Research article
04 Jul 2019
Research article
| 04 Jul 2019
The internal structure and composition of a plate-boundary-scale serpentinite shear zone: the Livingstone Fault, New Zealand
Matthew S. Tarling et al.
Related authors
Matthew S. Tarling, Matteo Demurtas, Steven A. F. Smith, Jeremy S. Rooney, Marianne Negrini, Cecilia Viti, Jasmine R. Petriglieri, and Keith C. Gordon
Eur. J. Mineral., 34, 285–300, https://doi.org/10.5194/ejm-34-285-2022, https://doi.org/10.5194/ejm-34-285-2022, 2022
Short summary
Short summary
Rocks containing the serpentine mineral lizardite occur in many tectonic settings. Knowing the crystal orientation of lizardite in these rocks tells us how they deform and gives insights into their physical properties. The crystal orientation of lizardite is challenging to obtain using standard techniques. To overcome this challenge, we developed a method using Raman spectroscopy to map the crystal orientation of lizardite with minimal preparation on standard thin sections.
Matthew S. Tarling, Matteo Demurtas, Steven A. F. Smith, Jeremy S. Rooney, Marianne Negrini, Cecilia Viti, Jasmine R. Petriglieri, and Keith C. Gordon
Eur. J. Mineral., 34, 285–300, https://doi.org/10.5194/ejm-34-285-2022, https://doi.org/10.5194/ejm-34-285-2022, 2022
Short summary
Short summary
Rocks containing the serpentine mineral lizardite occur in many tectonic settings. Knowing the crystal orientation of lizardite in these rocks tells us how they deform and gives insights into their physical properties. The crystal orientation of lizardite is challenging to obtain using standard techniques. To overcome this challenge, we developed a method using Raman spectroscopy to map the crystal orientation of lizardite with minimal preparation on standard thin sections.
Matteo Demurtas, Steven A.F. Smith, Elena Spagnuolo, and Giulio Di Toro
Solid Earth, 12, 595–612, https://doi.org/10.5194/se-12-595-2021, https://doi.org/10.5194/se-12-595-2021, 2021
Short summary
Short summary
We performed shear experiments on calcite–dolomite gouge mixtures to better understand the behaviour of carbonates during sub-seismic to seismic deformation in the shallow crust. The development of a foliation in the gouge was only restricted to coseismic sliding, whereas fluidisation occurred over a wide range of slip velocities (sub-seismic to coseismic) in the presence of water. These observations will contribute to a better interpretation of the rock record.
Jack N. Williams, Virginia G. Toy, Cécile Massiot, David D. McNamara, Steven A. F. Smith, and Steven Mills
Solid Earth, 9, 469–489, https://doi.org/10.5194/se-9-469-2018, https://doi.org/10.5194/se-9-469-2018, 2018
Short summary
Short summary
We present new data on the orientation of fractures, their fill, and their density around the Alpine Fault, a plate boundary fault on the South Island of New Zealand. Fractures < 160 m of the fault are filled and show a range of orientations, whilst fractures at greater distances (< 500 m) are open and parallel to the rock's mechanical weakness. We interpret the latter fracture set to reflect near-surface processes, whilst the latter are potentially linked to deep-seated Alpine Fault seismicity.
