Articles | Volume 8, issue 1
https://doi.org/10.5194/se-8-255-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/se-8-255-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Numerical modeling of fluid effects on seismic properties of fractured magmatic geothermal reservoirs
Institute of Geophysics, ETH Zurich, Zurich 8092, Switzerland
Beatriz Quintal
Institute of Earth Science, University of Lausanne, Lausanne 1015, Switzerland
Eva Caspari
Institute of Earth Science, University of Lausanne, Lausanne 1015, Switzerland
Hansruedi Maurer
Institute of Geophysics, ETH Zurich, Zurich 8092, Switzerland
Stewart Greenhalgh
Department of Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
Related authors
Sebastian Hellmann, Melchior Grab, Cedric Patzer, Andreas Bauder, and Hansruedi Maurer
Solid Earth, 14, 805–821, https://doi.org/10.5194/se-14-805-2023, https://doi.org/10.5194/se-14-805-2023, 2023
Short summary
Short summary
Acoustic waves are suitable to analyse the physical properties of the subsurface. For this purpose, boreholes are quite useful to deploy a source and receivers in the target area to get a comprehensive high-resolution dataset. However, when conducting such experiments in a subsurface such as glaciers that continuously move, the boreholes get deformed. In our study, we therefore developed a method that allows an analysis of the ice while considering deformations.
Gregory Church, Andreas Bauder, Melchior Grab, and Hansruedi Maurer
The Cryosphere, 15, 3975–3988, https://doi.org/10.5194/tc-15-3975-2021, https://doi.org/10.5194/tc-15-3975-2021, 2021
Short summary
Short summary
In this field study, we acquired a 3D radar survey over an active drainage network that transported meltwater through a Swiss glacier. We successfully imaged both englacial and subglacial pathways and were able to confirm long-standing glacier hydrology theory regarding meltwater pathways. The direction of these meltwater pathways directly impacts the glacier's velocity, and therefore more insightful field observations are needed in order to improve our understanding of this complex system.
Sebastian Hellmann, Melchior Grab, Johanna Kerch, Henning Löwe, Andreas Bauder, Ilka Weikusat, and Hansruedi Maurer
The Cryosphere, 15, 3507–3521, https://doi.org/10.5194/tc-15-3507-2021, https://doi.org/10.5194/tc-15-3507-2021, 2021
Short summary
Short summary
In this study, we analyse whether ultrasonic measurements on ice core samples could be employed to derive information about the particular ice crystal orientation in these samples. We discuss if such ultrasonic scans of ice core samples could provide similarly detailed results as the established methods, which usually destroy the ice samples. Our geophysical approach is minimally invasive and could support the existing methods with additional and (semi-)continuous data points along the ice core.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Gregory Church, Melchior Grab, Cédric Schmelzbach, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 14, 3269–3286, https://doi.org/10.5194/tc-14-3269-2020, https://doi.org/10.5194/tc-14-3269-2020, 2020
Short summary
Short summary
In this field study, we repeated ground-penetrating radar measurements over an active englacial channel network that transports meltwater through the glacier. We successfully imaged the englacial meltwater pathway and were able to delimitate the channel's shape. Meltwater from the glacier can impact the glacier's dynamics if it reaches the ice–bed interface, and therefore monitoring these englacial drainage networks is important to understand how these networks behave throughout a season.
Lisbeth Langhammer, Melchior Grab, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 13, 2189–2202, https://doi.org/10.5194/tc-13-2189-2019, https://doi.org/10.5194/tc-13-2189-2019, 2019
Short summary
Short summary
We have developed a novel procedure for glacier thickness estimations that combines traditional glaciological modeling constraints with ground-truth data, for example, those obtained with ground-penetrating radar (GPR) measurements. This procedure is very useful for determining ice volume when only limited data are available. Furthermore, we outline a strategy for acquiring GPR data on glaciers, such that the cost/benefit ratio is optimized.
Kathrin Behnen, Marian Hertrich, Hansruedi Maurer, Alexis Shakas, Kai Bröker, Claire Epiney, María Blanch Jover, and Domenico Giardini
EGUsphere, https://doi.org/10.5194/egusphere-2024-1919, https://doi.org/10.5194/egusphere-2024-1919, 2024
Short summary
Short summary
Several crosshole seismic surveys in the undisturbed Rotondo granite are used to analyze the seismic anisotropy in the BedrettoLab in the Swiss alps. The P- and S1-waves show a clear trend of faster velocities in NE-SW direction and slower velocities perpendicular to it. This pattern describes a tilted transverse isotropic velocity model. The symmetry plane is mostly aligned with the direction of maximum stress but also the orientation of fractures are expected to influence the wave velocities.
Sebastian Hellmann, Melchior Grab, Cedric Patzer, Andreas Bauder, and Hansruedi Maurer
Solid Earth, 14, 805–821, https://doi.org/10.5194/se-14-805-2023, https://doi.org/10.5194/se-14-805-2023, 2023
Short summary
Short summary
Acoustic waves are suitable to analyse the physical properties of the subsurface. For this purpose, boreholes are quite useful to deploy a source and receivers in the target area to get a comprehensive high-resolution dataset. However, when conducting such experiments in a subsurface such as glaciers that continuously move, the boreholes get deformed. In our study, we therefore developed a method that allows an analysis of the ice while considering deformations.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Gregory Church, Andreas Bauder, Melchior Grab, and Hansruedi Maurer
The Cryosphere, 15, 3975–3988, https://doi.org/10.5194/tc-15-3975-2021, https://doi.org/10.5194/tc-15-3975-2021, 2021
Short summary
Short summary
In this field study, we acquired a 3D radar survey over an active drainage network that transported meltwater through a Swiss glacier. We successfully imaged both englacial and subglacial pathways and were able to confirm long-standing glacier hydrology theory regarding meltwater pathways. The direction of these meltwater pathways directly impacts the glacier's velocity, and therefore more insightful field observations are needed in order to improve our understanding of this complex system.
Sebastian Hellmann, Melchior Grab, Johanna Kerch, Henning Löwe, Andreas Bauder, Ilka Weikusat, and Hansruedi Maurer
The Cryosphere, 15, 3507–3521, https://doi.org/10.5194/tc-15-3507-2021, https://doi.org/10.5194/tc-15-3507-2021, 2021
Short summary
Short summary
In this study, we analyse whether ultrasonic measurements on ice core samples could be employed to derive information about the particular ice crystal orientation in these samples. We discuss if such ultrasonic scans of ice core samples could provide similarly detailed results as the established methods, which usually destroy the ice samples. Our geophysical approach is minimally invasive and could support the existing methods with additional and (semi-)continuous data points along the ice core.
Peter-Lasse Giertzuch, Joseph Doetsch, Alexis Shakas, Mohammadreza Jalali, Bernard Brixel, and Hansruedi Maurer
Solid Earth, 12, 1497–1513, https://doi.org/10.5194/se-12-1497-2021, https://doi.org/10.5194/se-12-1497-2021, 2021
Short summary
Short summary
Two time-lapse borehole ground penetrating radar (GPR) surveys were conducted during saline tracer experiments in weakly fractured crystalline rock with sub-millimeter fractures apertures, targeting electrical conductivity changes. The combination of time-lapse reflection and transmission GPR surveys from different boreholes allowed monitoring the tracer flow and reconstructing the flow path and its temporal evolution in 3D and provided a realistic visualization of the hydrological processes.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Gregory Church, Melchior Grab, Cédric Schmelzbach, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 14, 3269–3286, https://doi.org/10.5194/tc-14-3269-2020, https://doi.org/10.5194/tc-14-3269-2020, 2020
Short summary
Short summary
In this field study, we repeated ground-penetrating radar measurements over an active englacial channel network that transports meltwater through the glacier. We successfully imaged the englacial meltwater pathway and were able to delimitate the channel's shape. Meltwater from the glacier can impact the glacier's dynamics if it reaches the ice–bed interface, and therefore monitoring these englacial drainage networks is important to understand how these networks behave throughout a season.
Joseph Doetsch, Hannes Krietsch, Cedric Schmelzbach, Mohammadreza Jalali, Valentin Gischig, Linus Villiger, Florian Amann, and Hansruedi Maurer
Solid Earth, 11, 1441–1455, https://doi.org/10.5194/se-11-1441-2020, https://doi.org/10.5194/se-11-1441-2020, 2020
Yury Alkhimenkov, Eva Caspari, Simon Lissa, and Beatriz Quintal
Solid Earth, 11, 855–871, https://doi.org/10.5194/se-11-855-2020, https://doi.org/10.5194/se-11-855-2020, 2020
Short summary
Short summary
We perform a three-dimensional numerical study of the fluid–solid deformation at the pore scale. We show that seismic wave velocities exhibit strong azimuth-, angle- and frequency-dependent behavior due to squirt flow between interconnected cracks. We conclude that the overall anisotropy mainly increases due to squirt flow, but in some specific planes it can locally decrease as well as increase, depending on the material properties.
