Research article
17 Oct 2017
Research article | 17 Oct 2017
The grain size(s) of Black Hills Quartzite deformed in the dislocation creep regime
Renée Heilbronner and Rüdiger Kilian
Related authors
Syn-kinematic hydration reactions, grain size reduction, and dissolution–precipitation creep in experimentally deformed plagioclase–pyroxene mixtures
Sina Marti, Holger Stünitz, Renée Heilbronner, Oliver Plümper, and Rüdiger Kilian
Solid Earth, 9, 985–1009, https://doi.org/10.5194/se-9-985-2018,https://doi.org/10.5194/se-9-985-2018, 2018
Short summary
Syn-kinematic hydration reactions, grain size reduction, and dissolution–precipitation creep in experimentally deformed plagioclase–pyroxene mixtures
Sina Marti, Holger Stünitz, Renée Heilbronner, Oliver Plümper, and Rüdiger Kilian
Solid Earth, 9, 985–1009, https://doi.org/10.5194/se-9-985-2018,https://doi.org/10.5194/se-9-985-2018, 2018
Short summary
Related subject area
Structure and kinematics of an extensional growth fold, Hadahid Fault System, Suez Rift, Egypt
Christopher A.-L. Jackson, Paul S. Whipp, Robert L. Gawthorpe, and Matthew M. Lewis
Solid Earth, 11, 1027–1051, https://doi.org/10.5194/se-11-1027-2020,https://doi.org/10.5194/se-11-1027-2020, 2020
Short summary
An active tectonic field for CO2 storage management: the Hontomín onshore case study (Spain)
Raúl Pérez-López, José F. Mediato, Miguel A. Rodríguez-Pascua, Jorge L. Giner-Robles, Adrià Ramos, Silvia Martín-Velázquez, Roberto Martínez-Orío, and Paula Fernández-Canteli
Solid Earth, 11, 719–739, https://doi.org/10.5194/se-11-719-2020,https://doi.org/10.5194/se-11-719-2020, 2020
Short summary
Estimating the depth and evolution of intrusions at resurgent calderas: Los Humeros (Mexico)
Stefano Urbani, Guido Giordano, Federico Lucci, Federico Rossetti, Valerio Acocella, and Gerardo Carrasco-Núñez
Solid Earth, 11, 527–545, https://doi.org/10.5194/se-11-527-2020,https://doi.org/10.5194/se-11-527-2020, 2020
Short summary
Fluid-mediated, brittle–ductile deformation at seismogenic depth – Part 2: Stress history and fluid pressure variations in a shear zone in a nuclear waste repository (Olkiluoto Island, Finland)
Francesca Prando, Luca Menegon, Mark Anderson, Barbara Marchesini, Jussi Mattila, and Giulio Viola
Solid Earth, 11, 489–511, https://doi.org/10.5194/se-11-489-2020,https://doi.org/10.5194/se-11-489-2020, 2020
Fault zone architecture of a large plate-bounding strike-slip fault: a case study from the Alpine Fault, New Zealand
Bernhard Schuck, Anja M. Schleicher, Christoph Janssen, Virginia G. Toy, and Georg Dresen
Solid Earth, 11, 95–124, https://doi.org/10.5194/se-11-95-2020,https://doi.org/10.5194/se-11-95-2020, 2020
A numerical sensitivity study of how permeability, porosity, geological structure, and hydraulic gradient control the lifetime of a geothermal reservoir
Johanna F. Bauer, Michael Krumbholz, Elco Luijendijk, and David C. Tanner
Solid Earth, 10, 2115–2135, https://doi.org/10.5194/se-10-2115-2019,https://doi.org/10.5194/se-10-2115-2019, 2019
Short summary
Fracturing and crystal plastic behaviour of garnet under seismic stress in the dry lower continental crust (Musgrave Ranges, Central Australia)
Friedrich Hawemann, Neil Mancktelow, Sebastian Wex, Giorgio Pennacchioni, and Alfredo Camacho
Solid Earth, 10, 1635–1649, https://doi.org/10.5194/se-10-1635-2019,https://doi.org/10.5194/se-10-1635-2019, 2019
The internal structure and composition of a plate-boundary-scale serpentinite shear zone: the Livingstone Fault, New Zealand
Matthew S. Tarling, Steven A. F. Smith, James M. Scott, Jeremy S. Rooney, Cecilia Viti, and Keith C. Gordon