Martina Kirilova, Virginia Toy, Jeremy S. Rooney, Carolina Giorgetti, Keith C. Gordon, Cristiano Collettini, and Toru Takeshita
Solid Earth, 9, 223–231, https://doi.org/10.5194/se-9-223-2018, https://doi.org/10.5194/se-9-223-2018, 2018
Short summary
Short summary
Graphite crystallinity “irreversibly” increases with temperature and it has been calibrated as a thermometer recording peak temperatures experienced by a rock. To examine the possibility of mechanical modifications of graphite structure and the impacts on graphite thermometry we performed deformation experiments. Raman spectroscopy demonstrates a reduction in crystallinity due to mechanical reworking in the brittle field. This finding clearly compromises the validity of the graphite thermometry.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, rock physics, experimental deformation | Discipline: Structural geology
Variscan structures and their control on latest to post-Variscan basin architecture: insights from the westernmost Bohemian Massif and southeastern Germany
Multi-disciplinary characterizations of the BedrettoLab – a new underground geoscience research facility
Biotite supports long-range diffusive transport in dissolution–precipitation creep in halite through small porosity fluctuations
De-risking the energy transition by quantifying the uncertainties in fault stability
Virtual field trip to the Esla Nappe (Cantabrian Zone, NW Spain): delivering traditional geological mapping skills remotely using real data
Marine forearc structure of eastern Java and its role in the 1994 Java tsunami earthquake
Roughness of fracture surfaces in numerical models and laboratory experiments
Impact of basement thrust faults on low-angle normal faults and rift basin evolution: a case study in the Enping sag, Pearl River Basin
Evidence for and significance of the Late Cretaceous Asteroussia event in the Gondwanan Ios basement terranes
Investigating spatial heterogeneity within fracture networks using hierarchical clustering and graph distance metrics
Dating folding beyond folding, from layer-parallel shortening to fold tightening, using mesostructures: lessons from the Apennines, Pyrenees, and Rocky Mountains
Deformation-enhanced diagenesis and bacterial proliferation in the Nankai accretionary prism
Rheological stratification in impure rock salt during long-term creep: morphology, microstructure, and numerical models of multilayer folds in the Ocnele Mari salt mine, Romania
Geodynamic and seismotectonic model of a long-lived transverse structure: The Schio-Vicenza Fault System (NE Italy)
Structural diagenesis in ultra-deep tight sandstones in Kuqa depression, Tarim Basin, China
Neogene kinematics of the Giudicarie Belt and eastern Southern Alpine orogenic front (northern Italy)
Fault interpretation uncertainties using seismic data, and the effects on fault seal analysis: a case study from the Horda Platform, with implications for CO2 storage
Reply to Norini and Groppelli's comment on “Estimating the depth and evolution of intrusions at resurgent calderas: Los Humeros (Mexico)” by Urbani et al. (2020)
Emplacement of “exotic” Zechstein slivers along the inverted Sontra Graben (northern Hessen, Germany): clues from balanced cross sections and geometrical forward modeling
Kinematics of subduction in the Ibero-Armorican arc constrained by 3D microstructural analysis of garnet and pseudomorphed lawsonite porphyroblasts from Île de Groix (Variscan belt)
Frictional properties and microstructural evolution of dry and wet calcite–dolomite gouges
Experimental evidence that viscous shear zones generate periodic pore sheets
Influence of inherited structural domains and their particular strain distributions on the Roer Valley graben evolution from inversion to extension
The Piuquencillo fault system: a long-lived, Andean-transverse fault system and its relationship with magmatic and hydrothermal activity
Extensional reactivation of the Penninic frontal thrust 3 Myr ago as evidenced by U–Pb dating on calcite in fault zone cataclasite
Distribution, microphysical properties, and tectonic controls of deformation bands in the Miocene subduction wedge (Whakataki Formation) of the Hikurangi subduction zone
Analysis of deformation bands associated with the Trachyte Mesa intrusion, Henry Mountains, Utah: implications for reservoir connectivity and fluid flow around sill intrusions
Characterization of discontinuities in potential reservoir rocks for geothermal applications in the Rhine-Ruhr metropolitan area (Germany)
On a new robust workflow for the statistical and spatial analysis of fracture data collected with scanlines (or the importance of stationarity)
Micro- and nano-porosity of the active Alpine Fault zone, New Zealand
Unraveling the origins and P-T-t evolution of the allochthonous Sobrado unit (Órdenes Complex, NW Spain) using combined U–Pb titanite, monazite and zircon geochronology and rare-earth element (REE) geochemistry
Fracture attribute scaling and connectivity in the Devonian Orcadian Basin with implications for geologically equivalent sub-surface fractured reservoirs