Eva Caspari, Andrew Greenwood, Ludovic Baron, Daniel Egli, Enea Toschini, Kaiyan Hu, and Klaus Holliger
Solid Earth, 11, 829–854, https://doi.org/10.5194/se-11-829-2020, https://doi.org/10.5194/se-11-829-2020, 2020
Short summary
Short summary
A shallow borehole was drilled to explore the petrophysical and hydraulic characteristics of a hydrothermally active fault in the crystalline Aar massif of the Alps. A key objective of studying surficial features of this kind is to establish analogies with natural and deep-seated engineered hydrothermal systems. A wide range of geophysical borehole logs was acquired, which revealed a complex fracture network in the damage zone of the fault and a related compartmentalized hydraulic behavior.
Jürg Hunziker, Andrew Greenwood, Shohei Minato, Nicolás Daniel Barbosa, Eva Caspari, and Klaus Holliger
Solid Earth, 11, 657–668, https://doi.org/10.5194/se-11-657-2020, https://doi.org/10.5194/se-11-657-2020, 2020
Short summary
Short summary
The characterization of fractures is crucial for a wide range of pertinent applications, such as geothermal energy production, hydrocarbon exploration, CO2 sequestration, and nuclear waste disposal. We estimate fracture parameters based on waves that travel along boreholes (tube waves) using a stochastic optimization approach.
Lisbeth Langhammer, Melchior Grab, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 13, 2189–2202, https://doi.org/10.5194/tc-13-2189-2019, https://doi.org/10.5194/tc-13-2189-2019, 2019
Short summary
Short summary
We have developed a novel procedure for glacier thickness estimations that combines traditional glaciological modeling constraints with ground-truth data, for example, those obtained with ground-penetrating radar (GPR) measurements. This procedure is very useful for determining ice volume when only limited data are available. Furthermore, we outline a strategy for acquiring GPR data on glaciers, such that the cost/benefit ratio is optimized.
Simón Lissa, Nicolás D. Barbosa, J. Germán Rubino, and Beatriz Quintal
Solid Earth, 10, 1321–1336, https://doi.org/10.5194/se-10-1321-2019, https://doi.org/10.5194/se-10-1321-2019, 2019
Short summary
Short summary
We quantify the effects that 3-D fractures with realistic distributions of aperture have on seismic wave attenuation and velocity dispersion. Attenuation and dispersion are caused by fluid pressure diffusion between the fractures and the porous background. We show that (i) both an increase in the density of contact areas and a decrease in their correlation length reduce attenuation and (ii) a simple planar fracture can be used to emulate the seismic response of realistic fracture models.
Kathleen Sell, Beatriz Quintal, Michael Kersten, and Erik H. Saenger
Solid Earth, 9, 699–711, https://doi.org/10.5194/se-9-699-2018, https://doi.org/10.5194/se-9-699-2018, 2018
Short summary
Short summary
Sediments containing hydrates dispersed in the pore space show a characteristic seismic anomaly: a high attenuation along with increasing seismic velocities. Recent major findings from synchrotron experiments revealed the systematic presence of thin water films between quartz and gas hydrate. Our numerical studies support earlier speculation that squirt flow causes high attenuation at seismic frequencies but are based on a conceptual model different to those previously considered.
Florian Amann, Valentin Gischig, Keith Evans, Joseph Doetsch, Reza Jalali, Benoît Valley, Hannes Krietsch, Nathan Dutler, Linus Villiger, Bernard Brixel, Maria Klepikova, Anniina Kittilä, Claudio Madonna, Stefan Wiemer, Martin O. Saar, Simon Loew, Thomas Driesner, Hansruedi Maurer, and Domenico Giardini
Solid Earth, 9, 115–137, https://doi.org/10.5194/se-9-115-2018, https://doi.org/10.5194/se-9-115-2018, 2018
Valentin Samuel Gischig, Joseph Doetsch, Hansruedi Maurer, Hannes Krietsch, Florian Amann, Keith Frederick Evans, Morteza Nejati, Mohammadreza Jalali, Benoît Valley, Anne Christine Obermann, Stefan Wiemer, and Domenico Giardini
Solid Earth, 9, 39–61, https://doi.org/10.5194/se-9-39-2018, https://doi.org/10.5194/se-9-39-2018, 2018
Related subject area
Geophysics
Combining crosshole and reflection borehole ground-penetrating radar (GPR) for imaging controlled freezing in shallow aquifers
Geophysical downhole logging analysis within the shallow-depth ICDP STAR drilling project (central Italy)
Post-Caledonian tectonic evolution of the Precambrian and Paleozoic platform boundary zone offshore Poland based on the new and vintage multi-channel reflection seismic data
Geodynamic controls on clastic-dominated base metal deposits
The structural anatomy of the Pyrenees examined through EMAG2v2 magnetic data
Seismic wave modeling of fluid-saturated fractured porous rock: including fluid pressure diffusion effects of discretely distributed large-scale fractures
Comparison of surface-wave techniques to estimate S- and P-wave velocity models from active seismic data
Integration of automatic implicit geological modelling in deterministic geophysical inversion
Complex fault system revealed by 3-D seismic reflection data with deep learning and fault network analysis
Numerical modeling of stresses and deformation in the Zagros–Iranian Plateau region
Advanced seismic characterization of a geothermal carbonate reservoir – insight into the structure and diagenesis of a reservoir in the German Molasse Basin
Electrical conductivity of anhydrous and hydrous gabbroic melt under high temperature and high pressure: implications for the high-conductivity anomalies in the mid-ocean ridge region
Ground motion emissions due to wind turbines: observations, acoustic coupling, and attenuation relationships
Formation and geophysical character of transitional crust at the passive continental margin around Walvis Ridge, Namibia
Seismic amplitude response to internal heterogeneity of mass-transport deposits
Investigation of the effects of surrounding media on the distributed acoustic sensing of a helically wound fibre-optic cable with application to the New Afton deposit, British Columbia
Utilisation of probabilistic magnetotelluric modelling to constrain magnetic data inversion: proof-of-concept and field application
Geophysical analysis of an area affected by subsurface dissolution – case study of an inland salt marsh in northern Thuringia, Germany
Comparison of straight-ray and curved-ray surface wave tomography approaches in near-surface studies
An efficient probabilistic workflow for estimating induced earthquake parameters in 3D heterogeneous media
3D deep geothermal reservoir imaging with wireline distributed acoustic sensing in two boreholes
3D high-resolution seismic imaging of the iron oxide deposits in Ludvika (Sweden) using full-waveform inversion and reverse time migration
Three-dimensional reflection seismic imaging of the iron oxide deposits in the Ludvika mining area, Sweden, using Fresnel volume migration
Drone-based magnetic and multispectral surveys to develop a 3D model for mineral exploration at Qullissat, Disko Island, Greenland
Ambient seismic noise analysis of LARGE-N data for mineral exploration in the Central Erzgebirge, Germany
Surface-wave tomography for mineral exploration: a successful combination of passive and active data (Siilinjärvi phosphorus mine, Finland)
Reflection tomography by depth warping: a case study across the Java trench
Dynamic motion monitoring of a 3.6 km long steel rod in a borehole during cold-water injection with distributed fiber-optic sensing
Impact of Timanian thrust systems on the late Neoproterozoic–Phanerozoic tectonic evolution of the Barents Sea and Svalbard
Forearc density structure of the overriding plate in the northern area of the giant 1960 Valdivia earthquake
Imaging crustal structures through a passive seismic imaging approach in a mining area in Saxony, Germany
Investigating the effects of intersection flow localization in equivalent-continuum-based upscaling of flow in discrete fracture networks
Cross-diffusion waves resulting from multiscale, multiphysics instabilities: application to earthquakes
Reverse time migration (RTM) imaging of iron oxide deposits in the Ludvika mining area, Sweden
Near-surface structure of the Sodankylä area in Finland, obtained by passive seismic interferometry
Evolution of the Iberian Massif as deduced from its crustal thickness and geometry of a mid-crustal (Conrad) discontinuity
Four-dimensional tracer flow reconstruction in fractured rock through borehole ground-penetrating radar (GPR) monitoring
Moho topography beneath the European Eastern Alps by global-phase seismic interferometry
Seismic imaging across fault systems in the Abitibi greenstone belt – an analysis of pre- and post-stack migration approaches in the Chibougamau area, Quebec, Canada
Early Cenozoic Eurekan strain partitioning and decoupling in central Spitsbergen, Svalbard
On the comparison of strain measurements from fibre optics with a dense seismometer array at Etna volcano (Italy)
Cross-diffusion waves resulting from multiscale, multi-physics instabilities: theory
Multi-scale analysis and modelling of aeromagnetic data over the Bétaré-Oya area in eastern Cameroon, for structural evidence investigations
The impact of seismic interpretation methods on the analysis of faults: a case study from the Snøhvit field, Barents Sea
Wireline distributed acoustic sensing allows 4.2 km deep vertical seismic profiling of the Rotliegend 150 °C geothermal reservoir in the North German Basin
Integrated land and water-borne geophysical surveys shed light on the sudden drying of large karst lakes in southern Mexico
Sparse 3D reflection seismic survey for deep-targeting iron oxide deposits and their host rocks, Ludvika Mines, Sweden
Fault sealing and caprock integrity for CO2 storage: an in situ injection experiment
What can seismic noise tell us about the Alpine reactivation of the Iberian Massif? An example in the Iberian Central System
In situ hydromechanical responses during well drilling recorded by fiber-optic distributed strain sensing
Peter Jung, Götz Hornbruch, Andreas Dahmke, Peter Dietrich, and Ulrike Werban
Solid Earth, 15, 1465–1477, https://doi.org/10.5194/se-15-1465-2024, https://doi.org/10.5194/se-15-1465-2024, 2024
Short summary
Short summary
We demonstrate the feasibility of imaging vertical freezing boundaries using borehole ground-penetrating radar (GPR) in experimental geological latent heat storage, where part of a shallow Quaternary aquifer is frozen. To gain insights into the current thermal state in the subsurface, we assess the frozen volume dimension. We show that a combination of crosshole and reflection measurements allows us to image the ice body with high accuracy in the challenging environment of saturated sediments.
