Articles | Volume 9, issue 5
https://doi.org/10.5194/se-9-1123-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-9-1123-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Constraints on Alpine Fault (New Zealand) mylonitization temperatures and the geothermal gradient from Ti-in-quartz thermobarometry
Department of Earth and Atmospheric Science, City College New York, New York, 10031, USA
Virginia G. Toy
Department of Geology, University of Otago, Dunedin, New Zealand
David J. Prior
Department of Geology, University of Otago, Dunedin, New Zealand
Timothy A. Little
School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand
Ashfaq Khan
Department of Earth and Atmospheric Science, City College New York, New York, 10031, USA
Colin MacRae
CSIRO Mineral Resources, Microbeam Laboratory, Private Bag 10, 3169 Clayton South, Victoria, Australia
Related authors
S. Kidder, J.-P. Avouac, and Y.-C. Chan
Solid Earth, 4, 1–21, https://doi.org/10.5194/se-4-1-2013, https://doi.org/10.5194/se-4-1-2013, 2013
Rupert Hochleitner, Ian E. Grey, Anthony R. Kampf, Stephanie Boer, Colin M. MacRae, William G. Mumme, and Nicholas C. Wilson
Eur. J. Mineral., 36, 541–554, https://doi.org/10.5194/ejm-36-541-2024, https://doi.org/10.5194/ejm-36-541-2024, 2024
Short summary
Short summary
The paper describes the characterisation of fluor-rewitzerite, a new mineral species belonging to the paulkerrite group. The crystal structure of fluor-rewitzerite has been refined using microfocus synchrotron diffraction data, which allowed 25 of the possible 30 H atoms to be located, thus establishing key features of the H bonding. Crystallochemical trends are reviewed for seven recently characterised monoclinic paulkerrite-group minerals.
Qinyu Wang, Sheng Fan, Daniel H. Richards, Rachel Worthington, David J. Prior, and Chao Qi
EGUsphere, https://doi.org/10.5194/egusphere-2024-331, https://doi.org/10.5194/egusphere-2024-331, 2024
Short summary
Short summary
To examine if the single cluster fabric in natural ice is formed due to high strains, we deformed synthetic ice to large strains using a unique technique. A shear strain of 6.2 was achieved in laboratory. We explored how the two mechanisms, which control microstructure and fabric evolution, evolve with strain, and established a fabric development model. These results will help understanding the fabrics in natural ice and further comprehending glacier and ice sheet flow dynamics.
Ian E. Grey, Stephanie Boer, Colin M. MacRae, Nicholas C. Wilson, William G. Mumme, and Ferdinando Bosi
Eur. J. Mineral., 35, 909–919, https://doi.org/10.5194/ejm-35-909-2023, https://doi.org/10.5194/ejm-35-909-2023, 2023
Short summary
Short summary
The paper describes the formal establishment of the paulkerrite group of minerals and its nomenclature. It includes the application of a site-merging procedure, coupled with a site-total-charge analysis, to obtain unambiguous end-member formulae. Application of the procedure has resulted in the revision of the end-member formulae for several of the group members.
Christian Rewitzer, Rupert Hochleitner, Ian E. Grey, Anthony R. Kampf, Stephanie Boer, and Colin M. MacRae
Eur. J. Mineral., 35, 805–812, https://doi.org/10.5194/ejm-35-805-2023, https://doi.org/10.5194/ejm-35-805-2023, 2023
Short summary
Short summary
Regerite is the first new mineral species to be described from the Kreuzberg pegmatite, Pleystein, in the Oberpfalz, Bavaria. It has been characterised using electron microprobe analysis, Raman spectroscopy, optical measurements and a synchrotron-based single-crystal structure refinement. The structure type for regerite has not been previously reported.
Sheng Fan, David J. Prior, Brent Pooley, Hamish Bowman, Lucy Davidson, David Wallis, Sandra Piazolo, Chao Qi, David L. Goldsby, and Travis F. Hager
The Cryosphere, 17, 3443–3459, https://doi.org/10.5194/tc-17-3443-2023, https://doi.org/10.5194/tc-17-3443-2023, 2023
Short summary
Short summary
The microstructure of ice controls the behaviour of polar ice flow. Grain growth can modify the microstructure of ice; however, its processes and kinetics are poorly understood. We conduct grain-growth experiments on synthetic and natural ice samples at 0 °C. Microstructural data show synthetic ice grows continuously with time. In contrast, natural ice does not grow within a month. The inhibition of grain growth in natural ice is largely contributed by bubble pinning at ice grain boundaries.
Ian E. Grey, Erich Keck, Anthony R. Kampf, Colin M. MacRae, Robert W. Gable, William G. Mumme, Nicholas C. Wilson, Alexander M. Glenn, and Cameron Davidson
Eur. J. Mineral., 35, 635–643, https://doi.org/10.5194/ejm-35-635-2023, https://doi.org/10.5194/ejm-35-635-2023, 2023
Short summary
Short summary
Hochleitnerite is a new member of the paulkerrite group of minerals. Its crystal structure, chemical analyses and Raman spectroscopy are reported, and its crystallochemical properties are discussed in relation to other group members.
Ian E. Grey, Rupert Hochleitner, Anthony R. Kampf, Stephanie Boer, Colin M. MacRae, John D. Cashion, Christian Rewitzer, and William G. Mumme
Eur. J. Mineral., 35, 295–304, https://doi.org/10.5194/ejm-35-295-2023, https://doi.org/10.5194/ejm-35-295-2023, 2023
Short summary
Short summary
Manganrockbridgeite, Mn2+2Fe3+3(PO4)3(OH)4(H2O), a new member of the rockbridgeite group, has been characterised using electron microprobe analyses, Mössbauer spectroscopy, optical properties and single-crystal X-ray diffraction. Whereas other rockbridgeite-group minerals have orthorhombic symmetry with a statistical distribution of 50%Fe3+/50% vacancies in M3-site octahedra, monoclinic manganrockbridgeite has full ordering of Fe3+ and vacancies in alternate M3 sites along the 5.2 Å axis.
Ian E. Grey, Rupert Hochleitner, Christian Rewitzer, Anthony R. Kampf, Colin M. MacRae, Robert W. Gable, William G. Mumme, Erich Keck, and Cameron Davidson
Eur. J. Mineral., 35, 189–197, https://doi.org/10.5194/ejm-35-189-2023, https://doi.org/10.5194/ejm-35-189-2023, 2023
Short summary
Short summary
Pleysteinite has been approved as a new mineral species, and we describe here the characterisation of the mineral and its relationship to related minerals benyacarite, paulkerrite and mantienneite. The characterisation includes the determination and refinement of the crystal structure, electron microprobe analyses, optical properties and interpretation of its Raman spectrum.
Rupert Hochleitner, Christian Rewitzer, Ian E. Grey, William G. Mumme, Colin M. MacRae, Anthony R. Kampf, Erich Keck, Robert W. Gable, and Alexander M. Glenn
Eur. J. Mineral., 35, 95–103, https://doi.org/10.5194/ejm-35-95-2023, https://doi.org/10.5194/ejm-35-95-2023, 2023
Short summary
Short summary
The paper gives a characterisation of the new mineral species, whiteite-(CaMnFe), which has recently been approved as a new mineral (proposal IMA2022-077). The study included a single-crystal structure refinement that, when combined with electron microprobe analyses, confirmed that the mineral was a new member of the whiteite subgroup of the jahnsite group of minerals. Relationships between the crystal structure and the unit-cell parameters for the whiteite-subgroup minerals are discussed.
Erich Keck, Ian E. Grey, Colin M. MacRae, Stephanie Boer, Rupert Hochleitner, Christian Rewitzer, William G. Mumme, A. Matt Glenn, and Cameron Davidson
Eur. J. Mineral., 34, 439–450, https://doi.org/10.5194/ejm-34-439-2022, https://doi.org/10.5194/ejm-34-439-2022, 2022
Short summary
Short summary
First occurrences of the secondary phosphate minerals kenngottite, Mn32+Fe43+(PO4)4(OH)6(H2O)2; allanpringite, Fe33+(PO4)2(OH)3·5H2O; iangreyite, Ca2Al7(PO4)2(PO3OH)2(OH,F)15·8H2O; and nizamoffite, MnZn2(PO4)2(H2O)4, from the Hagendorf Süd pegmatite are reported, with characterisation of their crystal chemistry and phase associations.
Franz Lutz, David J. Prior, Holly Still, M. Hamish Bowman, Bia Boucinhas, Lisa Craw, Sheng Fan, Daeyeong Kim, Robert Mulvaney, Rilee E. Thomas, and Christina L. Hulbe
The Cryosphere, 16, 3313–3329, https://doi.org/10.5194/tc-16-3313-2022, https://doi.org/10.5194/tc-16-3313-2022, 2022
Short summary
Short summary
Ice crystal alignment in the sheared margins of fast-flowing polar ice is important as it may control the ice sheet flow rate, from land to the ocean. Sampling shear margins is difficult because of logistical and safety considerations. We show that crystal alignments in a glacier shear margin in Antarctica can be measured using sound waves. Results from a seismic experiment on the 50 m scale and from ultrasonic experiments on the decimetre scale match ice crystal measurements from an ice core.
Peter Elliott, Ian E. Grey, William G. Mumme, Colin M. MacRae, and Anthony R. Kampf
Eur. J. Mineral., 34, 375–383, https://doi.org/10.5194/ejm-34-375-2022, https://doi.org/10.5194/ejm-34-375-2022, 2022
Short summary
Short summary
This paper describes the characterisation of a new mineral from a South Australian phosphate quarry. The characterisation included chemical analyses, infrared spectroscopy, and a determination and refinement of the crystal structure. The results showed that the mineral has a unique crystal chemistry, but it is closely related to the well-known phosphate mineral crandallite.
Maria-Gema Llorens, Albert Griera, Paul D. Bons, Ilka Weikusat, David J. Prior, Enrique Gomez-Rivas, Tamara de Riese, Ivone Jimenez-Munt, Daniel García-Castellanos, and Ricardo A. Lebensohn
The Cryosphere, 16, 2009–2024, https://doi.org/10.5194/tc-16-2009-2022, https://doi.org/10.5194/tc-16-2009-2022, 2022
Short summary
Short summary
Polar ice is formed by ice crystals, which form fabrics that are utilised to interpret how ice sheets flow. It is unclear whether fabrics result from the current flow regime or if they are inherited. To understand the extent to which ice crystals can be reoriented when ice flow conditions change, we simulate and evaluate multi-stage ice flow scenarios according to natural cases. We find that second deformation regimes normally overprint inherited fabrics, with a range of transitional fabrics.