Structural control on fluid flow and shallow diagenesis: insights from calcite cementation along deformation bands in porous sandstones
The growth of faults and fracture networks in a mechanically evolving, mechanically stratified rock mass: a case study from Spireslack Surface Coal Mine, Scotland
Relationship between microstructures and resistance in mafic assemblages that deform and transform
Multiphase, decoupled faulting in the southern German Molasse Basin – evidence from 3-D seismic data
Near-surface Palaeocene fluid flow, mineralisation and faulting at Flamborough Head, UK: new field observations and U–Pb calcite dating constraints
Geologic characterization of nonconformities using outcrop and core analogs: hydrologic implications for injection-induced seismicity
Mapping the fracture network in the Lilstock pavement, Bristol Channel, UK: manual versus automatic
Precambrian faulting episodes and insights into the tectonothermal history of north Australia: microstructural evidence and K–Ar, 40Ar–39Ar, and Rb–Sr dating of syntectonic illite from the intracratonic Millungera Basin
Transverse jointing in foreland fold-and-thrust belts: a remote sensing analysis in the eastern Pyrenees
Pre-inversion normal fault geometry controls inversion style and magnitude, Farsund Basin, offshore southern Norway
Uncertainty assessment for 3D geologic modeling of fault zones based on geologic inputs and prior knowledge
Control of pre-existing fabric in fracture formation, reactivation and vein emplacement under variable fluid pressure conditions: an example from Archean greenstone belt, India
Extension and inversion of salt-bearing rift systems
Structure and kinematics of an extensional growth fold, Hadahid Fault System, Suez Rift, Egypt
Throw variations and strain partitioning associated with fault-bend folding along normal faults
Resolved stress analysis, failure mode, and fault-controlled fluid conduits
An active tectonic field for CO2 storage management: the Hontomín onshore case study (Spain)
Evolution of structures and hydrothermal alteration in a Palaeoproterozoic supracrustal belt: Constraining paired deformation–fluid flow events in an Fe and Cu–Au prospective terrain in northern Sweden
Hamed Fazlikhani, Wolfgang Bauer, and Harald Stollhofen
Solid Earth, 13, 393–416, https://doi.org/10.5194/se-13-393-2022, https://doi.org/10.5194/se-13-393-2022, 2022
Short summary
Short summary
Interpretation of newly acquired FRANKEN 2D seismic survey data in southeeastern Germany shows that upper Paleozoic low-grade metasedimentary rocks and possible nappe units are transported by Variscan shear zones to ca. 65 km west of the Franconian Fault System (FFS). We show that the locations of post-Variscan upper Carboniferous–Permian normal faults and associated graben and half-graben basins are controlled by the geometry of underlying Variscan shear zones.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Berit Schwichtenberg, Florian Fusseis, Ian B. Butler, and Edward Andò
Solid Earth, 13, 41–64, https://doi.org/10.5194/se-13-41-2022, https://doi.org/10.5194/se-13-41-2022, 2022
Short summary
Short summary
Hydraulic rock properties such as porosity and permeability are relevant factors that have an impact on groundwater resources, geological repositories and fossil fuel reservoirs. We investigate the influence of chemical compaction upon the porosity evolution in salt–biotite mixtures and related transport length scales by conducting laboratory experiments in combination with 4-D analysis. Our observations invite a renewed discussion of the effect of sheet silicates on chemical compaction.
David Healy and Stephen Paul Hicks
Solid Earth, 13, 15–39, https://doi.org/10.5194/se-13-15-2022, https://doi.org/10.5194/se-13-15-2022, 2022
Short summary
Short summary
The energy transition requires operations in faulted rocks. To manage the technical challenges and public concern over possible induced earthquakes, we need to quantify the risks. We calculate the probability of fault slip based on uncertain inputs, stresses, fluid pressures, and the mechanical properties of rocks in fault zones. Our examples highlight the specific gaps in our knowledge. Citizen science projects could produce useful data and include the public in the discussions about hazards.
Manuel I. de Paz-Álvarez, Thomas G. Blenkinsop, David M. Buchs, George E. Gibbons, and Lesley Cherns
Solid Earth, 13, 1–14, https://doi.org/10.5194/se-13-1-2022, https://doi.org/10.5194/se-13-1-2022, 2022
Short summary
Short summary
We describe a virtual geological mapping course implemented in response to travelling and social restrictions derived from the ongoing COVID-19 pandemic. The course was designed to replicate a physical mapping exercise as closely as possible with the aid of real field data and photographs collected by the authors during previous years in the Cantabrian Zone (NW Spain). The course is delivered through Google Earth via a KMZ file with outcrop descriptions and links to GitHub-hosted photographs.