Paola Montone, Simona Pierdominici, M. Teresa Mariucci, Francesco Mirabella, Marco Urbani, Assel Akimbekova, Lauro Chiaraluce, Wade Johnson, and Massimiliano Rinaldo Barchi
Solid Earth, 15, 1385–1406, https://doi.org/10.5194/se-15-1385-2024, https://doi.org/10.5194/se-15-1385-2024, 2024
Short summary
Short summary
The STAR project set out to drill six shallow holes and use geophysical logging to find the best depth for placing seismometers and strainmeters to image the upper crust, in particular the Alto Tiberina fault, Italy. These measurements give us a better idea of what the rocks are like, helping us connect what we know from the literature with what we find underground, giving solid information on rock properties, which helps us understand the first few hundred meters of the Earth's crust.
Quang Nguyen, Michal Malinowski, Stanisław Mazur, Sergiy Stovba, Małgorzata Ponikowska, and Christian Hübscher
Solid Earth, 15, 1029–1046, https://doi.org/10.5194/se-15-1029-2024, https://doi.org/10.5194/se-15-1029-2024, 2024
Short summary
Short summary
Our work demonstrates the following: (1) an efficient seismic data-processing strategy focused on suppressing shallow-water multiple reflections. (2) An improvement in the quality of legacy marine seismic data. (3) A seismic interpretation of sedimentary successions overlying the basement in the transition zone from the Precambrian to Paleozoic platforms. (4) The tectonic evolution of the Koszalin Fault and its relation to the Caledonian Deformation Front offshore Poland.
Anne C. Glerum, Sascha Brune, Joseph M. Magnall, Philipp Weis, and Sarah A. Gleeson
Solid Earth, 15, 921–944, https://doi.org/10.5194/se-15-921-2024, https://doi.org/10.5194/se-15-921-2024, 2024
Short summary
Short summary
High-value zinc–lead deposits formed in sedimentary basins created when tectonic plates rifted apart. We use computer simulations of rifting and the associated sediment erosion and deposition to understand why they formed in some basins but not in others. Basins that contain a metal source, faults that focus fluids, and rocks that can host deposits occurred in both narrow and wide rifts for ≤ 3 Myr. The largest and the most deposits form in narrow margins of narrow asymmetric rifts.
África Gamisel-Muzás, Ruth Soto, Conxi Ayala, Tania Mochales, Félix Manuel Rubio, Pilar Clariana, Carmen Rey-Moral, and Juliana Martín-León
EGUsphere, https://doi.org/10.5194/egusphere-2024-1602, https://doi.org/10.5194/egusphere-2024-1602, 2024
Short summary
Short summary
In this work we compare magnetic maps obtained from the EMAG2v2 (Earth Magnetic Anomaly Grid 2-arc-minute resolution) magnetic intensity data with the main geological structures and units of the Pyrenees and adjacent areas. The magnetic response arrangement for the different domains mimic the main structural lineaments and highlight the occurrence of major magnetic anomalies linked to specific geological bodies.
Yingkai Qi, Xuehua Chen, Qingwei Zhao, Xin Luo, and Chunqiang Feng
Solid Earth, 15, 535–554, https://doi.org/10.5194/se-15-535-2024, https://doi.org/10.5194/se-15-535-2024, 2024
Short summary
Short summary
Fractures tend to dominate the mechanical and hydraulic properties of porous rock and impact the scattering characteristics of passing waves. This study takes into account the poroelastic effects of fractures in numerical modeling. Our results demonstrate that scattered waves from complex fracture systems are strongly affected by the fractures.
Farbod Khosro Anjom, Frank Adler, and Laura Valentina Socco
Solid Earth, 15, 367–386, https://doi.org/10.5194/se-15-367-2024, https://doi.org/10.5194/se-15-367-2024, 2024
Short summary
Short summary
Most surface-wave techniques focus on estimating the S-wave velocity (VS) model and consider the P-wave velocity (VP) model as prior information in the inversion step. Here, we show the application of three surface-wave methods to estimate both VS and VP models. We apply the methods to the data from a hard-rock site that were acquired through the irregular source–receiver recording technique. We compare the outcomes and performances of the methods in detail.
Jérémie Giraud, Guillaume Caumon, Lachlan Grose, Vitaliy Ogarko, and Paul Cupillard
Solid Earth, 15, 63–89, https://doi.org/10.5194/se-15-63-2024, https://doi.org/10.5194/se-15-63-2024, 2024
Short summary
Short summary
We present and test an algorithm that integrates geological modelling into deterministic geophysical inversion. This is motivated by the need to model the Earth using all available data and to reconcile the different types of measurements. We introduce the methodology and test our algorithm using two idealised scenarios. Results suggest that the method we propose is effectively capable of improving the models recovered by geophysical inversion and may be applied in real-world scenarios.
Thilo Wrona, Indranil Pan, Rebecca E. Bell, Christopher A.-L. Jackson, Robert L. Gawthorpe, Haakon Fossen, Edoseghe E. Osagiede, and Sascha Brune
Solid Earth, 14, 1181–1195, https://doi.org/10.5194/se-14-1181-2023, https://doi.org/10.5194/se-14-1181-2023, 2023
Short summary
Short summary
We need to understand where faults are to do the following: (1) assess their seismic hazard, (2) explore for natural resources and (3) store CO2 safely in the subsurface. Currently, we still map subsurface faults primarily by hand using seismic reflection data, i.e. acoustic images of the Earth. Mapping faults this way is difficult and time-consuming. Here, we show how to use deep learning to accelerate fault mapping and how to use networks or graphs to simplify fault analyses.
Srishti Singh and Radheshyam Yadav
Solid Earth, 14, 937–959, https://doi.org/10.5194/se-14-937-2023, https://doi.org/10.5194/se-14-937-2023, 2023
Short summary
Short summary
We use numerical models to study the stresses arising from gravitational potential energy (GPE) variations and shear tractions associated with mantle convection in the Zagros–Iran region. The joint models predicted consistent deviatoric stresses that can explain most of the deformation indicators. Stresses associated with mantle convection are found to be higher than those from GPE, thus indicating the deformation in this region may primarily be caused by the mantle, except in eastern Iran.
Sonja H. Wadas, Johanna F. Krumbholz, Vladimir Shipilin, Michael Krumbholz, David C. Tanner, and Hermann Buness
Solid Earth, 14, 871–908, https://doi.org/10.5194/se-14-871-2023, https://doi.org/10.5194/se-14-871-2023, 2023
Short summary
Short summary
The geothermal carbonate reservoir below Munich, Germany, is extremely heterogeneous because it is controlled by many factors like lithology, diagenesis, karstification, and tectonic deformation. We used a 3D seismic single- and multi-attribute analysis combined with well data and a neural-net-based lithology classification to obtain an improved reservoir concept outlining its structural and diagenetic evolution and to identify high-quality reservoir zones in the Munich area.
Mengqi Wang, Lidong Dai, Haiying Hu, Ziming Hu, Chenxin Jing, Chuanyu Yin, Song Luo, and Jinhua Lai
Solid Earth, 14, 847–858, https://doi.org/10.5194/se-14-847-2023, https://doi.org/10.5194/se-14-847-2023, 2023
Short summary
Short summary
This is the first time that the electrical conductivity of gabbroic melt was assessed at high temperature and high pressure. The dependence of electrical conductivity on the degree of depolymerization was also explored. Electrical conductivity of gabbroic melts can be employed to interpret high-conductivity anomalies in the Mohns Ridge of the Arctic Ocean. This is of widespread interest to potential readers in high-pressure rock physics, solid geophysics, and deep Earth science.