Ian Edward Grey, Peter Elliott, William Gus Mumme, Colin M. MacRae, Anthony R. Kampf, and Stuart J. Mills
Eur. J. Mineral., 34, 215–221, https://doi.org/10.5194/ejm-34-215-2022, https://doi.org/10.5194/ejm-34-215-2022, 2022
Short summary
Short summary
A reinvestigation of angastonite from the type locality has shown that it is a mixture of crystalline phases and an amorphous phase, with the published formula corresponding to the amorphous phase. A redefinition proposal for angastonite as an amorphous mineral was approved by the IMA CNMNC. Our study showed how the amorphous phase formed and how it progressively recrystallises as new crandallite-related minerals.
Hamed Amiri, Francesco Cappuccio, Mai-Linh Doan, Marianne Conin, and Virginia Toy
Solid Earth Discuss., https://doi.org/10.5194/se-2021-150, https://doi.org/10.5194/se-2021-150, 2022
Publication in SE not foreseen
Short summary
Short summary
In March 2011, the Mw ~9 Tohoku-oki earthquake, one of the largest seismic events ever recorded, occurred across a megathrust fault in the west of the Japan trench. This devastating earthquake stressed the need for more detailed studies on the fault zone behavior and the main causes of this event.
Morgan E. Monz, Peter J. Hudleston, David J. Prior, Zachary Michels, Sheng Fan, Marianne Negrini, Pat J. Langhorne, and Chao Qi
The Cryosphere, 15, 303–324, https://doi.org/10.5194/tc-15-303-2021, https://doi.org/10.5194/tc-15-303-2021, 2021
Short summary
Short summary
We present full crystallographic orientations of warm, coarse-grained ice deformed in a shear setting, enabling better characterization of how crystals in glacial ice preferentially align as ice flows. A commonly noted c-axis pattern, with several favored orientations, may result from bias due to overcounting large crystals with complex 3D shapes. A new sample preparation method effectively increases the sample size and reduces bias, resulting in a simpler pattern consistent with the ice flow.
Martina Kirilova, Virginia Toy, Katrina Sauer, François Renard, Klaus Gessner, Richard Wirth, Xianghui Xiao, and Risa Matsumura
Solid Earth, 11, 2425–2438, https://doi.org/10.5194/se-11-2425-2020, https://doi.org/10.5194/se-11-2425-2020, 2020
Short summary
Short summary
Processes associated with open pores can change the physical properties of rocks and cause earthquakes. In borehole samples from the Alpine Fault zone, we show that many pores in these rocks were filled by weak materials that can slide easily. The amount of open spaces was thus reduced, and fluids circulating within them built up high pressures. Both weak materials and high pressures within pores reduce the rock strength; thus the state of pores here can trigger the next Alpine Fault earthquake.
Sheng Fan, Travis F. Hager, David J. Prior, Andrew J. Cross, David L. Goldsby, Chao Qi, Marianne Negrini, and John Wheeler
The Cryosphere, 14, 3875–3905, https://doi.org/10.5194/tc-14-3875-2020, https://doi.org/10.5194/tc-14-3875-2020, 2020
Short summary
Short summary
We performed uniaxial compression experiments on synthetic ice samples. We report ice microstructural evolution at –20 and –30 °C that has never been reported before. Microstructural data show the opening angle of c-axis cones decreases with increasing strain or with decreasing temperature, suggesting a more active grain rotation. CPO intensity weakens with temperature because CPO of small grains is weaker, and it can be explained by grain boundary sliding or nucleation with random orientations.
Tomas Husdal, Ian E. Grey, Henrik Friis, Fabrice Dal Bo, Anthony R. Kampf, Colin M. MacRae, W. Gus Mumme, Ole-Thorstein Ljøstad, and Finlay Shanks
Eur. J. Mineral., 32, 89–98, https://doi.org/10.5194/ejm-32-89-2020, https://doi.org/10.5194/ejm-32-89-2020, 2020
Short summary
Short summary
This paper describes the characterization of a new mineral from the Oumlil mine in the Bou Azzer cobalt mining district in Morocco. This mining district is one of the world's largest producers of the important element cobalt. This study on the new mineral halilsarpite provides useful information on the results of chemical weathering processes on the primary arsenide minerals at the mine.
Bernhard Schuck, Anja M. Schleicher, Christoph Janssen, Virginia G. Toy, and Georg Dresen
Solid Earth, 11, 95–124, https://doi.org/10.5194/se-11-95-2020, https://doi.org/10.5194/se-11-95-2020, 2020
Chao Qi, David J. Prior, Lisa Craw, Sheng Fan, Maria-Gema Llorens, Albert Griera, Marianne Negrini, Paul D. Bons, and David L. Goldsby
The Cryosphere, 13, 351–371, https://doi.org/10.5194/tc-13-351-2019, https://doi.org/10.5194/tc-13-351-2019, 2019
Short summary
Short summary
Ice deformed in nature develops crystallographic preferred orientations, CPOs, which induce an anisotropy in ice viscosity. Shear experiments of ice revealed a transition in CPO with changing temperature/strain, which is due to the change of dominant CPO-formation mechanism: strain-induced grain boundary migration dominates at higher temperatures and lower strains, while lattice rotation dominates at other conditions. Understanding these mechanisms aids the interpretation of CPOs in natural ice.
Jack N. Williams, Virginia G. Toy, Cécile Massiot, David D. McNamara, Steven A. F. Smith, and Steven Mills
Solid Earth, 9, 469–489, https://doi.org/10.5194/se-9-469-2018, https://doi.org/10.5194/se-9-469-2018, 2018
Short summary
Short summary
We present new data on the orientation of fractures, their fill, and their density around the Alpine Fault, a plate boundary fault on the South Island of New Zealand. Fractures < 160 m of the fault are filled and show a range of orientations, whilst fractures at greater distances (< 500 m) are open and parallel to the rock's mechanical weakness. We interpret the latter fracture set to reflect near-surface processes, whilst the latter are potentially linked to deep-seated Alpine Fault seismicity.
Martina Kirilova, Virginia Toy, Jeremy S. Rooney, Carolina Giorgetti, Keith C. Gordon, Cristiano Collettini, and Toru Takeshita
Solid Earth, 9, 223–231, https://doi.org/10.5194/se-9-223-2018, https://doi.org/10.5194/se-9-223-2018, 2018
Short summary
Short summary
Graphite crystallinity “irreversibly” increases with temperature and it has been calibrated as a thermometer recording peak temperatures experienced by a rock. To examine the possibility of mechanical modifications of graphite structure and the impacts on graphite thermometry we performed deformation experiments. Raman spectroscopy demonstrates a reduction in crystallinity due to mechanical reworking in the brittle field. This finding clearly compromises the validity of the graphite thermometry.
Jack N. Williams, Joseph J. Bevitt, and Virginia G. Toy
Sci. Dril., 22, 35–42, https://doi.org/10.5194/sd-22-35-2017, https://doi.org/10.5194/sd-22-35-2017, 2017
Short summary
Short summary
We compare images of drillcore from the Alpine Fault in New Zealand that were collected using X-ray computed tomography (CT) and neutron tomography (NT). Both techniques provide 3-D images of the core's internal structure, which would not be possible through visual analysis alone. We find that CT scans are more beneficial, as they can image a wider range of rock types, and this scanning technique is more practical. Nevertheless, NT provides complementary scans over limited intervals of core.
Matthew J. Vaughan, Kasper van Wijk, David J. Prior, and M. Hamish Bowman
The Cryosphere, 10, 2821–2829, https://doi.org/10.5194/tc-10-2821-2016, https://doi.org/10.5194/tc-10-2821-2016, 2016
Short summary
Short summary
The physical properties of ice are of interest in the study of the dynamics of sea ice, glaciers, and ice sheets. We used resonant ultrasound spectroscopy to estimate the effects of temperature on the elastic and anelastic characteristics of polycrystalline ice, which control the propagation of sound waves. This information helps calibrate seismic data, in order to determine regional-scale ice properties, improving our ability to predict ice sheet behaviour in response to climate change.
J. Shervais, J. Evans, V. Toy, J. Kirkpatrick, A. Clarke, and J. Eichelberger
Sci. Dril., 18, 19–33, https://doi.org/10.5194/sd-18-19-2014, https://doi.org/10.5194/sd-18-19-2014, 2014
S. Kidder, J.-P. Avouac, and Y.-C. Chan
Solid Earth, 4, 1–21, https://doi.org/10.5194/se-4-1-2013, https://doi.org/10.5194/se-4-1-2013, 2013
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Structural geology
Understanding the stress field at the lateral termination of a thrust fold using generic geomechanical models and clustering methods
Localized shear and distributed strain accumulation as competing shear accommodation mechanisms in crustal shear zones: constraining their dictating factors
Influence of water on crystallographic preferred orientation patterns in a naturally deformed quartzite
Geomorphic expressions of active rifting reflect the role of structural inheritance: a new model for the evolution of the Shanxi Rift, northern China
Driven magmatism and crustal thinning of coastal southern China in response to subduction
Selection and characterization of the target fault for fluid-induced activation and earthquake rupture experiments
Reconciling post-orogenic faulting, paleostress evolution and structural inheritance in the seismogenic Northern Apennines (Italy): Insights from the Monti Martani Fault System
Naturally fractured reservoir characterisation in heterogeneous sandstones: insight for uranium in situ recovery (Imouraren, Niger)
Earthquake swarms frozen in an exhumed hydrothermal system (Bolfin Fault Zone, Chile)
Multiscalar 3D temporal structural characterisation of Smøla island, mid-Norwegian passive margin: an analogue for unravelling the tectonic history of offshore basement highs
Impact of faults on the remote stress state
Subduction plate interface shear stress associated with rapid subduction at deep slow earthquake depths: example from the Sanbagawa belt, southwestern Japan
Multiple phase rifting and subsequent inversion in the West Netherlands Basin: implications for geothermal reservoir characterization
Analogue modelling of basin inversion: implications for the Araripe Basin (Brazil)
Natural fracture patterns at Swift Reservoir anticline, NW Montana: the influence of structural position and lithology from multiple observation scales
Rapid hydration and weakening of anhydrite under stress: implications for natural hydration in the Earth's crust and mantle
Analogue experiments on releasing and restraining bends and their application to the study of the Barents Shear Margin
Structural framework and timing of the Pahtohavare Cu ± Au deposits, Kiruna mining district, Sweden
Does the syn- versus post-rift thickness ratio have an impact on the inversion-related structural style?