Yueyang Xia, Jacob Geersen, Dirk Klaeschen, Bo Ma, Dietrich Lange, Michael Riedel, Michael Schnabel, and Heidrun Kopp
Solid Earth, 12, 2467–2477, https://doi.org/10.5194/se-12-2467-2021, https://doi.org/10.5194/se-12-2467-2021, 2021
Short summary
Short summary
The 2 June 1994 Java tsunami earthquake ruptured in a seismically quiet subduction zone and generated a larger-than-expected tsunami. Here, we re-process a seismic line across the rupture area. We show that a subducting seamount is located up-dip of the mainshock in a region that did not rupture during the earthquake. Seamount subduction modulates the topography of the marine forearc and acts as a seismic barrier in the 1994 earthquake rupture.
Steffen Abe and Hagen Deckert
Solid Earth, 12, 2407–2424, https://doi.org/10.5194/se-12-2407-2021, https://doi.org/10.5194/se-12-2407-2021, 2021
Short summary
Short summary
We use numerical simulations and laboratory experiments on rock samples to investigate how stress conditions influence the geometry and roughness of fracture surfaces. The roughness of the surfaces was analyzed in terms of absolute roughness and scaling properties. The results show that the surfaces are self-affine but with different scaling properties between the numerical models and the real rock samples. Results suggest that stress conditions have little influence on the surface roughness.
Chao Deng, Rixiang Zhu, Jianhui Han, Yu Shu, Yuxiang Wu, Kefeng Hou, and Wei Long
Solid Earth, 12, 2327–2350, https://doi.org/10.5194/se-12-2327-2021, https://doi.org/10.5194/se-12-2327-2021, 2021
Short summary
Short summary
This study uses seismic reflection data to interpret the geometric relationship and evolution of intra-basement and rift-related structures in the Enping sag in the northern South China Sea. Our observations suggest the primary control of pre-existing thrust faults is the formation of low-angle normal faults, with possible help from low-friction materials, and the significant role of pre-existing basement thrust faults in fault geometry, paleotopography, and syn-rift stratigraphy of rift basins.
Sonia Yeung, Marnie Forster, Emmanuel Skourtsos, and Gordon Lister
Solid Earth, 12, 2255–2275, https://doi.org/10.5194/se-12-2255-2021, https://doi.org/10.5194/se-12-2255-2021, 2021
Short summary
Short summary
We do not know when the ancient Tethys Ocean lithosphere began to founder, but one clue can be found in subduction accreted tectonic slices, including Gondwanan basement terranes on the island of Ios, Cyclades, Greece. We propose a 250–300 km southwards jump of the subduction megathrust with a period of flat-slab subduction followed by slab break-off. The initiation and its subsequent rollback of a new subduction zone would explain the onset of Oligo–Miocene extension and accompanying magmatism.
Rahul Prabhakaran, Giovanni Bertotti, Janos Urai, and David Smeulders
Solid Earth, 12, 2159–2209, https://doi.org/10.5194/se-12-2159-2021, https://doi.org/10.5194/se-12-2159-2021, 2021
Short summary
Short summary
Rock fractures are organized as networks with spatially varying arrangements. Due to networks' influence on bulk rock behaviour, it is important to quantify network spatial variation. We utilize an approach where fracture networks are treated as spatial graphs. By combining graph similarity measures with clustering techniques, spatial clusters within large-scale fracture networks are identified and organized hierarchically. The method is validated on a dataset with nearly 300 000 fractures.
Olivier Lacombe, Nicolas E. Beaudoin, Guilhem Hoareau, Aurélie Labeur, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 12, 2145–2157, https://doi.org/10.5194/se-12-2145-2021, https://doi.org/10.5194/se-12-2145-2021, 2021
Short summary
Short summary
This paper aims to illustrate how the timing and duration of contractional deformation associated with folding in orogenic forelands can be constrained by the dating of brittle mesostructures observed in folded strata. The study combines new and already published absolute ages of fractures to provide, for the first time, an educated discussion about the factors controlling the duration of the sequence of deformation encompassing layer-parallel shortening, fold growth, and late fold tightening.
Vincent Famin, Hugues Raimbourg, Muriel Andreani, and Anne-Marie Boullier
Solid Earth, 12, 2067–2085, https://doi.org/10.5194/se-12-2067-2021, https://doi.org/10.5194/se-12-2067-2021, 2021
Short summary
Short summary
Sediments accumulated in accretionary prisms are deformed by the compression imposed by plate subduction. Here we show that deformation of the sediments transforms some minerals in them. We suggest that these mineral transformations are due to the proliferation of microorganisms boosted by deformation. Deformation-enhanced microbial proliferation may change our view of sedimentary and tectonic processes in subduction zones.
