E. Beaudoin, Aurélie Labeur, Olivier Lacombe, Daniel Koehn, Andrea Billi, Guilhem Hoareau, Adrian Boyce, Cédric M. John, Marta Marchegiano, Nick M. Roberts, Ian L. Millar, Fanny Claverie, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 11, 1617–1641, https://doi.org/10.5194/se-11-1617-2020,https://doi.org/10.5194/se-11-1617-2020, 2020
Short summary
Structure and kinematics of an extensional growth fold, Hadahid Fault System, Suez Rift, Egypt
Christopher A.-L. Jackson, Paul S. Whipp, Robert L. Gawthorpe, and Matthew M. Lewis
Solid Earth, 11, 1027–1051, https://doi.org/10.5194/se-11-1027-2020,https://doi.org/10.5194/se-11-1027-2020, 2020
Short summary
An active tectonic field for CO2 storage management: the Hontomín onshore case study (Spain)
Raúl Pérez-López, José F. Mediato, Miguel A. Rodríguez-Pascua, Jorge L. Giner-Robles, Adrià Ramos, Silvia Martín-Velázquez, Roberto Martínez-Orío, and Paula Fernández-Canteli
Solid Earth, 11, 719–739, https://doi.org/10.5194/se-11-719-2020,https://doi.org/10.5194/se-11-719-2020, 2020
Short summary
Estimating the depth and evolution of intrusions at resurgent calderas: Los Humeros (Mexico)
Stefano Urbani, Guido Giordano, Federico Lucci, Federico Rossetti, Valerio Acocella, and Gerardo Carrasco-Núñez
Solid Earth, 11, 527–545, https://doi.org/10.5194/se-11-527-2020,https://doi.org/10.5194/se-11-527-2020, 2020
Short summary
Fluid-mediated, brittle–ductile deformation at seismogenic depth – Part 2: Stress history and fluid pressure variations in a shear zone in a nuclear waste repository (Olkiluoto Island, Finland)
Francesca Prando, Luca Menegon, Mark Anderson, Barbara Marchesini, Jussi Mattila, and Giulio Viola
Solid Earth, 11, 489–511, https://doi.org/10.5194/se-11-489-2020,https://doi.org/10.5194/se-11-489-2020, 2020
Fault zone architecture of a large plate-bounding strike-slip fault: a case study from the Alpine Fault, New Zealand
Bernhard Schuck, Anja M. Schleicher, Christoph Janssen, Virginia G. Toy, and Georg Dresen
Solid Earth, 11, 95–124, https://doi.org/10.5194/se-11-95-2020,https://doi.org/10.5194/se-11-95-2020, 2020
A numerical sensitivity study of how permeability, porosity, geological structure, and hydraulic gradient control the lifetime of a geothermal reservoir
Johanna F. Bauer, Michael Krumbholz, Elco Luijendijk, and David C. Tanner
Solid Earth, 10, 2115–2135, https://doi.org/10.5194/se-10-2115-2019,https://doi.org/10.5194/se-10-2115-2019, 2019
Short summary
Fracturing and crystal plastic behaviour of garnet under seismic stress in the dry lower continental crust (Musgrave Ranges, Central Australia)
Friedrich Hawemann, Neil Mancktelow, Sebastian Wex, Giorgio Pennacchioni, and Alfredo Camacho
Solid Earth, 10, 1635–1649, https://doi.org/10.5194/se-10-1635-2019,https://doi.org/10.5194/se-10-1635-2019, 2019
The internal structure and composition of a plate-boundary-scale serpentinite shear zone: the Livingstone Fault, New Zealand
Matthew S. Tarling, Steven A. F. Smith, James M. Scott, Jeremy S. Rooney, Cecilia Viti, and Keith C. Gordon
Solid Earth, 10, 1025–1047, https://doi.org/10.5194/se-10-1025-2019,https://doi.org/10.5194/se-10-1025-2019, 2019
Short summary
Cited articles
Abrahamson, J.: Determining the thickness of sediments using seismic refraction, Cyclone Canyon Graben, Canyonlands National Park, Utah, in: 18th Annual Keck Research Symposium in Geology 2005, Colorado Springs, Colorado, USA, 7–10, 2005
Angelier, J., Bergerat, F., Dauteuil, O., and Villemin, T.: Effective tension-shear relationships in extensional fissure swarms, axial rift zone of northeastern Iceland, J. Struct. Geol., 19, 673–685, 1997
Baker, A. A.: Geology and oil possibilities of the Moab district, Grand and San Juan Counties, Utah, US Geological Survey Bulletin 841, Washington, D.C., 1993.