Inversion of accommodation zones in salt-bearing extensional systems: insights from analog modeling
Structural control of inherited salt structures during inversion of a domino basement-fault system from an analogue modelling approach
Kinematics and time-resolved evolution of the main thrust-sense shear zone in the Eo-Alpine orogenic wedge (the Vinschgau Shear Zone, eastern Alps)
Role of inheritance during tectonic inversion of a rift system in basement-involved to salt-decoupled transition: analogue modelling and application to the Pyrenean–Biscay system
Water release and homogenization by dynamic recrystallization of quartz
Hydrothermal activity of the Lake Abhe geothermal field (Djibouti): Structural controls and paths for further exploration
Time-dependent frictional properties of granular materials used in analogue modelling: implications for mimicking fault healing during reactivation and inversion
Large grain-size-dependent rheology contrasts of halite at low differential stress: evidence from microstructural study of naturally deformed gneissic Zechstein 2 rock salt (Kristallbrockensalz) from the northern Netherlands
Analogue modelling of the inversion of multiple extensional basins in foreland fold-and-thrust belts
A contribution to the quantification of crustal shortening and kinematics of deformation across the Western Andes ( ∼ 20–22° S)
Rift thermal inheritance in the SW Alps (France): insights from RSCM thermometry and 1D thermal numerical modelling
The Luangwa Rift Active Fault Database and fault reactivation along the southwestern branch of the East African Rift
Clustering has a meaning: optimization of angular similarity to detect 3D geometric anomalies in geological terrains
Shear zone evolution and the path of earthquake rupture
Mechanical compaction mechanisms in the input sediments of the Sumatra subduction complex – insights from microstructural analysis of cores from IODP Expedition 362
Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods
Multiscale lineament analysis and permeability heterogeneity of fractured crystalline basement blocks
Structural characterization and K–Ar illite dating of reactivated, complex and heterogeneous fault zones: lessons from the Zuccale Fault, Northern Apennines
How do differences in interpreting seismic images affect estimates of geological slip rates?
Progressive veining during peridotite carbonation: insights from listvenites in Hole BT1B, Samail ophiolite (Oman)
Tectonic evolution of the Indio Hills segment of the San Andreas fault in southern California, southwestern USA
Structural diagenesis in ultra-deep tight sandstones in the Kuqa Depression, Tarim Basin, China
Variscan structures and their control on latest to post-Variscan basin architecture: insights from the westernmost Bohemian Massif and southeastern Germany
Multi-disciplinary characterizations of the BedrettoLab – a new underground geoscience research facility
Biotite supports long-range diffusive transport in dissolution–precipitation creep in halite through small porosity fluctuations
De-risking the energy transition by quantifying the uncertainties in fault stability
Virtual field trip to the Esla Nappe (Cantabrian Zone, NW Spain): delivering traditional geological mapping skills remotely using real data
Marine forearc structure of eastern Java and its role in the 1994 Java tsunami earthquake
Roughness of fracture surfaces in numerical models and laboratory experiments
Impact of basement thrust faults on low-angle normal faults and rift basin evolution: a case study in the Enping sag, Pearl River Basin
Evidence for and significance of the Late Cretaceous Asteroussia event in the Gondwanan Ios basement terranes
Anthony Adwan, Bertrand Maillot, Pauline Souloumiac, Christophe Barnes, Christophe Nussbaum, Meinert Rahn, and Thomas Van Stiphout
Solid Earth, 15, 1445–1463, https://doi.org/10.5194/se-15-1445-2024, https://doi.org/10.5194/se-15-1445-2024, 2024
Short summary
Short summary
We use computer simulations to study how stress is distributed in large-scale geological models, focusing on how fault lines behave under pressure. By running many 2D and 3D simulations with varying conditions, we discover patterns in how faults form and interact. Our findings reveal that even small changes in conditions can lead to different stress outcomes. This research helps us better understand earthquake mechanics and could improve predictions of fault behavior in real-world scenarios.
Pramit Chatterjee, Arnab Roy, and Nibir Mandal
Solid Earth, 15, 1281–1301, https://doi.org/10.5194/se-15-1281-2024, https://doi.org/10.5194/se-15-1281-2024, 2024
Short summary
Short summary
Understanding strain accumulation processes in shear zones is essential for explaining failure mechanisms at great crustal depths. This study explores the rheological and kinematic factors determining the varying modes of shear accommodation in natural shear zones. Numerical simulations suggest that an interplay of parameters – initial viscosity, bulk shear rate, and internal cohesion – governs the dominance of one accommodation mechanism over another.
Jeffrey M. Rahl, Brendan Moehringer, Kenneth S. Befus, and John S. Singleton
Solid Earth, 15, 1233–1240, https://doi.org/10.5194/se-15-1233-2024, https://doi.org/10.5194/se-15-1233-2024, 2024
Short summary
Short summary
At the high temperatures present in the deeper crust, minerals such as quartz can flow much like silly putty. The detailed mechanisms of how atoms are reorganized depends upon several factors, such as the temperature and the rate of which the mineral changes shape. We present observations from a naturally deformed rock showing that the amount of water present also influences the type of deformation in quartz, with implications for geological interpretations.
Malte Froemchen, Ken J. W. McCaffrey, Mark B. Allen, Jeroen van Hunen, Thomas B. Phillips, and Yueren Xu
Solid Earth, 15, 1203–1231, https://doi.org/10.5194/se-15-1203-2024, https://doi.org/10.5194/se-15-1203-2024, 2024
Short summary
Short summary
The Shanxi Rift is a young, active rift in northern China that formed atop a Proterozoic orogen. The impact of these structures on active rift faults is poorly understood. Here, we quantify the landscape response to active faulting and compare it with published maps of inherited structures. We find that inherited structures played an important role in the segmentation of the Shanxi Rift and in the development of rift interaction zones, which are the most active regions in the Shanxi Rift.
Jinbao Su, Wenbin Zhu, and Guangwei Li
Solid Earth, 15, 1133–1141, https://doi.org/10.5194/se-15-1133-2024, https://doi.org/10.5194/se-15-1133-2024, 2024
Short summary
Short summary
The late Mesozoic igneous rocks in the South China Block exhibit flare-ups and lulls, which form in compressional or extensional backgrounds. The ascending of magma forms a mush-like head and decreases crustal thickness. The presence of faults and pre-existing magmas will accelerate emplacement of underplating magma. The magmatism at different times may be formed under similar subduction conditions, and the boundary compression forces will delay magma ascent.
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024, https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary
Short summary
We detail the selection and characterization of a fault zone for earthquake experiments in the Fault Activation and Earthquake Ruptures (FEAR) project at the Bedretto Lab. FEAR, which studies earthquake processes, overcame data collection challenges near faults. The fault zone in Rotondo granite was selected based on geometry, monitorability, and hydro-mechanical properties. Remote sensing, borehole logging, and geological mapping were used to create a 3D model for precise monitoring.
Riccardo Asti, Selina Bonini, Giulio Viola, and Gianluca Vignaroli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2319, https://doi.org/10.5194/egusphere-2024-2319, 2024
Short summary
Short summary
This study addresses the tectonic evolution of the seismogenic Monti Martani Fault System (Northern Apennines, Italy). By applying a field-based structural geology approach, we reconstruct the evolution of the stress field and we challenge the current interpretation of the fault system both in terms of geometry and state of activity. We stress that the peculiar behavior of this system during post-orogenic extension is still significantly influenced by the pre-orogenic structural template.
Maxime Jamet, Gregory Ballas, Roger Soliva, Olivier Gerbeaud, Thierry Lefebvre, Christine Leredde, and Didier Loggia
Solid Earth, 15, 895–920, https://doi.org/10.5194/se-15-895-2024, https://doi.org/10.5194/se-15-895-2024, 2024
Short summary
Short summary
This study characterizes the Tchirezrine II sandstone reservoir in northern Niger. Crucial for potential uranium in situ recovery (ISR), our multifaceted approach reveals (i) a network of homogeneously distributed orthogonal structures, (ii) the impact of clustered E–W fault structures on anisotropic fluid flow, and (iii) local changes in the matrix behaviour of the reservoir as a function of the density and nature of the deformation structure.
Simone Masoch, Giorgio Pennacchioni, Michele Fondriest, Rodrigo Gomila, Piero Poli, José Cembrano, and Giulio Di Toro
EGUsphere, https://doi.org/10.22541/essoar.171995191.13613873/v1, https://doi.org/10.22541/essoar.171995191.13613873/v1, 2024
Short summary
Short summary
We investigate an exhumed hydrothermal system in the Atacama Desert (Chile) to understand how earthquake swarms form. Wall-rocks near fault-veins experienced high-stress pulses, and fault-veins underwent cyclic crack opening and shearing. These findings suggest ancient earthquake swarm activity, from dynamic crack propagation to repeated crack opening and shearing. This system represents a unique geological record of earthquake swarms, providing insight into their initiation and evolution.
Matthew S. Hodge, Guri Venvik, Jochen Knies, Roelant van der Lelij, Jasmin Schönenberger, Øystein Nordgulen, Marco Brönner, Aziz Nasuti, and Giulio Viola
Solid Earth, 15, 589–615, https://doi.org/10.5194/se-15-589-2024, https://doi.org/10.5194/se-15-589-2024, 2024
Short summary
Short summary
Smøla island, in the mid-Norwegian margin, has complex fracture and fault patterns resulting from tectonic activity. This study uses a multiple-method approach to unravel Smøla's tectonic history. We found five different phases of deformation related to various fracture geometries and minerals dating back hundreds of millions of years. 3D models of these features visualise these structures in space. This approach may help us to understand offshore oil and gas reservoirs hosted in the basement.