Marta Adamuszek, Dan M. Tămaş, Jessica Barabasch, and Janos L. Urai
Solid Earth, 12, 2041–2065, https://doi.org/10.5194/se-12-2041-2021, https://doi.org/10.5194/se-12-2041-2021, 2021
Short summary
Short summary
We analyse folded multilayer sequences in the Ocnele Mari salt mine (Romania) to gain insight into the long-term rheological behaviour of rock salt. Our results indicate the large role of even a small number of impurities in the rock salt for its effective mechanical behaviour. We demonstrate how the development of folds that occur at various scales can be used to constrain the viscosity ratio in the deformed multilayer sequence.
Dario Zampieri, Paola Vannoli, and Pierfrancesco Burrato
Solid Earth, 12, 1967–1986, https://doi.org/10.5194/se-12-1967-2021, https://doi.org/10.5194/se-12-1967-2021, 2021
Short summary
Short summary
The long-lived Schio-Vicenza Fault System is a major shear zone cross-cutting the foreland and the thrust belt of the eastern southern Alps. We review 150 years of scientific works and explain its activity and kinematics, characterized by sinistral and dextral transcurrent motion along its southern and northern sections, respectively, by a geodynamic model that has the Adria indenter as the main actor and coherently reconciles the available geological and geophysical evidence collected so far.
Jin Lai, Dong Li, Yong Ai, Hongkun Liu, Deyang Cai, Kangjun Chen, Yuqiang Xie, and Guiwen Wang
Solid Earth Discuss., https://doi.org/10.5194/se-2021-85, https://doi.org/10.5194/se-2021-85, 2021
Revised manuscript accepted for SE
Short summary
Short summary
(1) Structural diagenesis analysis is performed on the ultra-deep tight sandstone; (2) Fracture and intergranular pores are related to the low in situ stress magnitudes; (3) Dissolution is associated with the presences of fracture.
Vincent F. Verwater, Eline Le Breton, Mark R. Handy, Vincenzo Picotti, Azam Jozi Najafabadi, and Christian Haberland
Solid Earth, 12, 1309–1334, https://doi.org/10.5194/se-12-1309-2021, https://doi.org/10.5194/se-12-1309-2021, 2021
Short summary
Short summary
Balancing along geological cross sections reveals that the Giudicarie Belt comprises two kinematic domains. The SW domain accommodated at least ~ 18 km Late Oligocene to Early Miocene shortening. Since the Middle Miocene, the SW domain experienced at least ~ 12–22 km shortening, whereas the NE domain underwent at least ~ 25–35 km. Together, these domains contributed to ~ 40–47 km of sinistral offset of the Periadriatic Fault along the Northern Giudicarie Fault since the Late Oligocene.
Emma A. H. Michie, Mark J. Mulrooney, and Alvar Braathen
Solid Earth, 12, 1259–1286, https://doi.org/10.5194/se-12-1259-2021, https://doi.org/10.5194/se-12-1259-2021, 2021
Short summary
Short summary
Generating an accurate model of the subsurface is crucial when assessing a site for CO2 storage, particularly for a fault-bound storage site that may act as a seal or could reactivate upon CO2 injection. However, we have shown how picking strategy, i.e. line spacing, chosen to create the model significantly influences any subsequent fault analyses but is surprisingly rarely discussed. This analysis has been performed on the Vette Fault bounding the Smeaheia potential CO2 storage site.
Stefano Urbani, Guido Giordano, Federico Lucci, Federico Rossetti, and Gerardo Carrasco-Núñez
Solid Earth, 12, 1111–1124, https://doi.org/10.5194/se-12-1111-2021, https://doi.org/10.5194/se-12-1111-2021, 2021
Short summary
Short summary
Structural studies in active calderas have a key role in the exploration of geothermal systems. We reply in detail to the points raised by the comment of Norini and Groppelli (2020), strengthening the relevance of our structural fieldwork for geothermal exploration and exploitation in active caldera geothermal systems including the Los Humeros caldera.