Balsamo, F., Storti, F., Piovano, B., Salvini, F., Cifelli, F., and Lima, C.: Time dependent structural architecture of subsidiary fracturing and stress pattern in the tip region of an extensional growth fault system, Tarquinia basin, Italy, Tectonophysics, 454, 54–69, 2008.
Biggar, N. E. and Adams, J. A.: Dates derived from Quaternary strata in the vicinity of Canyonlands National Park, in: Geology of Cataract Canyon and Vicinity: A Field Symposium – Guidebook of the Four Corners Geological Society, edited by: Campbell, J. A., Canyonlands Research Bibliography, 127–136, Paper No. 327, 1987.
Billingsley, G. H., Block, D. L., and Felger, T. J.: Surficial geologic map of The Loop and Druid Arch quadrangles, Canyonlands National Park, Utah, US Geological Survey, available at: http://ngmdb.usgs.gov/Prodesc/proddesc_54148.htm (last access: 12 March 2015), 2002.
Campbell, J. A. (Ed.): Geology of Cataract Canyon and Vicinity: A Field Symposium – Guidebook of the Four Corners Geological Society, Canyonlands Research Bibliography. Four Corners Geological Society, Guidebook, 10th Field Conference, 1987.
Childs, C., Nicol, A., Walsh, J. J., and Watterson, J.: Growth of vertically segmented normal faults, J. Struct. Geol., 18, 1389–1397, 1996a.
Condon, S. M.: Geology of the Pennsylvanian and Permian Cutler Group and Permian Kaibab Limestone in the Paradox Basin, southeastern Utah and southwestern Colorado, Washington, US, G.P.O., 1997.
Destro, N.: Release fault: A variety of cross fault in linked extensional fault systems, in the Sergipe-Alagoas Basin, NE Brazil, J. Struct. Geol., 17, 615–629, https://doi.org/10.1016/0191-8141(94)00088-H, 1995.
Ehrenberg, S. N. and Nadeau, P. H.: Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships, AAPG Bull., 89, 435–445, 2005.
Ferrill, D. A., Wyrick, D. Y., Morris, A. P., Sims, D. W. and Franklin, N. M.: Dilational fault slip and pit chain formation on Mars, GSA Today, 14, 4–12, 2004.
Ferrill, D. A., Wyrick, D. Y., and Smart, K. J.: Coseismic, dilational-fault and extension-fracture related pit chain formation in Iceland: Analog for pit chains on Mars, Lithosphere, 3, 133–142, 2011.
Ferrill, D. A., McGinnis, R. N., and Morris, A. P.: Control of mechanical stratigraphy on bed-restricted jointing and normal faulting: Eagle Ford Formation, south-central Texas, AAPG Bull., 98, 2477–2506, 2014.
Fossen, H., Schultz, R. A., Rundhovde, E., Rotevatn, A., and Buckley, S. J.: 2010. Fault linkage and graben stepovers in the Canyonlands (Utah) and the North Sea Viking Graben, with implications for hydrocarbon migration and accumulation, AAPG Bull., 94, 597–613, 2010.
Furuya, M., Mueller, K., and Wahr, J.: Active salt tectonics in the Needles District, Canyonlands (Utah) as detected by interferometric synthetic aperture radar and point target analysis: 1992–2002, J. Geophys. Res., 112, B06418, https://doi.org/10.1029/2006JB004302, 2007.
Goldstrand, P. M.: Tectonic development of Upper Cretaceous to Eocene strata of southwestern Utah, Geol. Soc. Am. Bull., 106, 145–154, https://doi.org/10.1130/0016-7606(1994)106<0145:TDOUCT>2.3.CO;2, 1994.