Laura Gaßner and Joachim Ritter
Solid Earth, 14, 785–803, https://doi.org/10.5194/se-14-785-2023, https://doi.org/10.5194/se-14-785-2023, 2023
Short summary
Short summary
In this work we analyze signals emitted from wind turbines. They induce sound as well as ground motion waves which propagate through the subsurface and are registered by sensitive instruments. In our data we observe when these signals are present and how strong they are. Some signals are present in ground motion and sound data, providing the opportunity to study similarities and better characterize emissions. Furthermore, we study the amplitudes with distance to improve the signal prediction.
Gesa Franz, Marion Jegen, Max Moorkamp, Christian Berndt, and Wolfgang Rabbel
Solid Earth, 14, 237–259, https://doi.org/10.5194/se-14-237-2023, https://doi.org/10.5194/se-14-237-2023, 2023
Short summary
Short summary
Our study focuses on the correlation of two geophysical parameters (electrical resistivity and density) with geological units. We use this computer-aided correlation to improve interpretation of the Earth’s formation history along the Namibian coast and the associated formation of the South Atlantic Ocean. It helps to distinguish different types of sediment cover and varieties of oceanic crust, as well as to identify typical features associated with the breakup of continents.
Jonathan Ford, Angelo Camerlenghi, Francesca Zolezzi, and Marilena Calarco
Solid Earth, 14, 137–151, https://doi.org/10.5194/se-14-137-2023, https://doi.org/10.5194/se-14-137-2023, 2023
Short summary
Short summary
Submarine landslides commonly appear as low-amplitude zones in seismic data. Previous studies have attributed this to a lack of preserved internal structure. We use seismic modelling to show that an amplitude reduction can be generated even when there is still metre-scale internal structure, by simply deforming the bedding. This has implications for interpreting failure type, for core-seismic correlation and for discriminating landslides from other "transparent" phenomena such as free gas.
Sepidehalsadat Hendi, Mostafa Gorjian, Gilles Bellefleur, Christopher D. Hawkes, and Don White
Solid Earth, 14, 89–99, https://doi.org/10.5194/se-14-89-2023, https://doi.org/10.5194/se-14-89-2023, 2023
Short summary
Short summary
In this study, the modelling results are used to help understand the performance of a helically wound fibre (HWC) from a field study at the New Afton mine, British Columbia. We introduce the numerical 3D model to model strain values in HWC to design more effective HWC system. The DAS dataset at New Afton, interpreted in the context of our modelling, serves as a practical demonstration of the extreme effects of surrounding media and coupling on HWC data quality.
Jérémie Giraud, Hoël Seillé, Mark D. Lindsay, Gerhard Visser, Vitaliy Ogarko, and Mark W. Jessell
Solid Earth, 14, 43–68, https://doi.org/10.5194/se-14-43-2023, https://doi.org/10.5194/se-14-43-2023, 2023
Short summary
Short summary
We propose and apply a workflow to combine the modelling and interpretation of magnetic anomalies and resistivity anomalies to better image the basement. We test the method on a synthetic case study and apply it to real world data from the Cloncurry area (Queensland, Australia), which is prospective for economic minerals. Results suggest a new interpretation of the composition and structure towards to east of the profile that we modelled.
Sonja H. Wadas, Hermann Buness, Raphael Rochlitz, Peter Skiba, Thomas Günther, Michael Grinat, David C. Tanner, Ulrich Polom, Gerald Gabriel, and Charlotte M. Krawczyk
Solid Earth, 13, 1673–1696, https://doi.org/10.5194/se-13-1673-2022, https://doi.org/10.5194/se-13-1673-2022, 2022
Short summary
Short summary
The dissolution of rocks poses a severe hazard because it can cause subsidence and sinkhole formation. Based on results from our study area in Thuringia, Germany, using P- and SH-wave reflection seismics, electrical resistivity and electromagnetic methods, and gravimetry, we develop a geophysical investigation workflow. This workflow enables identifying the initial triggers of subsurface dissolution and its control factors, such as structural constraints, fluid pathways, and mass movement.
Mohammadkarim Karimpour, Evert Slob, and Laura Valentina Socco
Solid Earth, 13, 1569–1583, https://doi.org/10.5194/se-13-1569-2022, https://doi.org/10.5194/se-13-1569-2022, 2022
Short summary
Short summary
Near-surface characterisation is of great importance. Surface wave tomography (SWT) is a powerful tool to model the subsurface. In this work we compare straight-ray and curved-ray SWT at near-surface scale. We apply both approaches to four datasets and compare the results in terms of the quality of the final model and the computational cost. We show that in the case of high data coverage, straight-ray SWT can produce similar results to curved-ray SWT but with less computational cost.
La Ode Marzujriban Masfara, Thomas Cullison, and Cornelis Weemstra
Solid Earth, 13, 1309–1325, https://doi.org/10.5194/se-13-1309-2022, https://doi.org/10.5194/se-13-1309-2022, 2022
Short summary
Short summary
Induced earthquakes are natural phenomena in which the events are associated with human activities. Although the magnitudes of these events are mostly smaller than tectonic events, in some cases, the magnitudes can be high enough to damage buildings near the event's location. To study these (high-magnitude) induced events, we developed a workflow in which the recorded data from an earthquake are used to describe the source and monitor the area for other (potentially high-magnitude) earthquakes.
Evgeniia Martuganova, Manfred Stiller, Ben Norden, Jan Henninges, and Charlotte M. Krawczyk
Solid Earth, 13, 1291–1307, https://doi.org/10.5194/se-13-1291-2022, https://doi.org/10.5194/se-13-1291-2022, 2022
Short summary
Short summary
We demonstrate the applicability of vertical seismic profiling (VSP) acquired using wireline distributed acoustic sensing (DAS) technology for deep geothermal reservoir imaging and characterization. Borehole DAS data provide critical input for seismic interpretation and help assess small-scale geological structures. This case study can be used as a basis for detailed structural exploration of geothermal reservoirs and provide insightful information for geothermal exploration projects.
Brij Singh, Michał Malinowski, Andrzej Górszczyk, Alireza Malehmir, Stefan Buske, Łukasz Sito, and Paul Marsden
Solid Earth, 13, 1065–1085, https://doi.org/10.5194/se-13-1065-2022, https://doi.org/10.5194/se-13-1065-2022, 2022
Short summary
Short summary
Fast depletion of shallower deposits is pushing the mining industry to look for cutting-edge technologies for deep mineral targeting. We demonstrated a joint workflow including two state-of-the-art technologies: full-waveform inversion and reverse time migration. We produced Earth images with significant details which can help with better estimation of areas with high mineralisation, better mine planning and safety measures.
Felix Hloušek, Michal Malinowski, Lena Bräunig, Stefan Buske, Alireza Malehmir, Magdalena Markovic, Lukasz Sito, Paul Marsden, and Emma Bäckström
Solid Earth, 13, 917–934, https://doi.org/10.5194/se-13-917-2022, https://doi.org/10.5194/se-13-917-2022, 2022
Short summary
Short summary
Methods for mineral exploration play an important role within the EU. Exploration must be environmentally friendly, cost effective, and feasible in populated areas. Seismic methods have the potential to deliver detailed images of mineral deposits but suffer from these demands. We show the results for a sparse 3D seismic dataset acquired in Sweden. The 3D depth image allows us to track the known mineralizations beyond the known extent and gives new insights into the geometry of the deposit.
Robert Jackisch, Björn H. Heincke, Robert Zimmermann, Erik V. Sørensen, Markku Pirttijärvi, Moritz Kirsch, Heikki Salmirinne, Stefanie Lode, Urpo Kuronen, and Richard Gloaguen
Solid Earth, 13, 793–825, https://doi.org/10.5194/se-13-793-2022, https://doi.org/10.5194/se-13-793-2022, 2022
Short summary
Short summary
We integrate UAS-based magnetic and multispectral data with legacy exploration data of a Ni–Cu–PGE prospect on Disko Island, West Greenland. The basalt unit has a complex magnetization, and we use a constrained 3D magnetic vector inversion to estimate magnetic properties and spatial dimensions of the target unit. Our 3D modelling reveals a horizontal sheet and a strong remanent magnetization component. We highlight the advantage of UAS use in rugged and remote terrain.
Trond Ryberg, Moritz Kirsch, Christian Haberland, Raimon Tolosana-Delgado, Andrea Viezzoli, and Richard Gloaguen
Solid Earth, 13, 519–533, https://doi.org/10.5194/se-13-519-2022, https://doi.org/10.5194/se-13-519-2022, 2022
Short summary
Short summary
Novel methods for mineral exploration play an important role in future resource exploration. The methods have to be environmentally friendly, socially accepted and cost effective by integrating multidisciplinary methodologies. We investigate the potential of passive, ambient noise tomography combined with 3D airborne electromagnetics for mineral exploration in Geyer, Germany. We show that the combination of the two geophysical data sets has promising potential for future mineral exploration.