Solid Earth, 10, 1025–1047, https://doi.org/10.5194/se-10-1025-2019,https://doi.org/10.5194/se-10-1025-2019, 2019
Short summary
Fluid-mediated, brittle–ductile deformation at seismogenic depth – Part 1: Fluid record and deformation history of fault veins in a nuclear waste repository (Olkiluoto Island, Finland)
Barbara Marchesini, Paolo Stefano Garofalo, Luca Menegon, Jussi Mattila, and Giulio Viola
Solid Earth, 10, 809–838, https://doi.org/10.5194/se-10-809-2019,https://doi.org/10.5194/se-10-809-2019, 2019
Short summary
A new methodology to train fracture network simulation using multiple-point statistics
Pierre-Olivier Bruna, Julien Straubhaar, Rahul Prabhakaran, Giovanni Bertotti, Kevin Bisdom, Grégoire Mariethoz, and Marco Meda
Solid Earth, 10, 537–559, https://doi.org/10.5194/se-10-537-2019,https://doi.org/10.5194/se-10-537-2019, 2019
Short summary
How do we see fractures? Quantifying subjective bias in fracture data collection
Billy J. Andrews, Jennifer J. Roberts, Zoe K. Shipton, Sabina Bigi, M. Chiara Tartarello, and Gareth Johnson
Solid Earth, 10, 487–516, https://doi.org/10.5194/se-10-487-2019,https://doi.org/10.5194/se-10-487-2019, 2019
Short summary
Tectono-thermal evolution of Oman's Mesozoic passive continental margin under the obducting Semail Ophiolite: a case study of Jebel Akhdar, Oman
Arne Grobe, Christoph von Hagke, Ralf Littke, István Dunkl, Franziska Wübbeler, Philippe Muchez, and Janos L. Urai
Solid Earth, 10, 149–175, https://doi.org/10.5194/se-10-149-2019,https://doi.org/10.5194/se-10-149-2019, 2019
Short summary
Myrmekite and strain weakening in granitoid mylonites
Alberto Ceccato, Luca Menegon, Giorgio Pennacchioni, and Luiz Fernando Grafulha Morales
Solid Earth, 9, 1399–1419, https://doi.org/10.5194/se-9-1399-2018,https://doi.org/10.5194/se-9-1399-2018, 2018
Short summary
Influence of basement heterogeneity on the architecture of low subsidence rate Paleozoic intracratonic basins (Reggane, Ahnet, Mouydir and Illizi basins, Hoggar Massif)
Paul Perron, Michel Guiraud, Emmanuelle Vennin, Isabelle Moretti, Éric Portier, Laetitia Le Pourhiet, and Moussa Konaté
Solid Earth, 9, 1239–1275, https://doi.org/10.5194/se-9-1239-2018,https://doi.org/10.5194/se-9-1239-2018, 2018
Short summary
Multiscale porosity changes along the pro- and retrograde deformation path: an example from Alpine slates
Ismay Vénice Akker, Josef Kaufmann, Guillaume Desbois, Jop Klaver, Janos L. Urai, Alfons Berger, and Marco Herwegh
Solid Earth, 9, 1141–1156, https://doi.org/10.5194/se-9-1141-2018,https://doi.org/10.5194/se-9-1141-2018, 2018
Short summary
Constraints on Alpine Fault (New Zealand) mylonitization temperatures and the geothermal gradient from Ti-in-quartz thermobarometry
Steven B. Kidder, Virginia G. Toy, David J. Prior, Timothy A. Little, Ashfaq Khan, and Colin MacRae
Solid Earth, 9, 1123–1139, https://doi.org/10.5194/se-9-1123-2018,https://doi.org/10.5194/se-9-1123-2018, 2018
Short summary
Linking Alpine deformation in the Aar Massif basement and its cover units – the case of the Jungfrau–Eiger mountains (Central Alps, Switzerland)
David Mair, Alessandro Lechmann, Marco Herwegh, Lukas Nibourel, and Fritz Schlunegger
Solid Earth, 9, 1099–1122, https://doi.org/10.5194/se-9-1099-2018,https://doi.org/10.5194/se-9-1099-2018, 2018
Syn-kinematic hydration reactions, grain size reduction, and dissolution–precipitation creep in experimentally deformed plagioclase–pyroxene mixtures
Sina Marti, Holger Stünitz, Renée Heilbronner, Oliver Plümper, and Rüdiger Kilian
Solid Earth, 9, 985–1009, https://doi.org/10.5194/se-9-985-2018,https://doi.org/10.5194/se-9-985-2018, 2018
Short summary
Inverted distribution of ductile deformation in the relatively “dry” middle crust across the Woodroffe Thrust, central Australia