Grosfils, E. B., Schultz, R. A., and Kroeger, G.: Geophysical exploration within northern Devils Lane graben, Canyonlands National Park, Utah: implications for sediment thickness and tectonic evolution, J. Struct. Geol., 25, 455–467, 2003.
Gudmundsson, A.: Formation and growth of normal faults at the divergent plate boundary in Iceland, Terra Nova, 4, 464–471, 1992.
Gutiérrez, F.: Origin of the salt valleys in the Canyonlands section of the Colorado Plateau, Geomorphology, 57, 423–435, 2004.
van Heteren, S., Fitzgerald, D. M., Mckinlay, P. A., and Buynevich, I. V.: Radar facies of paraglacial barrier systems: coastal New England, USA, Sedimentology, 45, 181–200, https://doi.org/10.1046/j.1365-3091.1998.00150.x, 1998.
Hintze, L. F., Willis, G. C., Laes, D. Y. M., Sprinkel, D. A., and Brown, K. D.: Digitial Geological Map of Utah. Utah Geological Survey in cooperation with the USGS, Salt Lake City, Utah, USA, 2000.
Holland, M., van Gent, H. W., Bazalgette, L., Yassir, N., Hoogerduijn Strating, E. H., and Urai, J. L.: Evolution of dilatant fracture networks in a normal fault – Evidence from 4D model experiments, Earth Planet. Sc. Lett., 304, 399–406, 2011.
Huntoon, P. W.: The Meander anticline, Canyonlands, Utah: An unloading structure resulting from horizontal gliding on salt, Geol. Soc. Am. Bull., 93, 941–950, https://doi.org/10.1130/0016-7606(1982)93<941:TMACUA>2.0.CO;2, 1982.
Kettermann, M.: The Effect of Preexisting Joints on Normal Fault Evolution – Insights from Fieldwork and Analogue Modeling. MSc Thesis, RWTH Aachen University, Aachen, Germany, 2012.
Kettermann, M. and Urai, J. L.: Changes in structural style of normal faults due to failure mode transition: first results from excavated scale models, J. Struct. Geol., 74, 105–116, 2015.
Lewis, R. Q. and Campbell, R. H.: Geology and uranium deposits of Elk Ridge and vicinity, San Juan county, Utah, US Geolological Survey Professional Paper, Washinton D.C., USA, 69 pp., 1965.
Marsic, S. D.: Active Deformation at Canyonlands National Park: Distribution of Displacements Across the Grabens Using Spaceborne Geodesy. University of Southern California, Los Angeles, CA, USA, 2003.
McClay, K. R.: Extensional fault systems in sedimentary basins: a review of analogue model studies, Mar. Petrol. Geol., 7, 206–233, 1990.
McGill, G. E. and Stromquist, A. W.: The grabens of Canyonlands National Park, Utah: Geometry, mechanics, and kinematics, J. Geophys. Res., 84, 4547, https://doi.org/10.1029/JB084iB09p04547, 1979.
McGill, G. E., Schultz, R. A., and Moore, J. M.: Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands grabens of SE Utah: Discussion, J. Struct. Geol., 22, 135–140, 2000.
Mertens, J.: The fracture and fault system in the Grabens, Canyonlands National Park, Utah: Geological mapping and interpretation of tectonic history. Dipl. Mapping, RWTH Aachen University, Aachen, Germany, 2006.
Neal, A.: Ground-penetrating radar and its use in sedimentology: principles, problems and progress, Earth-Sci. Rev., 66, 261–330, 2004.
Peacock, D. C. P.: The temporal relationship between joints and faults. J. Struct. Geol., 23, 329–341, 2001.
Peacock, D. C. P.: Propagation, interaction and linkage in normal fault systems, Earth-Sci. Rev., 58, 121–142, 2002.
Reheis, M. C., Reynolds, R. L., Goldstein, H., Roberts, H. M., Yount, J. C., Axford, Y., Cummings, L. S., and Shearin, N.: Late Quaternary eolian and alluvial response to paleoclimate, Canyonlands, southeastern Utah, Geol. Soc. Am. Bull., 117, 1051, https://doi.org/10.1130/B25631.1, 2005.