Chiara Colombero, Myrto Papadopoulou, Tuomas Kauti, Pietari Skyttä, Emilia Koivisto, Mikko Savolainen, and Laura Valentina Socco
Solid Earth, 13, 417–429, https://doi.org/10.5194/se-13-417-2022, https://doi.org/10.5194/se-13-417-2022, 2022
Short summary
Short summary
Passive-source surface waves may be exploited in mineral exploration for deeper investigations. We propose a semi-automatic workflow for their processing. The geological interpretation of the results obtained at a mineral site (Siilinjärvi phosphorus mine) shows large potentialities and effectiveness of the proposed workflow.
Yueyang Xia, Dirk Klaeschen, Heidrun Kopp, and Michael Schnabel
Solid Earth, 13, 367–392, https://doi.org/10.5194/se-13-367-2022, https://doi.org/10.5194/se-13-367-2022, 2022
Short summary
Short summary
Geological interpretations based on seismic depth images depend on an accurate subsurface velocity model. Reflection tomography is one method to iteratively update a velocity model based on depth error analysis. We used a warping method to estimate closely spaced data-driven depth error displacement fields. The application to a multichannel seismic line across the Sunda subduction zone illustrates the approach which leads to more accurate images of complex geological structures.
Martin Peter Lipus, Felix Schölderle, Thomas Reinsch, Christopher Wollin, Charlotte Krawczyk, Daniela Pfrang, and Kai Zosseder
Solid Earth, 13, 161–176, https://doi.org/10.5194/se-13-161-2022, https://doi.org/10.5194/se-13-161-2022, 2022
Short summary
Short summary
A fiber-optic cable was installed along a freely suspended rod in a deep geothermal well in Munich, Germany. A cold-water injection test was monitored with fiber-optic distributed acoustic and temperature sensing. During injection, we observe vibrational events in the lower part of the well. On the basis of a mechanical model, we conclude that the vibrational events are caused by thermal contraction of the rod. The results illustrate potential artifacts when analyzing downhole acoustic data.
Jean-Baptiste P. Koehl, Craig Magee, and Ingrid M. Anell
Solid Earth, 13, 85–115, https://doi.org/10.5194/se-13-85-2022, https://doi.org/10.5194/se-13-85-2022, 2022
Short summary
Short summary
The present study shows evidence of fault systems (large cracks in the Earth's crust) hundreds to thousands of kilometers long and several kilometers thick extending from northwestern Russia to the northern Norwegian Barents Sea and the Svalbard Archipelago using seismic, magnetic, and gravimetric data. The study suggests that the crust in Svalbard and the Barents Sea was already attached to Norway and Russia at ca. 650–550 Ma, thus challenging existing models.
Andrei Maksymowicz, Daniela Montecinos-Cuadros, Daniel Díaz, María José Segovia, and Tomás Reyes
Solid Earth, 13, 117–136, https://doi.org/10.5194/se-13-117-2022, https://doi.org/10.5194/se-13-117-2022, 2022
Short summary
Short summary
This work analyses the density structure of the continental forearc in the northern segment of the 1960 Mw 9.6 Valdivia earthquake. Results show a segmentation of the continental wedge along and perpendicular to the margin. The extension of the less rigid basement units conforming the marine wedge and Coastal Cordillera domain could modify the process of stress loading during the interseismic periods. This analysis highlights the role of the overriding plate on the seismotectonic process.
Hossein Hassani, Felix Hloušek, Stefan Buske, and Olaf Wallner
Solid Earth, 12, 2703–2715, https://doi.org/10.5194/se-12-2703-2021, https://doi.org/10.5194/se-12-2703-2021, 2021
Short summary
Short summary
Passive seismic imaging methods use natural earthquakes as seismic sources, while in active seismic imaging methods, artificial sources (e.g. explosives) are used to generate seismic waves. We imaged some structures related to a major fault plane through a passive seismic imaging approach using microearthquakes with magnitudes smaller than 0.9 (Mw). These structures have not been illuminated by a previously conducted 3D active seismic survey due to their large dip angles.
Maximilian O. Kottwitz, Anton A. Popov, Steffen Abe, and Boris J. P. Kaus
Solid Earth, 12, 2235–2254, https://doi.org/10.5194/se-12-2235-2021, https://doi.org/10.5194/se-12-2235-2021, 2021
Short summary
Short summary
Upscaling fluid flow in fractured reservoirs is an important practice in subsurface resource utilization. In this study, we first conduct numerical simulations of direct fluid flow at locations where fractures intersect to analyze the arising hydraulic complexities. Next, we develop a model that integrates these effects into larger-scale continuum models of fracture networks to investigate their impact on the upscaling. For intensively fractured systems, these effects become important.
Klaus Regenauer-Lieb, Manman Hu, Christoph Schrank, Xiao Chen, Santiago Peña Clavijo, Ulrich Kelka, Ali Karrech, Oliver Gaede, Tomasz Blach, Hamid Roshan, Antoine B. Jacquey, Piotr Szymczak, and Qingpei Sun
Solid Earth, 12, 1829–1849, https://doi.org/10.5194/se-12-1829-2021, https://doi.org/10.5194/se-12-1829-2021, 2021
Short summary
Short summary
This paper presents a trans-disciplinary approach bridging the gap between observations of instabilities from the molecular scale to the very large scale. We show that all scales communicate via propagation of volumetric deformation waves. Similar phenomena are encountered in quantum optics where wave collisions can release sporadic bursts of light. Ocean waves show a similar phenomenon of rogue waves that seem to come from nowhere. This mechanism is proposed to be the trigger for earthquakes.
Yinshuai Ding and Alireza Malehmir
Solid Earth, 12, 1707–1718, https://doi.org/10.5194/se-12-1707-2021, https://doi.org/10.5194/se-12-1707-2021, 2021
Short summary
Short summary
In this article, we investigate the potential of reverse time migration (RTM) for deep targeting iron oxide deposits and the possible AVO effect that is potentially seen in the common image gathers from this migration algorithm. The results are promising and help to delineate the deposits and host rock structures using a 2D dataset from the Ludvika mines of central Sweden.
Nikita Afonin, Elena Kozlovskaya, Suvi Heinonen, and Stefan Buske
Solid Earth, 12, 1563–1579, https://doi.org/10.5194/se-12-1563-2021, https://doi.org/10.5194/se-12-1563-2021, 2021
Short summary
Short summary
In our study, we show the results of a passive seismic interferometry application for mapping the uppermost crust in the area of active mineral exploration in northern Finland. The obtained velocity models agree well with geological data and complement the results of reflection seismic data interpretation.
Puy Ayarza, José Ramón Martínez Catalán, Ana Martínez García, Juan Alcalde, Juvenal Andrés, José Fernando Simancas, Immaculada Palomeras, David Martí, Irene DeFelipe, Chris Juhlin, and Ramón Carbonell
Solid Earth, 12, 1515–1547, https://doi.org/10.5194/se-12-1515-2021, https://doi.org/10.5194/se-12-1515-2021, 2021
Short summary
Short summary
Vertical incidence seismic profiling on the Iberian Massif images a mid-crustal-scale discontinuity at the top of the reflective lower crust. This feature shows that upper- and lower-crustal reflections merge into it, suggesting that it has often behaved as a detachment. The orogen-scale extension of this discontinuity, present in Gondwanan and Avalonian affinity terranes into the Iberian Massif, demonstrates its relevance, leading us to interpret it as the Conrad discontinuity.
Peter-Lasse Giertzuch, Joseph Doetsch, Alexis Shakas, Mohammadreza Jalali, Bernard Brixel, and Hansruedi Maurer
Solid Earth, 12, 1497–1513, https://doi.org/10.5194/se-12-1497-2021, https://doi.org/10.5194/se-12-1497-2021, 2021
Short summary
Short summary
Two time-lapse borehole ground penetrating radar (GPR) surveys were conducted during saline tracer experiments in weakly fractured crystalline rock with sub-millimeter fractures apertures, targeting electrical conductivity changes. The combination of time-lapse reflection and transmission GPR surveys from different boreholes allowed monitoring the tracer flow and reconstructing the flow path and its temporal evolution in 3D and provided a realistic visualization of the hydrological processes.
Irene Bianchi, Elmer Ruigrok, Anne Obermann, and Edi Kissling
Solid Earth, 12, 1185–1196, https://doi.org/10.5194/se-12-1185-2021, https://doi.org/10.5194/se-12-1185-2021, 2021
Short summary
Short summary
The European Alps formed during collision between the European and Adriatic plates and are one of the most studied orogens for understanding the dynamics of mountain building. In the Eastern Alps, the contact between the colliding plates is still a matter of debate. We have used the records from distant earthquakes to highlight the geometries of the crust–mantle boundary in the Eastern Alpine area; our results suggest a complex and faulted internal crustal structure beneath the higher crests.