Karsten Reiter, Oliver Heidbach, and Moritz O. Ziegler
Solid Earth, 15, 305–327, https://doi.org/10.5194/se-15-305-2024, https://doi.org/10.5194/se-15-305-2024, 2024
Short summary
Short summary
It is generally assumed that faults have an influence on the stress state of the Earth’s crust. It is questionable whether this influence is still present far away from a fault. Simple numerical models were used to investigate the extent of the influence of faults on the stress state. Several models with different fault representations were investigated. The stress fluctuations further away from the fault (> 1 km) are very small.
Yukinojo Koyama, Simon R. Wallis, and Takayoshi Nagaya
Solid Earth, 15, 143–166, https://doi.org/10.5194/se-15-143-2024, https://doi.org/10.5194/se-15-143-2024, 2024
Short summary
Short summary
Stress along a subduction plate boundary is important for understanding subduction phenomena such as earthquakes. We estimated paleo-stress using quartz recrystallized grain size combined with deformation temperature and P–T paths of exhumed rocks. The obtained results show differential stresses of 30.8–82.7 MPa consistent over depths of 17–27 km in the paleo-subduction boundary. The obtained stress may represent the initial conditions under which slow earthquakes nucleated in the same domain.
Annelotte Weert, Kei Ogata, Francesco Vinci, Coen Leo, Giovanni Bertotti, Jerome Amory, and Stefano Tavani
Solid Earth, 15, 121–141, https://doi.org/10.5194/se-15-121-2024, https://doi.org/10.5194/se-15-121-2024, 2024
Short summary
Short summary
On the road to a sustainable planet, geothermal energy is considered one of the main substitutes when it comes to heating. The geological history of an area can have a major influence on the application of these geothermal systems, as demonstrated in the West Netherlands Basin. Here, multiple episodes of rifting and subsequent basin inversion have controlled the distribution of the reservoir rocks, thus influencing the locations where geothermal energy can be exploited.
Pâmela C. Richetti, Frank Zwaan, Guido Schreurs, Renata S. Schmitt, and Timothy C. Schmid
Solid Earth, 14, 1245–1266, https://doi.org/10.5194/se-14-1245-2023, https://doi.org/10.5194/se-14-1245-2023, 2023
Short summary
Short summary
The Araripe Basin in NE Brazil was originally formed during Cretaceous times, as South America and Africa broke up. The basin is an important analogue to offshore South Atlantic break-up basins; its sediments were uplifted and are now found at 1000 m height, allowing for studies thereof, but the cause of the uplift remains debated. Here we ran a series of tectonic laboratory experiments that show how a specific plate tectonic configuration can explain the evolution of the Araripe Basin.
Adam J. Cawood, Hannah Watkins, Clare E. Bond, Marian J. Warren, and Mark A. Cooper
Solid Earth, 14, 1005–1030, https://doi.org/10.5194/se-14-1005-2023, https://doi.org/10.5194/se-14-1005-2023, 2023
Short summary
Short summary
Here we test conceptual models of fracture development by investigating fractures across multiple scales. We find that most fractures increase in abundance towards the fold hinge, and we interpret these as being fold related. Other fractures at the site show inconsistent orientations and are unrelated to fold formation. Our results show that predicting fracture patterns requires the consideration of multiple geologic variables.
Johanna Heeb, David Healy, Nicholas E. Timms, and Enrique Gomez-Rivas
Solid Earth, 14, 985–1003, https://doi.org/10.5194/se-14-985-2023, https://doi.org/10.5194/se-14-985-2023, 2023
Short summary
Short summary
Hydration of rocks is a key process in the Earth’s crust and mantle that is accompanied by changes in physical traits and mechanical behaviour of rocks. This study assesses the influence of stress on hydration reaction kinetics and mechanics in experiments on anhydrite. We show that hydration occurs readily under stress and results in localized hydration along fractures and mechanic weakening. New gypsum growth is selective and depends on the stress field and host anhydrite crystal orientation.
Roy Helge Gabrielsen, Panagiotis Athanasios Giannenas, Dimitrios Sokoutis, Ernst Willingshofer, Muhammad Hassaan, and Jan Inge Faleide
Solid Earth, 14, 961–983, https://doi.org/10.5194/se-14-961-2023, https://doi.org/10.5194/se-14-961-2023, 2023
Short summary
Short summary
The Barents Shear Margin defines the border between the relatively shallow Barents Sea that is situated on a continental plate and the deep ocean. This margin's evolution history was probably influenced by plate tectonic reorganizations. From scaled experiments, we deduced several types of structures (faults, folds, and sedimentary basins) that help us to improve the understanding of the history of the opening of the North Atlantic.
Leslie Logan, Ervin Veress, Joel B. H. Andersson, Olof Martinsson, and Tobias E. Bauer
Solid Earth, 14, 763–784, https://doi.org/10.5194/se-14-763-2023, https://doi.org/10.5194/se-14-763-2023, 2023
Short summary
Short summary
The Pahtohavare Cu ± Au deposits in the Kiruna mining district have a dubious timing of formation and have not been contextualized within an up-to-date tectonic framework. Structural mapping was carried out to reveal that the deposits are hosted in brittle structures that cut a noncylindrical, SE-plunging anticline constrained to have formed during the late-Svecokarelian orogeny. These results show that Cu ± Au mineralization formed more than ca. 80 Myr after iron oxide–apatite mineralization.
Alexandra Tamas, Dan M. Tamas, Gabor Tari, Csaba Krezsek, Alexandru Lapadat, and Zsolt Schleder
Solid Earth, 14, 741–761, https://doi.org/10.5194/se-14-741-2023, https://doi.org/10.5194/se-14-741-2023, 2023
Short summary
Short summary
Tectonic processes are complex and often difficult to understand due to the limitations of surface or subsurface data. One such process is inversion tectonics, which means that an area initially developed in an extension (such as the opening of an ocean) is reversed to compression (the process leading to mountain building). In this research, we use a laboratory method (analogue modelling), and with the help of a sandbox, we try to better understand structures (folds/faults) related to inversion.
Elizabeth Parker Wilson, Pablo Granado, Pablo Santolaria, Oriol Ferrer, and Josep Anton Muñoz
Solid Earth, 14, 709–739, https://doi.org/10.5194/se-14-709-2023, https://doi.org/10.5194/se-14-709-2023, 2023
Short summary
Short summary
This work focuses on the control of accommodation zones on extensional and subsequent inversion in salt-detached domains using sandbox analogue models. During extension, the transfer zone acts as a pathway for the movement of salt, changing the expected geometries. When inverted, the salt layer and syn-inversion sedimentation control the deformation style in the salt-detached cover system. Three natural cases are compared to the model results and show similar inversion geometries.
Oriol Ferrer, Eloi Carola, and Ken McClay
Solid Earth, 14, 571–589, https://doi.org/10.5194/se-14-571-2023, https://doi.org/10.5194/se-14-571-2023, 2023
Short summary
Short summary
Using an experimental approach based on scaled sandbox models, this work aims to understand how salt above different rotational fault blocks influences the cover geometry and evolution, first during extension and then during inversion. The results show that inherited salt structures constrain contractional deformation. We show for the first time how welds and fault welds are reopened during contractional deformation, having direct implications for the subsurface exploration of natural resources.
Chiara Montemagni, Stefano Zanchetta, Martina Rocca, Igor M. Villa, Corrado Morelli, Volkmar Mair, and Andrea Zanchi
Solid Earth, 14, 551–570, https://doi.org/10.5194/se-14-551-2023, https://doi.org/10.5194/se-14-551-2023, 2023
Short summary
Short summary
The Vinschgau Shear Zone (VSZ) is one of the largest and most significant shear zones developed within the Late Cretaceous thrust stack in the Austroalpine domain of the eastern Alps. 40Ar / 39Ar geochronology constrains the activity of the VSZ between 97 and 80 Ma. The decreasing vorticity towards the core of the shear zone, coupled with the younging of mylonites, points to a shear thinning behavior. The deepest units of the Eo-Alpine orogenic wedge were exhumed along the VSZ.
Jordi Miró, Oriol Ferrer, Josep Anton Muñoz, and Gianreto Manastchal
Solid Earth, 14, 425–445, https://doi.org/10.5194/se-14-425-2023, https://doi.org/10.5194/se-14-425-2023, 2023
Short summary
Short summary
Using the Asturian–Basque–Cantabrian system and analogue (sandbox) models, this work focuses on the linkage between basement-controlled and salt-decoupled domains and how deformation is accommodated between the two during extension and subsequent inversion. Analogue models show significant structural variability in the transitional domain, with oblique structures that can be strongly modified by syn-contractional sedimentation. Experimental results are consistent with the case study.
Junichi Fukuda, Takamoto Okudaira, and Yukiko Ohtomo
Solid Earth, 14, 409–424, https://doi.org/10.5194/se-14-409-2023, https://doi.org/10.5194/se-14-409-2023, 2023
Short summary
Short summary
We measured water distributions in deformed quartz by infrared spectroscopy mapping and used the results to discuss changes in water distribution resulting from textural development. Because of the grain size reduction process (dynamic recrystallization), water contents decrease from 40–1750 wt ppm in host grains of ~2 mm to 100–510 wt ppm in recrystallized regions composed of fine grains of ~10 µm. Our results indicate that water is released and homogenized by dynamic recrystallization.
Bastien Walter, Yves Géraud, Alexiane Favier, Nadjib Chibati, and Marc Diraison
EGUsphere, https://doi.org/10.5194/egusphere-2023-397, https://doi.org/10.5194/egusphere-2023-397, 2023
Preprint archived
Short summary
Short summary
Lake Abhe in southwestern Djibouti is known for its exposures of massive hydrothermal chimneys and hot springs on the lake’s eastern shore. This study highlights the control of the main structural faults of the area on the development of these hydrothermal features. This work contributes to better understand hydrothermal fluid pathways in this area and may help further exploration for the geothermal development of this remarkable site.
Michael Rudolf, Matthias Rosenau, and Onno Oncken
Solid Earth, 14, 311–331, https://doi.org/10.5194/se-14-311-2023, https://doi.org/10.5194/se-14-311-2023, 2023
Short summary
Short summary
Analogue models of tectonic processes rely on the reproduction of their geometry, kinematics and dynamics. An important property is fault behaviour, which is linked to the frictional characteristics of the fault gouge. This is represented by granular materials, such as quartz sand. In our study we investigate the time-dependent frictional properties of various analogue materials and highlight their impact on the suitability of these materials for analogue models focusing on fault reactivation.