Sebastian Wex, Neil S. Mancktelow, Friedrich Hawemann, Alfredo Camacho, and Giorgio Pennacchioni
Solid Earth, 9, 859–878, https://doi.org/10.5194/se-9-859-2018,https://doi.org/10.5194/se-9-859-2018, 2018
Pseudotachylyte as field evidence for lower-crustal earthquakes during the intracontinental Petermann Orogeny (Musgrave Block, Central Australia)
Friedrich Hawemann, Neil S. Mancktelow, Sebastian Wex, Alfredo Camacho, and Giorgio Pennacchioni
Solid Earth, 9, 629–648, https://doi.org/10.5194/se-9-629-2018,https://doi.org/10.5194/se-9-629-2018, 2018
High stresses stored in fault zones: example of the Nojima fault (Japan)
Anne-Marie Boullier, Odile Robach, Benoît Ildefonse, Fabrice Barou, David Mainprice, Tomoyuki Ohtani, and Koichiro Fujimoto
Solid Earth, 9, 505–529, https://doi.org/10.5194/se-9-505-2018,https://doi.org/10.5194/se-9-505-2018, 2018
Short summary
Controls on fault zone structure and brittle fracturing in the foliated hanging wall of the Alpine Fault
Jack N. Williams, Virginia G. Toy, Cécile Massiot, David D. McNamara, Steven A. F. Smith, and Steven Mills
Solid Earth, 9, 469–489, https://doi.org/10.5194/se-9-469-2018,https://doi.org/10.5194/se-9-469-2018, 2018
Short summary
Monte Carlo simulation for uncertainty estimation on structural data in implicit 3-D geological modeling, a guide for disturbance distribution selection and parameterization
Evren Pakyuz-Charrier, Mark Lindsay, Vitaliy Ogarko, Jeremie Giraud, and Mark Jessell
Solid Earth, 9, 385–402, https://doi.org/10.5194/se-9-385-2018,https://doi.org/10.5194/se-9-385-2018, 2018
Short summary
Cited articles
Bachmann, F., Hielscher, R., and Schaeben, H.: Grain detection from 2d and 3d EBSD data-Specification of the MTEX algorithm, Ultramicroscopy, 111, 1720–1733, https://doi.org/10.1016/j.ultramic.2011.08.002, 2011.
Bouchez, J. L. and Pecher, A.: The Himalayan main central thrust pile and its quartz-rich tectonites in Central Nepal, Tectonophysics, 78, 23–50, 1981.
Chernak, L. J., Hirth, G., Selverstone, J., and Tullis, J.: Effect of aqueous and carbonic fluids on the dislocation creep strength of quartz, J. Geophys. Res.-Sol. Ea., 114, B04201, https://doi.org/10.1029/2008JB005884, 2009.
Fossen, H. and Tikoff, B.: The deformation matrix for simultaneous simple shearing, pure shearing and volume change, and its application to transpression transtension tectonics, J. Struct. Geol., 15, 413–422, 1993.
Gay, N.: Pure shear and simple shear deformation of inhomogeneous viscous fluids, 1. Theory, Tectonophysics, 5, 211–234, 1968.
Heilbronner, R., and Tullis, J.: The effect of static annealing on microstructures and crystallographic preferred orientations of quartzites experimentally deformed in axial compression and shear, in: Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives, edited by: DeMeer, S., Drury, M., DeBresser, J., and Pennock, G., Geol. Soc. Sp., 200, 191–218, https://doi.org/10.1144/GSL.SP.2001.200.01.12, 2002.
Heilbronner, R. and Tullis, J.: Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite, J. Geophys. Res.-Sol. Ea., 111, B10202, https://doi.org/10.1029/2005JB004194, 2006.
Hielscher, R. and Schaeben, H.: A novel pole figure inversion method: specification of the MTEX algorithm, J. Appl. Crystallogr., 41, 1024–1037, https://doi.org/10.1107/S0021889808030112, 2008.
Holyoke III, C. W. and Kronenberg, A. K.: Accurate differential stress measurement using the molten salt cell and solid salt assemblies in the Griggs apparatus with applications to strength, piezometers and rheology, Tectonophysics, 494, 17–31, https://doi.org/10.1016/j.tecto.2010.08.001, 2010.