Rosentreter, R., Bowker, M., and Belnap, J.: A Field Guide to Biological Soil Crusts of Western U.S. Drylands – Common Lichens and Bryophytes, US Government Printing Office, Denver, Colorado, 104 pp., 2007.
Sandmeier, K. H.: Reflex-Win Version 6.0.5 radar processing and interpretation software, Sandmeier Scientific Software, Karlsruhe, Germany, 6.0.5, 2011.
Schöpfer, M. P. J., Childs, C., and Walsh, J. J.: Two-dimensional distinct element modeling of the structure and growth of normal faults in multilayer sequences: 2. Impact of confining pressure and strength contrast on fault zone geometry and growth, J. Geophys. Res., 112, B10404, https://doi.org/10.1029/2006JB004903, 2007a.
Schöpfer, M. P. J., Childs, C., and Walsh, J. J.: Two-dimensional distinct element modeling of the structure and growth of normal faults in multilayer sequences: 1. Model calibration, boundary conditions, and selected results, J. Geophys. Res. 112, B10401, https://doi.org/10.1029/2006JB004902, 2007b.
Schöpfer, M. P. J., Childs, C., Walsh, J. J., Manzocchi, T., and Koyi, H. A.: Geometrical analysis of the refraction and segmentation of normal faults in periodically layered sequences, J. Struct. Geol., 29, 318–335, 2007c.
Schultz, R. A. and Moore, J. M.: New Observations of Grabens from the Needles District, Canyonlands National Park, Utah, in: Geology and Resources of the Paradox Basin, edited by: Huffman Jr., A. C., Lund, W. R., and Godwin, L. H., Utah Geological Association Guidebook, Salt Lake City, Utah, USA, 295–302, 1996.
Schultz-Ela, D. and Walsh, P.: Modeling of grabens extending above evaporites in Canyonlands National Park, Utah, J. Struct. Geol., 24, 247–275, 2002.
Smith, D. G. and Jol, H. M.: Ground penetrating radar: antenna frequencies and maximum probable depths of penetration in Quaternary sediments, J. Appl. Geophys., 33, 93–100, 1995.
Soliva, R., Benedicto, A., Schultz, R. A., Maerten, L., and Micarelli, L.: Displacement and interaction of normal fault segments branched at depth: Implications for fault growth and potential earthquake rupture size, J. Struct. Geol., 30, 1288–1299, 2008.
Trudgill, B. D.: Structural controls on drainage development in the Canyonlands grabens of southeast Utah, AAPG Bull., 86, 1095–1112, 2002.
Van Gent, H. W., Holland, M., Urai, J. L., and Loosveld, R.: Evolution of fault zones in carbonates with mechanical stratigraphy – Insights from scale models using layered cohesive powder, J. Struct. Geol., 32, 1375–1391, 2010.
Walsh, J., Bailey, W.., Childs, C., Nicol, A., and Bonson, C.: Formation of segmented normal faults: a 3-D perspective, J. Struct. Geol., 25, 1251–1262, 2003.
Walsh, J. J., Watterson, J., Bailey, W. R., and Childs, C.: Fault relays, bends and branch-lines, J. Struct. Geol., 21, 1019–1026, 1999.
Wennberg, O. P., Malm, O., Needham, T., Edwards, E., Ottesen, S., Karlsen, F., Rennan, L., and Knipe, R.: On the occurrence and formation of open fractures in the Jurassic reservoir sandstones of the Snohvit Field, SW Barents Sea, Petrol. Geosci., 14, 139–150, 2008.
Wilkins, S. J. and Gross, M. R.: Normal fault growth in layered rocks at Split Mountain, Utah: influence of mechanical stratigraphy on dip linkage, fault restriction and fault scaling, J. Struct. Geol., 24, 1413–1429, 2002.
Wong, I. G., Olig, S. S., and Bott, J. D. J.: Earthquake Potential and Seismic Hazards in the Paradox Basin, Southeastern Utah. Geology and Resources of the Paradox Basin: Utah Geological Association Guidebook 25, 241–251, Salt Lake City, Utah, USA, 1993.