Jessica Barabasch, Joyce Schmatz, Jop Klaver, Alexander Schwedt, and Janos L. Urai
Solid Earth, 14, 271–291, https://doi.org/10.5194/se-14-271-2023, https://doi.org/10.5194/se-14-271-2023, 2023
Short summary
Short summary
We analysed Zechstein salt with microscopes and observed specific microstructures that indicate much faster deformation in rock salt with fine halite grains when compared to salt with larger grains. This is important because people build large cavities in the subsurface salt for energy storage or want to deposit radioactive waste inside it. When engineers and scientists use grain-size data and equations that include this mechanism, it will help to make better predictions in geological models.
Nicolás Molnar and Susanne Buiter
Solid Earth, 14, 213–235, https://doi.org/10.5194/se-14-213-2023, https://doi.org/10.5194/se-14-213-2023, 2023
Short summary
Short summary
Progression of orogenic wedges over pre-existing extensional structures is common in nature, but deciphering the spatio-temporal evolution of deformation from the geological record remains challenging. Our laboratory experiments provide insights on how horizontal stresses are transferred across a heterogeneous crust, constrain which pre-shortening conditions can either favour or hinder the reactivatation of extensional structures, and explain what implications they have on critical taper theory.
Tania Habel, Martine Simoes, Robin Lacassin, Daniel Carrizo, and German Aguilar
Solid Earth, 14, 17–42, https://doi.org/10.5194/se-14-17-2023, https://doi.org/10.5194/se-14-17-2023, 2023
Short summary
Short summary
The Central Andes are one of the most emblematic reliefs on Earth, but their western flank remains understudied. Here we explore two rare key sites in the hostile conditions of the Atacama desert to build cross-sections, quantify crustal shortening, and discuss the timing of this deformation at ∼20–22°S. We propose that the structures of the Western Andes accommodated significant crustal shortening here, but only during the earliest stages of mountain building.
Naïm Célini, Frédéric Mouthereau, Abdeltif Lahfid, Claude Gout, and Jean-Paul Callot
Solid Earth, 14, 1–16, https://doi.org/10.5194/se-14-1-2023, https://doi.org/10.5194/se-14-1-2023, 2023
Short summary
Short summary
We investigate the peak temperature of sedimentary rocks of the SW Alps (France), using Raman spectroscopy on carbonaceous material. This method provides an estimate of the peak temperature achieved by organic-rich rocks. To determine the timing and the tectonic context of the origin of these temperatures we use 1D thermal modelling. We find that the high temperatures up to 300 °C were achieved during precollisional extensional events, not during tectonic burial in the Western Alps.
Luke N. J. Wedmore, Tess Turner, Juliet Biggs, Jack N. Williams, Henry M. Sichingabula, Christine Kabumbu, and Kawawa Banda
Solid Earth, 13, 1731–1753, https://doi.org/10.5194/se-13-1731-2022, https://doi.org/10.5194/se-13-1731-2022, 2022
Short summary
Short summary
Mapping and compiling the attributes of faults capable of hosting earthquakes are important for the next generation of seismic hazard assessment. We document 18 active faults in the Luangwa Rift, Zambia, in an active fault database. These faults are between 9 and 207 km long offset Quaternary sediments, have scarps up to ~30 m high, and are capable of hosting earthquakes from Mw 5.8 to 8.1. We associate the Molaza Fault with surface ruptures from two unattributed M 6+ 20th century earthquakes.
Michał P. Michalak, Lesław Teper, Florian Wellmann, Jerzy Żaba, Krzysztof Gaidzik, Marcin Kostur, Yuriy P. Maystrenko, and Paulina Leonowicz
Solid Earth, 13, 1697–1720, https://doi.org/10.5194/se-13-1697-2022, https://doi.org/10.5194/se-13-1697-2022, 2022
Short summary
Short summary
When characterizing geological/geophysical surfaces, various geometric attributes are calculated, such as dip angle (1D) or dip direction (2D). However, the boundaries between specific values may be subjective and without optimization significance, resulting from using default color palletes. This study proposes minimizing cosine distance among within-cluster observations to detect 3D anomalies. Our results suggest that the method holds promise for identification of megacylinders or megacones.
Erik M. Young, Christie D. Rowe, and James D. Kirkpatrick
Solid Earth, 13, 1607–1629, https://doi.org/10.5194/se-13-1607-2022, https://doi.org/10.5194/se-13-1607-2022, 2022
Short summary
Short summary
Studying how earthquakes spread deep within the faults they originate from is crucial to improving our understanding of the earthquake process. We mapped preserved ancient earthquake surfaces that are now exposed in South Africa and studied their relationship with the shape and type of rocks surrounding them. We determined that these surfaces are not random and are instead associated with specific kinds of rocks and that their shape is linked to the evolution of the faults in which they occur.
Sivaji Lahiri, Kitty L. Milliken, Peter Vrolijk, Guillaume Desbois, and Janos L. Urai
Solid Earth, 13, 1513–1539, https://doi.org/10.5194/se-13-1513-2022, https://doi.org/10.5194/se-13-1513-2022, 2022
Short summary
Short summary
Understanding the mechanism of mechanical compaction is important. Previous studies on mechanical compaction were mostly done by performing experiments. Studies on natural rocks are rare due to compositional heterogeneity of the sedimentary succession with depth. Due to remarkable similarity in composition and grain size, the Sumatra subduction complex provides a unique opportunity to study the micromechanism of mechanical compaction on natural samples.
Dongwon Lee, Nikolaos Karadimitriou, Matthias Ruf, and Holger Steeb
Solid Earth, 13, 1475–1494, https://doi.org/10.5194/se-13-1475-2022, https://doi.org/10.5194/se-13-1475-2022, 2022
Short summary
Short summary
This research article focuses on filtering and segmentation methods employed in high-resolution µXRCT studies for crystalline rocks, bearing fractures, or fracture networks, of very small aperture. Specifically, we focus on the identification of artificially induced (via quenching) fractures in Carrara marble samples. Results from the same dataset from all five different methods adopted were produced and compared with each other in terms of their output quality and time efficiency.
Alberto Ceccato, Giulia Tartaglia, Marco Antonellini, and Giulio Viola
Solid Earth, 13, 1431–1453, https://doi.org/10.5194/se-13-1431-2022, https://doi.org/10.5194/se-13-1431-2022, 2022
Short summary
Short summary
The Earth's surface is commonly characterized by the occurrence of fractures, which can be mapped, and their can be geometry quantified on digital representations of the surface at different scales of observation. Here we present a series of analytical and statistical tools, which can aid the quantification of fracture spatial distribution at different scales. In doing so, we can improve our understanding of how fracture geometry and geology affect fluid flow within the fractured Earth crust.
Giulio Viola, Giovanni Musumeci, Francesco Mazzarini, Lorenzo Tavazzani, Manuel Curzi, Espen Torgersen, Roelant van der Lelij, and Luca Aldega
Solid Earth, 13, 1327–1351, https://doi.org/10.5194/se-13-1327-2022, https://doi.org/10.5194/se-13-1327-2022, 2022
Short summary
Short summary
A structural-geochronological approach helps to unravel the Zuccale Fault's architecture. By mapping its internal structure and dating some of its fault rocks, we constrained a deformation history lasting 20 Myr starting at ca. 22 Ma. Such long activity is recorded by now tightly juxtaposed brittle structural facies, i.e. different types of fault rocks. Our results also have implications on the regional evolution of the northern Apennines, of which the Zuccale Fault is an important structure.
Wan-Lin Hu
Solid Earth, 13, 1281–1290, https://doi.org/10.5194/se-13-1281-2022, https://doi.org/10.5194/se-13-1281-2022, 2022
Short summary
Short summary
Having a seismic image is generally expected to enable us to better determine fault geometry and thus estimate geological slip rates accurately. However, the process of interpreting seismic images may introduce unintended uncertainties, which have not yet been widely discussed. Here, a case of a shear fault-bend fold in the frontal Himalaya is used to demonstrate how differences in interpretations can affect the following estimates of slip rates and dependent conclusions.
Manuel D. Menzel, Janos L. Urai, Estibalitz Ukar, Thierry Decrausaz, and Marguerite Godard
Solid Earth, 13, 1191–1218, https://doi.org/10.5194/se-13-1191-2022, https://doi.org/10.5194/se-13-1191-2022, 2022
Short summary
Short summary
Mantle rocks can bind large quantities of carbon by reaction with CO2, but this capacity requires fluid pathways not to be clogged by carbonate. We studied mantle rocks from Oman to understand the mechanisms allowing their transformation into carbonate and quartz. Using advanced imaging techniques, we show that abundant veins were essential fluid pathways driving the reaction. Our results show that tectonic stress was important for fracture opening and a key ingredient for carbon fixation.
Jean-Baptiste P. Koehl, Steffen G. Bergh, and Arthur G. Sylvester
Solid Earth, 13, 1169–1190, https://doi.org/10.5194/se-13-1169-2022, https://doi.org/10.5194/se-13-1169-2022, 2022
Short summary
Short summary
The San Andreas fault is a major active fault associated with ongoing earthquake sequences in southern California. The present study investigates the development of the Indio Hills area in the Coachella Valley along the main San Andreas fault and the Indio Hills fault. The Indio Hills area is located near an area with high ongoing earthquake activity (Brawley seismic zone), and, therefore, its recent tectonic evolution has implications for earthquake prediction.
Jin Lai, Dong Li, Yong Ai, Hongkun Liu, Deyang Cai, Kangjun Chen, Yuqiang Xie, and Guiwen Wang
Solid Earth, 13, 975–1002, https://doi.org/10.5194/se-13-975-2022, https://doi.org/10.5194/se-13-975-2022, 2022
Short summary
Short summary
(1) Structural diagenesis analysis is performed on the ultra-deep tight sandstone. (2) Fracture and intergranular pores are related to the low in situ stress magnitudes. (3) Dissolution is associated with the presence of fracture.