Kidder, S., Hirth, G., Avouac, J.-P., and Behr, W.: The influence of stress history on the grain size and microstructure of experimentally deformed quartzite, J. Struct. Geol., 83, 194–206, https://doi.org/10.1016/j.jsg.2015.12.004, 2016.
Kilian, R. and Heilbronner, R.: Texture analysis of experimentally deformed Black Hills Quartzite, Solid Earth Discuss., https://doi.org/10.5194/se-2017-44, in review, 2017.
Law, R. D.: Deformation thermometry based on quartz c-axis fabrics and recrystallization microstructures: A review, J. Struct. Geol., 66, 129–161, https://doi.org/10.1016/j.jsg.2014.05.023, 2014.
Lopez-Sanchez, M. A. and Llana-Funez, S.: An extension of the Saltykov method to quantify 3D grain size distributions in mylonites, J. Struct. Geol., 93, 149–161, https://doi.org/10.1016/j.jsg.2016.10.008, 2016.
Mancktelow, N. S.: Atypical textures in quartz veins from the Simplon fault zone, J. Struct. Geol., 9, 995–1005, 1987.
Mancktelow, N. S.: Deformation of an elliptical inclusion in two-dimensional incompressible power-law viscous flow, J. Struct. Geol., 33, 1378–1393, https://doi.org/10.1016/j.jsg.2011.06.005, 2011.
Pec, M., Stunitz, H., Heilbronner, R., and Drury, M.: Semi-brittle flow of granitoid fault rocks in experiments, J. Geophys. Res., 121, 1677–1705, https://doi.org/10.1002/2015JB012513, 2016.
Pennacchioni, G., Menegon, L., Leiss, B., Nestola, F., and Bromiley, G.: Development of crystallographic preferred orientation and microstructure during plastic deformation of natural coarse-grained quartz veins, J. Geophys. Res.-Sol. Ea., 115, B12405, https://doi.org/10.1029/2010JB007674, 2010.
Poirier, J.: Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals, Cambridge Univ. Press, Cambridge, 1985.
Rahl, J. M. and Skemer, P.: Microstructural evolution and rheology of quartz in a mid-crustal shear zone, Tectonophysics, 680, 129–139, https://doi.org/10.1016/j.tecto.2016.05.022, 2016.
Ranalli, G.: Rheology of the Earth, 1st Edn., Allen and Unwin, London, 1987.
Richter, B., Stunitz, H., and Heilbronner, R.: Stresses and pressures at the quartz-to-coesite phase transformation in shear deformation experiments, J. Geophys. Res.-Sol. Ea., 121, 8015–8033, https://doi.org/10.1002/2016JB013084, 2016.
Schmid, S. and Casey, M.: Complete fabric analysis of some commonly observed quartz
c-axis patterns, in: Geophysical Monograph, Vol. 36, American Geophysical Union, Washington D.C., 263–286, 1986.
Shigematsu, N., Prior, D. J., and Wheeler, J.: First combined electron backscatter diffraction and transmission electron microscopy study of grain boundary structure of deformed quartzite, J. Microsc.-Oxford, 224, 306–321, 2006.
Shimizu, I.: Theories and applicability of grain size piezometers: The role of dynamic recrystallization mechanisms, J. Struct. Geol., 30, 899–917, https://doi.org/10.1016/j.jsg.2008.03.004, 2008.
Stipp, M. and Kunze, K.: Dynamic recrystallization near the brittle-plastic transition in naturally and experimentally deformed quartz aggregates, Tectonophysics, 448, 77–97, https://doi.org/10.1016/j.tecto.2007.11.041, 2008.
Stipp, M. and Tullis, J.: The recrystallized grain size piezometer for quartz, Geophys. Res. Lett., 30, 2088, https://doi.org/10.1029/2003GL018444, 2003.
Stipp, M., Stunitz, H., Heilbronner, R., and Schmid, S.: The eastern Tonale fault zone: a “natural laboratory” for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C, J. Struct. Geol., 24, 1861–1884, 2002.
Tullis, J.: Preferred orientation of quartz produced by slip during plane strain, Tectonophysics, 39, 87–102, https://doi.org/10.1016/0040-1951(77)90090-7, 1977.
Twiss, R.: Theory and applicability of a recrystallized grain-size paleopiezometer, Pure Appl. Geophys., 115, 227–244, 1977.