Jakob Bolz and Jonas Kley
Solid Earth, 12, 1005–1024, https://doi.org/10.5194/se-12-1005-2021, https://doi.org/10.5194/se-12-1005-2021, 2021
Short summary
Short summary
To assess the role smaller graben structures near the southern edge of the Central European Basin System play in the basin’s overall deformational history, we take advantage of a feature found on some of these structures, where slivers from older rock units appear along the graben's main fault, surrounded on both sides by younger strata. The implications for the geometry of the fault provide a substantially improved estimate for the magnitude of normal and thrust motion along the fault system.
Domingo G. A. M. Aerden, Alejandro Ruiz-Fuentes, Mohammad Sayab, and Aidan Forde
Solid Earth, 12, 971–992, https://doi.org/10.5194/se-12-971-2021, https://doi.org/10.5194/se-12-971-2021, 2021
Short summary
Short summary
We studied the geometry of foliations and microfolds preserved within metamorphic garnet crystals using X-ray tomography. The studied rocks are blueschists from Ile de Groix formed during Late Devonian subduction of Gondwana under Armorica. Several sets of differently oriented microfabrics were found recording variations in the direction of subduction. Comparison with similar data for Iberia supports that Iberia rotated only 10–20° during the Cretaceous opening of the North Atlantic.
Matteo Demurtas, Steven A.F. Smith, Elena Spagnuolo, and Giulio Di Toro
Solid Earth, 12, 595–612, https://doi.org/10.5194/se-12-595-2021, https://doi.org/10.5194/se-12-595-2021, 2021
Short summary
Short summary
We performed shear experiments on calcite–dolomite gouge mixtures to better understand the behaviour of carbonates during sub-seismic to seismic deformation in the shallow crust. The development of a foliation in the gouge was only restricted to coseismic sliding, whereas fluidisation occurred over a wide range of slip velocities (sub-seismic to coseismic) in the presence of water. These observations will contribute to a better interpretation of the rock record.
James Gilgannon, Marius Waldvogel, Thomas Poulet, Florian Fusseis, Alfons Berger, Auke Barnhoorn, and Marco Herwegh
Solid Earth, 12, 405–420, https://doi.org/10.5194/se-12-405-2021, https://doi.org/10.5194/se-12-405-2021, 2021
Short summary
Short summary
Using experiments that simulate deep tectonic interfaces, known as viscous shear zones, we found that these zones spontaneously develop periodic sheets of small pores. The presence of porous layers in deep rocks undergoing tectonic deformation is significant because it requires a change to the current model of how the Earth deforms. Emergent porous layers in viscous rocks will focus mineralising fluids and could lead to the seismic failure of rocks that are never supposed to have this occur.
Jef Deckers, Bernd Rombaut, Koen Van Noten, and Kris Vanneste
Solid Earth, 12, 345–361, https://doi.org/10.5194/se-12-345-2021, https://doi.org/10.5194/se-12-345-2021, 2021
Short summary
Short summary
This study shows the presence of two structural domains in the western border fault system of the Roer Valley graben. These domains, dominated by NW–SE-striking faults, displayed distinctly different strain distributions during both Late Cretaceous compression and Cenozoic extension. The southern domain is characterized by narrow, localized faulting, while the northern domain is characterized by wide, distributed faulting. The non-colinear WNW–ESE Grote Brogel fault links both domains.
José Piquer, Orlando Rivera, Gonzalo Yáñez, and Nicolás Oyarzún
Solid Earth, 12, 253–273, https://doi.org/10.5194/se-12-253-2021, https://doi.org/10.5194/se-12-253-2021, 2021
Short summary
Short summary
A proper recognition of deep, long-lived fault systems is very important for society. They can produce potentially dangerous earthquakes. They can also act as pathways for magmas and hydrothermal fluids, leading to the formation of volcanoes, geothermal systems and mineral deposits. However, the manifestations of these very old faults in the present-day surface can be very subtle. Here, we present a detailed, multi-disciplinary study of a fault system of this type in the Andes of central Chile.
Antonin Bilau, Yann Rolland, Stéphane Schwartz, Nicolas Godeau, Abel Guihou, Pierre Deschamps, Benjamin Brigaud, Aurélie Noret, Thierry Dumont, and Cécile Gautheron
Solid Earth, 12, 237–251, https://doi.org/10.5194/se-12-237-2021, https://doi.org/10.5194/se-12-237-2021, 2021
Short summary
Short summary
As a result of the collision between the European and Apulian plates, the Alps have experienced several evolutionary stages. The Penninic frontal thrust (PFT) (major thrust) was associated with compression, and now seismic studies show ongoing extensional activity. Calcite mineralization associated with shortening and extensional structures was sampled. The last deformation stages are dated by U–Pb on calcite at ~ 3.5 and ~ 2.5 Ma. Isotope analysis evidences deep crustal fluid mobilization.