Hamed Fazlikhani, Wolfgang Bauer, and Harald Stollhofen
Solid Earth, 13, 393–416, https://doi.org/10.5194/se-13-393-2022, https://doi.org/10.5194/se-13-393-2022, 2022
Short summary
Short summary
Interpretation of newly acquired FRANKEN 2D seismic survey data in southeeastern Germany shows that upper Paleozoic low-grade metasedimentary rocks and possible nappe units are transported by Variscan shear zones to ca. 65 km west of the Franconian Fault System (FFS). We show that the locations of post-Variscan upper Carboniferous–Permian normal faults and associated graben and half-graben basins are controlled by the geometry of underlying Variscan shear zones.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Berit Schwichtenberg, Florian Fusseis, Ian B. Butler, and Edward Andò
Solid Earth, 13, 41–64, https://doi.org/10.5194/se-13-41-2022, https://doi.org/10.5194/se-13-41-2022, 2022
Short summary
Short summary
Hydraulic rock properties such as porosity and permeability are relevant factors that have an impact on groundwater resources, geological repositories and fossil fuel reservoirs. We investigate the influence of chemical compaction upon the porosity evolution in salt–biotite mixtures and related transport length scales by conducting laboratory experiments in combination with 4-D analysis. Our observations invite a renewed discussion of the effect of sheet silicates on chemical compaction.
David Healy and Stephen Paul Hicks
Solid Earth, 13, 15–39, https://doi.org/10.5194/se-13-15-2022, https://doi.org/10.5194/se-13-15-2022, 2022
Short summary
Short summary
The energy transition requires operations in faulted rocks. To manage the technical challenges and public concern over possible induced earthquakes, we need to quantify the risks. We calculate the probability of fault slip based on uncertain inputs, stresses, fluid pressures, and the mechanical properties of rocks in fault zones. Our examples highlight the specific gaps in our knowledge. Citizen science projects could produce useful data and include the public in the discussions about hazards.
Manuel I. de Paz-Álvarez, Thomas G. Blenkinsop, David M. Buchs, George E. Gibbons, and Lesley Cherns
Solid Earth, 13, 1–14, https://doi.org/10.5194/se-13-1-2022, https://doi.org/10.5194/se-13-1-2022, 2022
Short summary
Short summary
We describe a virtual geological mapping course implemented in response to travelling and social restrictions derived from the ongoing COVID-19 pandemic. The course was designed to replicate a physical mapping exercise as closely as possible with the aid of real field data and photographs collected by the authors during previous years in the Cantabrian Zone (NW Spain). The course is delivered through Google Earth via a KMZ file with outcrop descriptions and links to GitHub-hosted photographs.
Yueyang Xia, Jacob Geersen, Dirk Klaeschen, Bo Ma, Dietrich Lange, Michael Riedel, Michael Schnabel, and Heidrun Kopp
Solid Earth, 12, 2467–2477, https://doi.org/10.5194/se-12-2467-2021, https://doi.org/10.5194/se-12-2467-2021, 2021
Short summary
Short summary
The 2 June 1994 Java tsunami earthquake ruptured in a seismically quiet subduction zone and generated a larger-than-expected tsunami. Here, we re-process a seismic line across the rupture area. We show that a subducting seamount is located up-dip of the mainshock in a region that did not rupture during the earthquake. Seamount subduction modulates the topography of the marine forearc and acts as a seismic barrier in the 1994 earthquake rupture.
Steffen Abe and Hagen Deckert
Solid Earth, 12, 2407–2424, https://doi.org/10.5194/se-12-2407-2021, https://doi.org/10.5194/se-12-2407-2021, 2021
Short summary
Short summary
We use numerical simulations and laboratory experiments on rock samples to investigate how stress conditions influence the geometry and roughness of fracture surfaces. The roughness of the surfaces was analyzed in terms of absolute roughness and scaling properties. The results show that the surfaces are self-affine but with different scaling properties between the numerical models and the real rock samples. Results suggest that stress conditions have little influence on the surface roughness.
Chao Deng, Rixiang Zhu, Jianhui Han, Yu Shu, Yuxiang Wu, Kefeng Hou, and Wei Long
Solid Earth, 12, 2327–2350, https://doi.org/10.5194/se-12-2327-2021, https://doi.org/10.5194/se-12-2327-2021, 2021
Short summary
Short summary
This study uses seismic reflection data to interpret the geometric relationship and evolution of intra-basement and rift-related structures in the Enping sag in the northern South China Sea. Our observations suggest the primary control of pre-existing thrust faults is the formation of low-angle normal faults, with possible help from low-friction materials, and the significant role of pre-existing basement thrust faults in fault geometry, paleotopography, and syn-rift stratigraphy of rift basins.
Sonia Yeung, Marnie Forster, Emmanuel Skourtsos, and Gordon Lister
Solid Earth, 12, 2255–2275, https://doi.org/10.5194/se-12-2255-2021, https://doi.org/10.5194/se-12-2255-2021, 2021
Short summary
Short summary
We do not know when the ancient Tethys Ocean lithosphere began to founder, but one clue can be found in subduction accreted tectonic slices, including Gondwanan basement terranes on the island of Ios, Cyclades, Greece. We propose a 250–300 km southwards jump of the subduction megathrust with a period of flat-slab subduction followed by slab break-off. The initiation and its subsequent rollback of a new subduction zone would explain the onset of Oligo–Miocene extension and accompanying magmatism.
Cited articles
Ashley, K. T. and Law, R. D.: Modeling prograde TiO2 activity and its signicance for Ti-in-quartz thermobarometry of pelitic metamorphic rocks, Contrib. Mineral. Petr., 169, 23, https://doi.org/10.1007/s00410-015-1118-7, 2015.
Batt, G. E. and Braun, J.: On the thermomechanical evolution of compressional orogens, Geophys. J. Int., 128, 364–382, 1997.
Batt, G. E. and Braun, J.: The tectonic evolution of the Southern Alps, New Zealand: insights from fully thermally coupled dynamical modelling, Geophys. J. Int., 136, 403–420, 1999.
Batt, G. E., Braun, J., Kohn, B. P., and McDougall, I.: Thermochronological analysis of the dynamics of the Southern Alps, New Zealand, Geol. Soc. Am. Bull., 112, 250–266, 2000.
Batt, G. E., Baldwin, S. L., Cottam, M., Fitzgerald, P. G., and Brandon, M. T.: Cenozoic plate boundary evolution in the South Island of New Zealand: new thermochronological constraints, Tectonics, 23, TC4001, https://doi.org/10.1029/2003TC001527, 2004.
Behr, W. M. and Platt, J. P.: A naturally constrained stress profile through the middle crust in an extensional terrane, Earth Planet. Sc. Lett., 303, 181–192, https://doi.org/10.1016/J.Epsl.2010.11.044, 2011.
Behr, W. M., Thomas, J., and Hervig, R.: Calibrating Ti concentrations in quartz on the SIMS using NIST silicate glasses with applications to the TitaniQ geothermobarometer, Am. Mineral., 96, 1100–1106, https://doi.org/10.2138/am.2011.3702, 2010.
Bestmann, M. and Pennacchioni, G.: Ti distribution in quartz across a heterogeneous shear zone within a granodiorite: The effect of deformation mechanism and strain on Ti resetting, Lithos, 227, 37–56, https://doi.org/10.1016/j.lithos.2015.03.009, 2015.
Beyssac, O., Cox, S. C., Vry, J., and Herman, F.: Peak metamorphic temperature and thermal history of the Southern Alps (New Zealand), Tectonophysics, 676, 229–249, https://doi.org/10.1016/j.tecto.2015.12.024, 2016.
Boese, C. M., Townend, J., Smith, E., and Stern, T.: Microseismicity and stress in the vicinity of the Alpine Fault, central Southern Alps, New Zealand, J. Geophys. Res., 117, B02302, https://doi.org/10.1029/2011JB008460, 2012.
Boulton, C., Moore, D., Lockner, D. A., Toy, V. G., Townend, J., and Sutherland, R.: Frictional properties of exhumed fault gouges in DFDP-1 cores, Alpine Fault, New Zealand, Geophys. Res. Lett., 41, https://doi.org/10.1002/2013GL058236, 2014.
Bourguignon, S., Bannister, S., Henderson, C. M., Townend, J., and Zhang, H.: Structural heterogeneity of the midcrust adjacent to the central Alpine Fault, New Zealand: Inferences from seismic tomography and seismicity between Harihari and Ross, Geochem. Geophy. Geosy., 16, 1017–1043, https://doi.org/10.1002/2014GC005702, 2015.
Cande, S. C. and Stock, J. M.: Pacific-Antarctic-Australia motion and the formation of the Macquarie Plate, Geophys. J. Int., 157, 399–414, 2004.
Chamberlain, C. J., Shelly, D. R., Townend, J., and Stern, T. A.: Low-frequency earthquakes reveal punctuated slow slip on the deep extent of the Alpine Fault, New Zealand, Geochem. Geophy. Geosy., 15, https://doi.org/10.1002/2014GC005436, 2014.
Cherniak, D. J., Watson, E. B., and Wark, D. A.: Ti diffusion in quartz, Chem. Geol., 236, 65–74, https://doi.org/10.1016/J.Chemgeo.2006.09.001, 2007.
Cooper, A. F.: Retrograde alteration of chromian kyanite in metachert and amphibolite whiteschist from the Southern Alps, New Zealand, with implications for uplift on the Alpine Fault, Contrib. Mineral. Petr., 75, 153–164, https://doi.org/10.1007/BF00389775, 1980.
Cooper, A. F. and Ireland, T. R.: The Pounamu terrane, a new Cretaceous exotic terrane within the Alpine Schist, New Zealand; tectonically emplaced, deformed and metamor- phosed during collision of the LIP Hikurangi Plateau with Zealandia, Gondwana Res., 27, 1255–1269, https://doi.org/10.1016/j.gr.2013.11.011, 2015.
Cox, S. and Sutherland, R.: Regional Geological Framework of South Island, New Zealand, and its Signi cance for Understanding the Active Plate Boundary, in: A Continental Plate Boundary: Tectonics at South Island, New Zealand, Geophysical Monograph Series, American Geophysical Union, Washington D.C. edited by David Okaya, Tim Stern, Fred Davey, 175, 2007.