Saeid Cheraghi, Alireza Malehmir, Mostafa Naghizadeh, David Snyder, Lucie Mathieu, and Pierre Bedeaux
Solid Earth, 12, 1143–1164, https://doi.org/10.5194/se-12-1143-2021, https://doi.org/10.5194/se-12-1143-2021, 2021
Short summary
Short summary
High-resolution seismic profiles in 2D are acquired in the north and south of the Chibougamau area, Quebec, Canada located in the northeast of the Abitibi Greenstone belt. The area mostly includes volcanic rocks, and both profiles cross over several fault zones. The seismic method is acquired to image the subsurface down to depth of 12 km. The main aim of this study is to image major fault zones and the geological formations connected to those faults to investigate metal endowment in the area.
Jean-Baptiste P. Koehl
Solid Earth, 12, 1025–1049, https://doi.org/10.5194/se-12-1025-2021, https://doi.org/10.5194/se-12-1025-2021, 2021
Short summary
Short summary
By using seismic data and fieldwork, this contribution shows that soft, coal-rich sedimentary rocks absorbed most of early Cenozoic, Eurekan, contractional deformation in central Spitsbergen, thus suggesting that no contractional deformation event is needed in the Late Devonian to explain the deformation differences among late Paleozoic sedimentary rocks. It also shows that the Billefjorden Fault Zone, a major crack in the Earth's crust in Svalbard, is probably segmented.
Gilda Currenti, Philippe Jousset, Rosalba Napoli, Charlotte Krawczyk, and Michael Weber
Solid Earth, 12, 993–1003, https://doi.org/10.5194/se-12-993-2021, https://doi.org/10.5194/se-12-993-2021, 2021
Short summary
Short summary
We investigate the capability of distributed acoustic sensing (DAS) to record dynamic strain changes related to Etna volcano activity in 2019. To validate the DAS measurements, we compute strain estimates from seismic signals recorded by a dense broadband array. A general good agreement is found between array-derived strain and DAS measurements along the fibre optic cable. Localised short wavelength discrepancies highlight small-scale structural heterogeneities in the investigated area.
Klaus Regenauer-Lieb, Manman Hu, Christoph Schrank, Xiao Chen, Santiago Peña Clavijo, Ulrich Kelka, Ali Karrech, Oliver Gaede, Tomasz Blach, Hamid Roshan, and Antoine B. Jacquey
Solid Earth, 12, 869–883, https://doi.org/10.5194/se-12-869-2021, https://doi.org/10.5194/se-12-869-2021, 2021
Short summary
Short summary
In this paper we expand on a recent discovery of slow cross-diffusion hydromechanical waves cast into a new concise reaction–diffusion equation for THMC coupling. If waves are excited through the THMC reaction terms unbounded reactions can be captured by inclusion of statistical information from the lower scale through nonlocal reaction–diffusion equations. These cross-diffusion coefficients regularize extreme earthquake-like events (rogue waves) through a new form of quasi-soliton wave.
Christian Emile Nyaban, Théophile Ndougsa-Mbarga, Marcelin Bikoro-Bi-Alou, Stella Amina Manekeng Tadjouteu, and Stephane Patrick Assembe
Solid Earth, 12, 785–800, https://doi.org/10.5194/se-12-785-2021, https://doi.org/10.5194/se-12-785-2021, 2021
Short summary
Short summary
A multi-scale analysis of aeromagnetic data combining tilt derivative, Euler deconvolution, upward continuation, and 2.75D modelling was applied over Cameroon between the latitudes 5°30'–6° N and the longitudes 13°30'–14°45' E. Major families of faults oriented ENE–WSW, E–W, NW–SE, and N–S with a NE–SW prevalence were mapped. Depths of interpreted faults range from 1000 to 3400 m, mylonitic veins were identified, and 2.75D modelling revealed fault depths greater than 1200 m.
Jennifer E. Cunningham, Nestor Cardozo, Chris Townsend, and Richard H. T. Callow
Solid Earth, 12, 741–764, https://doi.org/10.5194/se-12-741-2021, https://doi.org/10.5194/se-12-741-2021, 2021
Short summary
Short summary
This work investigates the impact of commonly used seismic interpretation methods on the analysis of faults. Fault analysis refers to fault length, displacement, and the impact these factors have on geological modelling and hydrocarbon volume calculation workflows. This research was conducted to give geoscientists a better understanding of the importance of interpretation methods and the impact of unsuitable methology on geological analyses.
Jan Henninges, Evgeniia Martuganova, Manfred Stiller, Ben Norden, and Charlotte M. Krawczyk
Solid Earth, 12, 521–537, https://doi.org/10.5194/se-12-521-2021, https://doi.org/10.5194/se-12-521-2021, 2021
Short summary
Short summary
We performed a seismic survey in two 4.3 km deep geothermal research wells using the novel method of distributed acoustic sensing and wireline cables. The characteristics of the acquired data, methods for data processing and quality improvement, and interpretations on the geometry and structure of the sedimentary and volcanic reservoir rocks are presented. The method enables measurements at high temperatures and reduced cost compared to conventional sensors.
Matthias Bücker, Adrián Flores Orozco, Jakob Gallistl, Matthias Steiner, Lukas Aigner, Johannes Hoppenbrock, Ruth Glebe, Wendy Morales Barrera, Carlos Pita de la Paz, César Emilio García García, José Alberto Razo Pérez, Johannes Buckel, Andreas Hördt, Antje Schwalb, and Liseth Pérez
Solid Earth, 12, 439–461, https://doi.org/10.5194/se-12-439-2021, https://doi.org/10.5194/se-12-439-2021, 2021
Short summary
Short summary
We use seismic, electromagnetic, and geoelectrical methods to assess sediment thickness and lake-bottom geology of two karst lakes. An unexpected drainage event provided us with the unusual opportunity to compare water-borne measurements with measurements carried out on the dry lake floor. The resulting data set does not only provide insight into the specific lake-bottom geology of the studied lakes but also evidences the potential and limitations of the employed field methods.
Alireza Malehmir, Magdalena Markovic, Paul Marsden, Alba Gil, Stefan Buske, Lukasz Sito, Emma Bäckström, Martiya Sadeghi, and Stefan Luth
Solid Earth, 12, 483–502, https://doi.org/10.5194/se-12-483-2021, https://doi.org/10.5194/se-12-483-2021, 2021
Short summary
Short summary
A smooth transition toward decarbonization demands access to more minerals of critical importance. Europe has a good geology for many of these mineral deposits, but at a depth requiring sensitive, environmentally friendly, and cost-effective methods for their exploration. In this context, we present a sparse 3D seismic dataset that allowed identification of potential iron oxide resources at depth and helped to characterise key geological structures and a historical tailing in central Sweden.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Juvenal Andrés, Puy Ayarza, Martin Schimmel, Imma Palomeras, Mario Ruiz, and Ramon Carbonell
Solid Earth, 11, 2499–2513, https://doi.org/10.5194/se-11-2499-2020, https://doi.org/10.5194/se-11-2499-2020, 2020
Yi Zhang, Xinglin Lei, Tsutomu Hashimoto, and Ziqiu Xue
Solid Earth, 11, 2487–2497, https://doi.org/10.5194/se-11-2487-2020, https://doi.org/10.5194/se-11-2487-2020, 2020
Short summary
Short summary
Spatially continuous strain responses in two monitoring wells induced by a well-drilling process were monitored using high-resolution fiber-optic distributed strain sensing (DSS). The modeling results suggest that the strain polarities and magnitudes along the wellbores may be indicative of the layered-permeability structure or heterogeneous formation damage. The performance and value of DSS as a novel hydrogeophysical tool for in situ subsurface monitoring are emphasized.
Cited articles
Adelinet, M., Dorbath, C., Le Ravalec, M., and Gueguen, Y.: Deriving microstructure and fluid state within the Icelandic crust from the inversion of tomography data, Geophys. Res. Lett., 38, L03305, https://doi.org/10.1029/2010GL046304, 2011.
Bandis, S., Lumsden, A., and Barton, N.: Fundamentals of rock joint deformation, Int. J. Rock. Mech. Min., 20, 249–268, 1983.
Barton, N. and De Quadros, E.: Joint aperture and roughness in the prediction of flow and groutability of rock masses, Int. J. Rock. Mech. Min., 34, 252, https://doi.org/10.1016/S1365-1609(97)00081-6, 1997.
Barton, N., Bandis, S., and Bakhtar, K.: Strength, deformation and conductivity coupling of rock joints, Int. J. Rock. Mech. Min., 22, 121–140, 1985.
Bernard, M., Zamora, M., Géraud, Y., and Boudon, G.: Transport properties of pyroclastic rocks from Montagne Peée volcano (Martinique, Lesser Antilles), J. Geophys. Res., 112, B05205, https://doi.org/10.1029/2006JB004385, 2007.