Craw, D.: Fluid inclusion evidence for geothermal structure beneath the Southern Alps, New Zealand, New Zeal. J. Geol. Geop., 40, 43–52, https://doi.org/10.1080/00288306.1997.9514739, 1997.
Cross, A. J., Kidder, S., and Prior, D.: Using quartz sheared around garnet porphyroclasts to evaluate microstructural evolution in nature, J. Struct. Geol., 75, 17–31, https://doi.org/10.1016/j.jsg.2015.02.012, 2015.
Dresen, G., Duyster, J., Stöckhert, B., Wirth, R., and Zulauf, G.: Quartz dislocation microstructure between 7000 m and 9100 m depth from the Continental Deep Drilling Program KTB, J. Geophys. Res., 102, 18443–18452, 1997.
Dunlap, W., Hirth, G., and Teyssier, C.: Thermomechanical evolution of a ductile duplex, Tectonics, 16, 983–1000, 1997.
Ellis, S. and Stöckhert, B.: Elevated stresses and creep rates beneath the brittle-ductile transition caused by seismic faulting in the upper crust, J. Geophys. Res., 109, B05407, https://doi.org/10.1029/2003JB002744, 2004.
Gillam, B. G., Little, T. A., Smith, E., and Toy, V. G.: Extensional shear band development on the outer margin of the Alpine mylonite zone, Tatare Stream, Southern Alps, New Zealand, J. Struct. Geol., 54, 1–20, https://doi.org/10.1016/j.jsg.2013.06.010, 2013.
Grapes, R. and Watanabe, T.: Metamorphism and uplift of Alpine schist in the Franz Josef-Fox Glacier area of the Southern Alps, New Zealand, Metamophic Geology, 10, 171–180, 1992.
Grapes, R. H.: Uplift and exhumation of Alpine Schist, Southern Alps, New Zealand: thermobarometric constraints, New Zeal. J. Geol. Geop., 38, 525–533, 1995.
Grujic, D., Stipp, M., and Wooden, J. L.: Thermometry of quartz mylonites: Importance of dynamic recrystallization on Ti-in-quartz reequilibration, Geochem. Geophy. Geosy., 12, Q06012, https://doi.org/10.1029/2010GC003368, 2011.
Haertle, M., Herwegh, M., and Pettke, T.: Titanium-in-quartz thermometry on synkinematic quartz veins in a retrograde crustal-scale normal fault zone, Tectonophysics, 608, 468–481, https://doi.org/10.1016/j.tecto.2013.08.042, 2013.
Herman, F., Braun, J., and Dunlap, W. J.: Tectonomorphic scenarios in the Southern Alps of New Zealand, J. Geophys. Res.-Sol. Ea., 112, B04201, https://doi.org/10.1029/2004jb003472, 2007.
Hirth, G. and Tullis, J.: Dislocation creep regimes in quartz aggregates, J. Struct. Geol., 14, 145–159, 1992.
Holcombe, R. J. and Little, T. A.: A sensitive vorticity gauge using rotated porphyroblasts, and its application to rocks adjacent to the Alpine Fault, New Zealand, J. Struct. Geol., 23, 979–989, 2001.
Holm, D. K., Norris, R. J., and Craw, D.: Brittle and ductile deformation in a zone of rapid uplift: Central Southern Alps, New Zealand, Tectonics, 8, 153–168, 1989.
Huang, R. and Audétat, A.: The titanium-in-quartz (TitaniQ) thermobarometer: A critical examination and re-calibration, Geochim. Cosmochim. Ac., 84, 75–89, https://doi.org/10.1016/j.gca.2012.01.009, 2012.
Jessel, M. W.: Grain-boundary migration microstructures in a naturally deformed quartzite, J. Struct. Geol., 9, 1007–1014, https://doi.org/10.1016/0191-8141(87)90008-3, 1987.
Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D. E., Stracke, A., Birbaum, K., Frick, D. A., Günther, D., and Enzweiler, J.: Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines, Geostand. Geoanal. Res., 35, 397–429, https://doi.org/10.1111/j.1751-908X.2011.00120.x, 2011.
Kalceff, M. A. S. and Phillips, M. R.: Cathodoluminescence microcharacterisation of the defect structure of quartz, Phys. Rev. B, 52, 3122–3144, 1995.
Kidder, S. B., Avouac, J. P., and Chan, Y. C.: Constraints from rocks in the Taiwan orogen on crustal stress levels and rheology, J. Geophys. Res., 117, B09408, https://doi.org/10.1029/2012JB009303, 2012.
Kidder, S., Avouac, J.-P., and Chan, Y.-C.: Application of titanium-in-quartz thermobarometry to greenschist facies veins and recrystallized quartzites in the Hsüehshan range, Taiwan, Solid Earth, 4, 1–21, https://doi.org/10.5194/se-4-1-2013, 2013.
Kidder, S., Toy, V., Prior, D., and Little, T.: The Effect of Recrystallization on Titanium Concentrations in Quartz, an Example from New Zealand's Alpine Fault, American Geophysical Union Annual Meeting, 12–16 December, New Orleans, 2016a.
Kidder, S. B., Hirth, G., Avouac, J. P., and Behr, W. M.: The influence of stress history on the grain size and microstructure of experimentally deformed quartzite, J. Struct. Geol., 83, 194–206, https://doi.org/10.1016/j.jsg.2015.12.004, 2016b.
Kohlstedt, D. L., Evans, B., and Mackwell, S. J.: Strength of the lithosphere–constraints imposed by laboratory experiments, J. Geophys. Res.-Sol. Ea., 100, 17587–17602, 1995.
Kohn, M. J. and Northrup, C. J.: Taking mylonites' temperatures, Geology, 37, 47–50, https://doi.org/10.1130/G25081A.1, 2009.
Koons, P. O.: Some thermal and mechanical consequences of rapid uplift: an example from the Southern Alps, New Zealand, Earth Planet. Sc. Lett., 86, 307–319, 1987.
Kruhl, J. H.: Prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer, J. Metamorph. Geol., 14, 581–589, 1996.
Law, R. D.: Deformation thermometry based on quartz c-axis fabrics and recrystallization microstructures: A review., J. Struct. Geol., 66, 129–161, https://doi.org/10.1016/j.jsg.2014.05.023, 2014.
Leeman, W. P., MacRae, C. M., Wilson, N. C., Torpy, A., Lee, C.-T. A., Student, J. J., Thomas, J. B., and Vicenzi, E. P.: A Study of Cathodoluminescence and Trace Element Compositional Zoning in Natural Quartz from Volcanic Rocks: Mapping Titanium Content in Quartz, Microsc. Microanal., 18, 1322–1341, 2012.
Leitner, B., Eberhart-Phillips, D., Anderson, H., and Nabelek, J.: A focussed look at the Alpine Fault, New Zealand: Seismicity, focal mechanisms, and stress observations, J. Geophys. Res., 106, 2193–2220, 2001.
Lindroos, Z. R.: Microstructures Developed during Creep Deformation of Quartz: an Investigation of Shape and Crystallographic Characteristics, MSc, Geology Department, University of Otago, Dunedin, New Zealand, 119 pp., 2013.
Little, T. A.: Transpressive ductile flow and oblique ramping of lower crust in a two-sided orogen: Insight from quartz grain-shape fabrics near the Alpine fault, New Zealand, Tectonics, 23, TC2013, https://doi.org/10.1029/2002TC001456, 2004.
Little, T., Holcombe, R. J., and Ilg, B. R.: Ductile fabrics in the zone of active oblique convergence near the Alpine Fault, New Zealand: identifying the neotectonic overprint, J. Struct. Geol., 24, 193–217, 2002a.
Little, T. A., Holcombe, R. J., and Ilg, B. R.: Kinematics of oblique collision and ramping inferred from microstructures and strain in middle crustal rocks, central Southern Alps, New Zealand, J. Struct. Geol., 24, 219–239, 2002b.
Little, T. A., Cox, S., Vry, J. K., and Batt, G.: Variations in exhumation level and uplift rate along the obliqu-slip Alpine fault, central Southern Alps, New Zealand, Geol. Soc. Am. Bull., 117, 707–723, 2005.
Little, T. A., Prior, D. J., Toy, V. G., and Lindroos, Z. R.: The link between strength of lattice preferred orientation, second phase content and grain boundary migration: A case study from the Alpine Fault zone, New Zealand, J. Struct. Geol., 81, 59–77, https://doi.org/10.1016/j.jsg.2015.09.004 2015.
Little, T. A., Prior, D. J., and Toy, V. G.: Are quartz LPOs predictably oriented with respect to the shear zone boundary?: A test from the Alpine Fault mylonites, New Zealand, Geochem. Geophy. Geosy., 17, 981–999, https://doi.org/10.1002/2015GC006145, 2016.
Liu, Z. and Bird, P.: Finite element modeling of neotectonics in New Zealand, J. Geophys. Res., 107, 2328, https://doi.org/10.1029/2001JB001075, 2002.
MacRae, C. M., Wilson, N. C., and Torpy, A.: Hyperspectral cathodoluminescence, Miner. Petrol., 107, 429–440, https://doi.org/10.1007/s00710-013-0272-8, 2013.
Menzies, C. D., Teagle, D. A. H., Craw, D., Cox, S. C., Boyce, A. J., Barrie, C. D., and Roberts, S.: Incursion of meteoric waters into the ductile regime in an active orogen, Earth Planet. Sc. Lett., 2014, 1–13, https://doi.org/10.1016/j.epsl.2014.04.046, 2014.
Nachlas, W. and Hirth, G.: Experimental constraints on the role of dynamic recrystallization on resetting the Ti-in-quartz thermobarometer, J. Geophys. Res., 120, https://doi.org/10.1002/2015JB012274, 2015.
Nachlas, W., Whitney, D., Teyssier, C., Bagley, B., and Mulch, A.: Titanium concentration in quartz as a record of multiple deformation mechanisms in an extensional shear zone, Geochem. Geophy. Geosy., 15, 1374–1397, https://doi.org/10.1002/2013GC005200, 2014.
Nevitt, J. M., Warren, J. M., Kidder, S., and Pollard, D. D.: Comparison of thermal modeling, microstructural analysis, and Ti-in-quartz thermobarometry to constrain the thermal history of a cooling pluton during deformation in the Mount Abbot Quadrangle, CA, Geochem. Geophy. Geosy., 18, 1270–1297, https://doi.org/10.1002/2016GC006655, 2017.