Berryman, J. and Berge, P.: Critique of two explicit schemes for estimating elastic properties of multiphase composites, Mech. Mater., 22, 149–164, 1996.
Biot, M.: General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155–164, 1941.
Biot, M.: Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low-frequency range, J. Acoust. Soc. Am., 28, 168–178, 1956a.
Biot, M.: Theory of propagation of elastic waves in a fluid-saturated porous solid, II. Higher frequency range, J. Acoust. Soc. Am., 28, 179–191, 1956b.
Bjarnason, I. and Schmeling, H.: The lithosphere and asthenosphere of the Iceland hotspot from surface waves, Geophys. J. Int., 178, 394–418, 2009.
Brereton, N., Chroston, P., Evans, C., Hudson, J., and Whitmarsh, R. B.: Anelastic strain recovery and elastic properties of oceanic basaltic rocks, Proceedings of the Ocean Drilling Program, Scientific Results, 123, 469–491, 1992.
Casula, G. and Carcione, J.: Generalized mechanical model analogies of linear viscoelastic behavior, B. Geofis. Teor. Appl., 34, 235–256, 1992.
Cerney, B. and Carlson, R.: The effect of cracks on the seismic velocities of basalt from site 990, southeast Greenland margin, Proceedings of the Ocean Drilling Program, Scientific Results, 163, 29–35, 1999.
Chapman, M.: Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity, Geophys. Prospect., 51, 369–379, 2003.
Christensen, N. and Lewis, B.: Physical properties of Leg 65 basalts, Init. Repts. DSDP, 65, 693–696, 1983.
Christensen, N. and Salisbury, M.: Velocities, elastic moduli and weathering-age relations for Pacific layer 2 basalts, Earth Planet. Sc. Lett., 19, 461–470, 1973.
Christensen, N. and Salisbury, M.: Seismic velocities, densities and porosities of layer 2B and layer 2C basalts from Hole 504B, Init. Repts. DSDP, 83, 367–370, 1985.
Christensen, N., Fountain, D., Carlson, R., and Salisbury, M.: Velocities and elastic moduli of volcanic and sedimentary rocks recovered on DSDP Leg 25, Init. Repts. DSDP, 25, 357–360, 1974.
Christensen, N., Wilkens, R., Blair, S., and Carlson, R.: Seismic velocities, densities, and elastic constants of volcanic breccias and basalt from Deep Sea Drilling Project Leg 59, Init. Repts. DSDP, 59, 515–517, 1981a.
Christensen, N., Wilkens, R., Lundquist, S., and Schultz, J.: Seismic properties of volcanic rocks from Hess Rise, Init. Repts. DSDP, 62, 1005–1007, 1981b.
Christensen, N., Wepfer, W., and Baud, R.: Seismic properties of sheeted dikes from Hole 504B ODP Leg 111, Proceedings of the Ocean Drilling Program, Scientific Results, 3, 171–176, 1989.
Christiansen, L. and Iturrino, G.: Core-scale permeability of an actively venting, felsic-hosted hydrothermal system: the PACMANUS hydrothermal field, Proceedings of the Ocean Drilling Program, Scientific Results, 193, 1–19, 2004.
Cook, N.: Natural joints in rock: mechanical, hydraulic and seismic behaviour and properties under normal stress, Int. J. Rock Mech. Min., 29, 198–223, 1992.
Darbyshire, F., White, R., and Priestley, K.: Structure of the crust and uppermost mantle of Iceland from a combined seismic and gravity study, Earth Planet. Sc. Lett., 181, 409–428, 2000.
De Matteis, R., Vanorio, T., Zollo, A., Ciuffi, S., Fiordelisi, A., and Spinelli, E.: Three-dimensional tomography and rock properties of the Larderello-Travale geothermal area, Italy, Phys. Earth Planet. In., 168, 37–48, 2008.
Dvorkin, J., Prasad, M., Sakai, A., and Lavoie, D.: Elasticity of marine sediments: Rock physics modeling, Geophys. Res. Lett., 26, 1781–1784, 1999.
Eshelby, J.: The determination of the elastic field of an ellipsoidal inclusion, and related problems, P. Roy. Soc. A-Math. Phy., 241, 376–396, 1957.
Foulger, G. R., Du, Z., and Julian, B.: Icelandic-type crust, Geophys. J. Int., 155, 567–590, 2003.
Gassmann, F.: Über die elastizität poröser medien, Viertel. Naturforsch. Ges. Zürich, 96, 1–23, 1951.
Grab, M., Zürcher, B., Maurer, H., and Greenhalgh, S.: Seismic velocity structure of a fossilized Icelandic geothermal system: A combined laboratory and field study, Geothermics, 57, 84–94, 2015.
Gröschel-Becker, H., Villinger, H., Konyukhov, B., Iturrino, G., and Christensen, N.: Seismic velocities of diabase and basalt from Middle Valley sills and flows, northern Juan de Fuca Ridge, Proceedings of the Ocean Drilling Program, Scientific Results, 139, 597–609, 1994.
Gudmundsson, A.: Infrastructure and mechanics of volcanic systems in Iceland, J. Volcanol. Geoth. Res., 64, 1–22, 1995.
Gudmundsson, A., Fjeldskaar, I., and Brenner, S.: Propagation pathways and fluid transport of hydrofractures in jointed and layered rocks in geothermal fields, J. Volcanol. Geoth. Res., 116, 257–278, 2002.
Gunasekera, R., Foulger, G., and Julian, B.: Reservoir depletion at The Geysers geothermal area, California, shown by four-dimensional seismic tomography, J. Geophys. Res., 108, 2134–2144, 2003.
Gurevich, B., Brajanovski, M., Galvin, R., Müller, T., and Toms-Stewart, J.: P-wave dispersion and attenuation in fractured and porous reservoirs-poroelasticity approach, Geophys. Prospect., 57, 225–237, 2009.
Heap, M. J., Baud, P., Meredith, P. G., Vinciguerra, S., and Reuschlé, T.: The permeability and elastic moduli of tuff from Campi Flegrei, Italy: implications for ground deformation modelling, Solid Earth, 5, 25–44, https://doi.org/10.5194/se-5-25-2014, 2014.
Husen, S., Smith, R., and Waite, G.: Evidence for gas and magmatic sources beneath the Yellowstone volcanic field from seismic tomographic imaging, J. Volcanol. Geoth. Res., 131, 397–410, 2004.
Hyndman, R., Christensen, N., and Drury, M.: The physical properties of basalt core samples from Deep Sea Drilling Project Leg 78B hole 395A, Init. Repts. DSDP, 78, 801–810, 1984.
Iturrino, G., Christensen, N., Kirby, S., and Salisbury, M.: Seismic velocities and elastic properties of oceanic gabbroic rocks from hole 735B, Proceedings of the Ocean Drilling Program, Scientific Results, 118, 227–244, 1991.
Iturrino, G., Christensen, N., Becker, K., Boldreel, L., Harvey, P., and Pezard, P.: Physical properties and elastic constants of upper crustal rocks from core-log measurements in Hole 504B, Proceedings of the Ocean Drilling Program, Scientific Results, 137/140, 273–292, 1995.
Iturrino, G., Miller, D., and Christensen, N.: Velocity behavior of lower crustal and upper mantle rocks from a fast-spreading ridge at Hess Deep, Proceedings of the Ocean Drilling Program, Scientific Results, 147, 417–440, 1996.
Iturrino, G., Ketcham, R., Christiansen, L., and Boitnott, G.: Data report: permeability, resistivity, and X-ray computed tomography measurements in samples from the PACMANUS hydrothermal system, Proceedings of the Ocean Drilling Program, Scientific Results, 193, 1–14, 2004.
Jaeger, J., Cook, N., and Zimmerman, R.: Fundamentals of rock mechanics, 4th Edn., John Wiley & Sons, 2007.
Johnson, D.: Fluid permeability of oceanic basalts, Init. Repts. DSDP, 51–53, 1473–1477, 1980.
Johnston, J., Fryer, G., and Christensen, N.: Velocity-porosity relationships of basalts from the East Pacific Rise, Proceedings of the Ocean Drilling Program, Scientific Results, 142, 51–59, 1995.
Jousset, P., Haberland, C., Bauer, K., and Arnason, K.: Hengill geothermal volcanic complex (Iceland) characterized by intergrated geophysical observations, Geothermics, 40, 1–24, 2011.
Julian, B., Ross, A., Foulger, G., and Evans, G.: Three-dimensional seismic image of a geothermal reservoir: The Geysers, California, Geophys. Res. Lett., 23, 685–688, 1996.
Kachanov, M.: Effective elastic properties of cracked solids: critical review of some basic concepts, Appl. Mech. Rev., 45, 304–335, 1992.
Kachanov, M., Tsukrov, I., and Shafiro, B.: Effective moduli of solids with cavities of various shapes, Appl. Mech. Rev., 47, 151–174, 1994.
Karato, S.: Physical properties of basalts from the Galapagos, Leg 70, Init. Repts. DSDP, 70, 423–428, 1983a.
Karato, S.: Physical properties of basalts from Deep Sea Drilling Project Hole 504B, Costa Rica Rift, Init. Repts. DSDP, 69, 687–695, 1983b.
Katayama, I., Terada, T., Okazaki, K., and Tanikawa, W.: Episodic tremor and slow slip potentially linked to permeability contrasts at the Moho, Nat. Geosci., 5, 731–734, 2012.
Kuster, G. and Toksöz, M.: Velocity and Attenuation of Seismic Waves in Two-Phase Media: Part I. Theoretical Formulations, Geophysics, 39, 578–606, 1974.
Lee, C. and Farmer, I.: Fluid flow in discontinuous rocks, Chapman & Hall, 1993.
Liu, X., Greenhalgh, S., and Zhou, B.: Transient solution for poro-viscoacoustic wave propagation in double porosity media and its limitations, Geophy. J. Int., 178, 375–393, 2009.
Lubbe, R., Sothcott, J., Worthington, M., and McCann, C.: Laboratory estimates of normal and shear fracture compliance, Geophys. Prospect., 56, 239–247, 2008.
Ludwig, R., Iturrino, G., and Rona, P.: Velocity-porosity-relationship of sulfate, sulfide and basalt samples from the TAG hydrothermal mound, Proceedings of the Ocean Drilling Program, Scientific Results, 158, 313–327, 1998.
Masson, Y. and Pride, S.: Poroelastic finite difference modeling of seismic attenuation and dispersion due to mesoscopic-scale heterogeneity, J. Geophys. Res.-Sol. Ea., 112, B03204, https://doi.org/10.1029/2006JB004592, 2007.
Mavko, G., Mukerji, T., and Dvorkin, J.: The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media (2nd Edn.), Cambridge University Press, 2009.
Michibayashi, K., Hirose, T., Nozaka, T., Harigane, Y., Escartin, J., Delius, H., Linek, M., and Ohara, Y.: Hydration due to high-T brittle failure within in situ oceanic crust, 30 N Mid-Atlantic Ridge, Earth Planet. Sc. Lett., 275, 348–354, 2008.
Miller, D. and Christensen, N.: Seismic velocities of lower crustal and upper mantle rocks from the slow-spreading Mid-Atlantic Ridge, south of the Kane Transform Zone (MARK), Proceedings of the Ocean Drilling Program, Scientific Results, 153, 437–454, 1997.
Möllhoff, M., Bean, C., and Meredith, P.: Rock fracture compliance derived from time delays of elastic waves, Geophys. Prospect., 58, 1111–1122, 2010.
Mori, T. and Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall. Mater., 21, 571–574, 1973.
Morrow, C., Lockner, D., Hickman, S., Rusanov, M., and Röckel, T.: Effects of lithology and depth on the permeability of core samples from the Kola and KTB drill holes, J. Geophys. Res., 99, 7263–7274, 1994.
Müller, T. M., Gurevich, B., and Lebedev, M.: Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks – A review, Geophysics, 75, 147–164, 2010.
Mura, T.: Micromechanics of defects in solids, Martinus Nijhoff, 1987.
Nakagawa, S.: Low-frequency ( < 100 Hz) dynamic fracture compliance measurement in the laboratory, 47th US Rock Mechanics/Geomechanics Symposium, ARMA, San Francisco, CA, USA, 23–26 June 2013, 2013-343, 2013.
Norris, A.: Low-frequency dispersion and attenuation in partially saturated rocks, J. Acoust. Soc. Am., 94, 359–370, 1993.
Nur, A. and Simmons, G.: The effect of saturation on velocity in low porosity rocks, Earth Planet. Sc. Lett., 7, 183–193, 1969.
Pan, H. and Weng, G.: Elastic moduli of heterogeneous solids with ellipsoidal inclusions and elliptic cracks, Acta Mech., 110, 73–94, 1995.
Pride, S., Berryman, J., and Harris, J.: Seismic attenuation due to wave-induced flow, J. Geophys. Res., 109, B01201, https://doi.org/10.1029/2003JB002639, 2004.
Pyrak-Nolte, L. J., Myer, L. R., and Cook, N. G. W.: Transmission of seismic waves across single natural fractures, J. Geophys. Res.-Sol. Ea., 95, 8617–8638, 1990.
Quintal, B., Steeb, H., Frehner, M., and Schmalholz, S.: Quasi-static finite element modeling of seismic attenuation and dispersion due to wave-induced fluid flow in poroelastic media, J. Geophys. Res., 116, B01201, https://doi.org/10.1029/2010JB007475, 2011.
Quintal, B., Jänicke, R., Rubino, J., Steeb, H., and Holliger, K.: Sensitivity of S-wave attenuation to the connectivity of fractures in fluid-saturated rocks, Geophysics, 79, 15–24, 2014.
Roy, S. and Pyrak-Nolte, L.: Interface waves propagating along tensile fractures in dolomite, Geophys. Res. Lett., 22, 2773–2776, 1995.
Rubino, J., Ravazzoli, C., and Santos, J.: Equivalent viscoelastic solids for heterogeneous fluid-saturated porous rocks, Geophysics, 74, 1–13, 2008.
Rust, A. and Cashman, K.: Permeability of vesicular silicic magma: inertial and hysteresis effects, Earth Planet. Sc. Lett., 228, 93–107, 2004.
Sanders, C., Ponke, S., Nixon, L., and Schwartz, E.: Seismiological evidence for magmatic and hydrothermal structure in Long Valley caldera from local earthquake attenuation and velocity tomography, J. Geophys. Res.-Sol. Ea., 100, 8311–8326, 1995.
Tryggvason, A., Rögnvaldsson, S., and Flóvenz, O.: Three-dimensional imaging of the P- and S-wave velocity structure and earthquake locations beneath southwest Iceland, Geophys. J. Int., 151, 848–866, 2002.
Vanorio, T., Prasad, M., Patella, D., and Nur, A.: Ultrasonic velocity measurements in volcanic rocks: correlation with microtexture, Geophy. J. Int., 149, 22–36, 2002.
Vanorio, T., Virieux, J., Capuano, P., and Russo, G.: Three-Dimensional seismic tomography from P wave and S wave microearthquake travel times and rock physics characterization of the Campi Flegrei Caldera, J. Geophys. Res.-Sol. Ea., 110, B03201, https://doi.org/10.1029/2004JB003102, 2005.
Vinciguerra, S., Trovato, C., Meredith, P., and Benson, P.: Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts, Int. J. Rock Mech. Min., 42, 900–910, 2005.
Vinciguerra, S., Del Gaudio, P., Mariucci, M. T., Marra, F., Meredith, P., Montone, P., Pierdominici, S., and Scarlato, P.: Physical properties of tuffs from a scientific borehole at Alban hills volcanic district (central Italy), Tectonophysics, 471, 161–169, 2009.
Violay, M., Pezard, P., Ildefonse, B., Belghoul, A., and Laverne, C.: Petrophysical properties of the root zone of sheeted dikes in the ocean crust: A case study from Hole ODP/IODP 1256D, Eastern Equatorial Pacific, Tectonophysics, 493, 139–152, 2010.
Wenzlau, F., Altmann, J., and Müller, T.: Anisotropic dispersion and attenuation due to wave-induced fluid flow: Quasi-static finite element modeling in poroelastic solids, J. Geophys. Res.-Sol. Ea., 115, B07204, https://doi.org/10.1029/2009JB006644, 2010.
Wilkens, R., Christensen, N. I., and Slater, L.: High-pressure seismic studies of Leg 69 and 70 basalts, Init. Repts. DSDP, 69, 683–686, 1983.
Winkler, K.: Dispersion analysis of velocity and attenuation in Berea sandstone, J. Geophys. Res.-Sol. Ea., 90, 6793–6800, 1985.
Witherspoon, P. A., Wang, J., Iwai, K., and Gale, J.: Validity of cubic law for fluid flow in a deformable rock fracture, Water Resour. Res., 16, 1016–1024, 1980.
Zimmerman, R. and Bodvarsson, G.: Hydraulic conductivity of rock fractures, Transport Porous Med., 23, 1–30, 1996.
Short summary
Hot fluids and hydraulically conductive rock formations are essential for the accessibility of geothermal resources. We use numerical modeling techniques to investigate how seismic waves change their shape in presence of these factors. We demonstrate how to parameterize such models depending on the local geology and as a function of depth. Finally, we show how the attenuation, i.e. the energy loss of the wave, can be indicative for permeable rock fractures saturated with a fluid of specific type.
Hot fluids and hydraulically conductive rock formations are essential for the accessibility of...