Niemeijer, A. R., Boulton, C., V. G., T., Townend, J., and Sutherland, R.: Large-displacement, hydrothermal frictional properties of DFDP-1 fault rocks, Alpine Fault, New Zealand: Implications for deep rupture propagation, J. Geophys. Res.-Sol. Ea., 121, 624–647, https://doi.org/10.1002/2015JB012593, 2016.
Norris, R. and Cooper, A.: The Alpine Fault, New Zealand: Surface Geology and Field Relationships, American Geophysical Union, 157–175, https://doi.org/10.1029/175GM09, 2007.
Norris, R. and Toy, V.: Continental transforms: A view from the Alpine Fault, J. Struct. Geol., 64, 3–31, https://doi.org/10.1016/j.jsg.2014.03.003, 2014.
Norris, R. J. and Cooper, A. F.: Very high strains recorded in mylonites along the Alpine Fault, New Zealand: implications for the deep structure of plate boundary faults, J. Struct. Geol., 25, 2141–2157, 2003.
Shi, Y. L., Allis, R., and Davey, F.: Thermal modeling of the Southern Alps, New Zealand, Pure Appl. Geophys., 146, 469–501, 1996.
Sibson, R. H.: Fault rocks and fault mechanisms, J. Geol. Soc. London, 133, 191–213, 1977.
Sibson, R. H., White, S. H., and Atkinson, B. K.: Fault rock distribution and structure within he Alpine Fault Zone: A Preliminary Account, Royal Society of New Zealand Bulletin, 18, 55–65, 1979.
Sibson, R. H., White, S. H., and Atkinson, B. K.: Structure and distribution of fault rocks in the Alpine Fault Zone, New Zealand, Geol. Soc. S. P., 9, 197–210, https://doi.org/10.1144/GSL.SP.1981.009.01.18, 1981.
Spear, F. S.: Metamorphic phase equilibria and pressure-temperature-time paths, Mineralogical Society of America, Washington, D.C., USA, 1995.
Spear, F. S., Ashley, K. T., Webb, L. E., and Thomas, J. B.: Ti diffusion in quartz inclusions: implications for metamorphic time scales, Contrib. Mineral. Petr., 977–986, https://doi.org/10.1007/s00410-012-0783-z, 2012.
Stern, T., Okaya, D., Kleffmann, S., Scherwath, M., Henrys, S., and Davey, F.: Geophysical Exploration and Dynamics of the Alpine Fault Zone, A Continental Plate Boundary: Tectonics at South Island, New Zealand, Geophysical Monograph Series 175, published by American Geophysical Union, Washington D.C., edited by: Okaya, D., Stern, T., and Davey, F., https://doi.org/10.1029/175GM11, 2007.
Stipp, M., Stünitz, H., Heilbronner, R., and Schmid, S. M.: Dynamic recrystallization of quartz: correlation between natural and experimental conditions, Geol. Soc. S. P., 200, 171–190, 2002.
Stöckhert, B., Brix, M. R., Kleinschrodt, R., Hurford, A. J., and Wirth, R.: Thermochronometry and microstructures of quartz – a comparison with experimental flow laws and predictions on the temperature of the brittle-plastic transition, J. Struct. Geol., 21, 351–369, 1999.
Sutherland, R., Davey, F., and Beavan, J.: Plate boundary deformation in South Island, New Zealand, is related to inherited lithospheric structure, Earth Planet. Sc. Lett., 177, 141–151, 2000.
Sutherland, R., Eberhart-Phillips, D., Harris, R. A., Stern, T., Beavan, J., Ellis, S., Henrys, S., cox, S., norris, R., Berryman, K., Townend, J., Bannister, S., Pettinga, J., Leitner, B., Wallace, L., Little, T., cooper, A. F., Yetton, M., and Stirling, M.: Do Great Earthquakes occur on the Alpine Fault in central South Island, new Zealand?, in: A Continental Plate Boundary: Tectonics at South Island, New Zealand, Geophysical Monograph Series 175, published by American Geophysical Union, Washington D.C., edited by: Okaya, D., Stern, T., and Davey, F., 175, 2007.
Sutherland, R., Toy, V. G., Townend, J., Cox, S. C., Eccles, J. D., Faulkner, D. R., Prior, D. J., Norris, R. J., Mariani, E., Boulton, C., Carpenter, B. M., Menzies, C. D., Little, T. A., Hasting, M., Pascale, G. P. D., Langridge, R. M., Scott, H. R., Reid, Z., Lindroos, Fleming, B., and Kopf, A. J.: Drilling reveals fluid control on architecture and rupture of the Alpine fault, New Zealand, Geology, 40, 1143–1146, https://doi.org/10.1130/G33614.1, 2012.
Sutherland, R., Townend, J., Toy, V., Upton, P., Coussens, J., Allen, M., Baratin, L.-M., Barth, N., Becroft, L., Boese, C., Boles, A., Boulton, C., Broderick, N. G. R., Janku-Capova, L., Carpenter, B. M., Ceìleìrier, B., Chamberlain, C., Cooper, A., Coutts, A., Cox, S., Craw, L., Doan, M.-L., Eccles, J., Faulkner, D., Grieve, J., Grochowski, J., Gulley, A., Hartog, A., Howarth, J., Jacobs, K., Jeppson, T., Kato, N., Keys, S., Kirilova, M., Kometani, Y., Langridge, R., Lin, W., Little, T., Lukacs, A., Mallyon, D., Mariani, E., Massiot, C. c., Mathewson, L., Melosh, B., Menzies, C., Moore, J., Morales, L., Morgan, C., Mori, H., Niemeijer, A., Nishikawa, O., Prior, D., Sauer, K., Savage, M., Schleicher, A., Schmitt, D. R., Shigematsu, N., Taylor-Offord, S., Teagle, D., Tobin, H., Valdez, R., Weaver, K., Wiersberg, T., Williams, J., Woodman, N., and Zimmer, M.: Extreme hydrothermal conditions at an active plate-bounding fault, Nature, 546, 137–140, https://doi.org/10.1038/nature22355, 2017.
Thomas, J. B., Watson, E. B., Spear, F. S., Shemella, P. T., Nayak, S. K., and Lanzirotti, A.: TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz, Contrib. Mineral. Petr., 160, 743–759, https://doi.org/10.1007/s00410-010-0505-3, 2010.
Thomas, J. B., Watson, E. B., Spear, F. S., and Wark, D. A.: TitaniQ recrystallized: experimental confirmation of the original Ti-in-quartz calibrations, Contrib. Mineral. Petr., 169, 27, https://doi.org/10.1007/s00410-015-1120-0, 2015.
Toy, V. G.: Rheology of the Alpine Fault Mylonite Zone: deformation processes at and below the base of the seismogenic zone in a major plate boundary structure, PhD, Geology Department, University of Otago, Dunedin, New Zealand, 629 pp., 2007.
Toy, V. G., Prior, D. J., and Norris, R. J.: Quartz fabrics in the Alpine Fault mylonites: Influence of pre-existing preferred orientations on fabric development during progressive uplift, J. Struct. Geol., 30, 602–621, 2008.
Toy, V. G., Craw, D., Cooper., A. F., and Norris, R. J.: Thermal regime in the central Alpine Fault zone, New Zealand: Constraints from microstructures, biotite chemistry, and fluid inclusion data, Tectonophysics, 485, 178–192, https://doi.org/10.1016/j.tecto.2009.12.013, 2010.
Toy, V. G., Prior, D. J., Norris, R. J., Cooper, A. F., and Walrond, M.: Relationships between kinematic indicators and strain during syn-deformational exhumation of an oblique slip, transpressive, plate boundary shear zone: The Alpine Fault, New Zealand, Earth Planet. Sc. Lett., 333–334, 282–292, https://doi.org/10.1016/j.epsl.2012.04.037, 2012.
Toy, V. G., Norris, R. J., Prior, D. J., Walrond, A. F., and Cooper, A. F.: How do lineations reflect the strain history of transpressive shear zones? The example of the active Alpine Fault zone, New Zealand, J. Struct. Geol., 50, 187–198, https://doi.org/10.1016/j.jsg.2012.06.006, 2013.
Toy, V. G., Boulton, C. J., Sutherland, R., Townend, J., Norris, R. J., Little, T. A., Prior, D. J., Mariani, E., Faulkner, D., Menzies, C. D., Scott, H., and Carpenter, B. M.: Fault rock lithologies and architecture of the central Alpine fault, New Zealand, revealed by DFDP-1 drilling, Lithosphere, 7, 155–173, https://doi.org/10.1130/L395.1, 2015.
van Daalen, M., Heilbronner, R., and Kunze, K.: Orientation analysis of localized shear deformation in quartz fibres at the brittle-ductile transition, Tectonophysics, 303, 83–107, 1999.
Vry, J., Baker, J., Maas, R., Little, T. A., Grapes, R., and Dixon, M.: Zoned (Cretaceous and Cenozoic) garnet and the timing of high grade metamorphism, Southern Alps, New Zealand, J. Metamorph. Geol., 22, 137–157, https://doi.org/10.1111/j.1525-1314.2004.00504.x, 2004.
Vry, J. K., Powell, R., and Williams, J.: Establishing the P–T path for Alpine Schist, Southern Alps near Hokitika, New Zealand, J. Metamorph. Geol., 26, 81–97, 2007.
Walcott, R. I.: Present tectonics and late Cenozoic evolution of New Zealand, Rev. Geophys., 36, 1–26, 1998.
Wark, D. and Spear, F.: Ti in quartz: Cathodoluminescence and thermometry, Goldschmidt, Moscow, Idaho, A592, 2005.
Wark, D. A. and Watson, B.: TitaniQ: a titanium-in-quartz geothermometer, Contrib. Mineral. Petr., 152, https://doi.org/10.1007/s00410-006-0132-1, 743–754, 2006.
Short summary
By quantifying trace concentrations of titanium in quartz (a known geologic “thermometer”), we constrain the temperature profile for the deep crust along the Alpine Fault. We show there is a sharp change from fairly uniform temperatures at deep levels to a very steep gradient in temperature in the upper kilometers of the crust.
By quantifying trace concentrations of titanium in quartz (a known geologic “thermometer”),...