Kathryn E. Elphick, Craig R. Sloss, Klaus Regenauer-Lieb, and Christoph E. Schrank
Solid Earth, 12, 141–170, https://doi.org/10.5194/se-12-141-2021, https://doi.org/10.5194/se-12-141-2021, 2021
Short summary
Short summary
We analysed a sedimentary rock package located in Castlepoint, New Zealand, to test the control of the tectonic setting on the observed deformation structures. In extension and contraction, we observed faults and small fault-like structures characterised by complex spatial patterns and a reduction in porosity and grain size compared with the host rock. With these properties, the structures are likely to act as barriers to fluid flow and cause compartmentalisation of the sedimentary sequence.
Penelope I. R. Wilson, Robert W. Wilson, David J. Sanderson, Ian Jarvis, and Kenneth J. W. McCaffrey
Solid Earth, 12, 95–117, https://doi.org/10.5194/se-12-95-2021, https://doi.org/10.5194/se-12-95-2021, 2021
Short summary
Short summary
Magma accommodation in the shallow crust leads to deformation of the surrounding host rock through the creation of faults, fractures and folds. This deformation will impact fluid flow around intrusive magma bodies (including sills and laccoliths) by changing the porosity and permeability network of the host rock. The results may have important implications for industries where fluid flow within the subsurface adds value (e.g. oil and gas, hydrology, geothermal and carbon sequestration).
Martin Balcewicz, Benedikt Ahrens, Kevin Lippert, and Erik H. Saenger
Solid Earth, 12, 35–58, https://doi.org/10.5194/se-12-35-2021, https://doi.org/10.5194/se-12-35-2021, 2021
Short summary
Short summary
The geothermal potential of a carbonate reservoir in the Rhine-Ruhr area, Germany, was investigated by field and laboratory investigations. The carbonate layer of interest is approx. 150 m thick; located at 4 to 6 km depth; and might extend below Essen, Bochum, and Dortmund. We proposed focusing on discontinuities striking NNW–SSE for geothermal applications, as these are the most common, strike in the direction of the main horizontal stress, and dominate reservoir fluid flow.
Andrea Bistacchi, Silvia Mittempergher, Mattia Martinelli, and Fabrizio Storti
Solid Earth, 11, 2535–2547, https://doi.org/10.5194/se-11-2535-2020, https://doi.org/10.5194/se-11-2535-2020, 2020
Short summary
Short summary
We present an innovative workflow for the statistical analysis of fracture data collected along scanlines. Our methodology is based on performing non-parametric statistical tests, which allow detection of important features of the spatial distribution of fractures, and on the analysis of the cumulative spacing function (CSF) and cumulative spacing derivative (CSD), which allows the boundaries of stationary domains to be defined in an objective way.
Martina Kirilova, Virginia Toy, Katrina Sauer, François Renard, Klaus Gessner, Richard Wirth, Xianghui Xiao, and Risa Matsumura
Solid Earth, 11, 2425–2438, https://doi.org/10.5194/se-11-2425-2020, https://doi.org/10.5194/se-11-2425-2020, 2020
Short summary
Short summary
Processes associated with open pores can change the physical properties of rocks and cause earthquakes. In borehole samples from the Alpine Fault zone, we show that many pores in these rocks were filled by weak materials that can slide easily. The amount of open spaces was thus reduced, and fluids circulating within them built up high pressures. Both weak materials and high pressures within pores reduce the rock strength; thus the state of pores here can trigger the next Alpine Fault earthquake.
José Manuel Benítez-Pérez, Pedro Castiñeiras, Juan Gómez-Barreiro, José R. Martínez Catalán, Andrew Kylander-Clark, and Robert Holdsworth
Solid Earth, 11, 2303–2325, https://doi.org/10.5194/se-11-2303-2020, https://doi.org/10.5194/se-11-2303-2020, 2020
Short summary
Short summary
The Sobrado unit represents an allochthonous tectonic slice of exhumed high-grade metamorphic rocks formed during a complex sequence of orogenic processes in the middle to lower crust. We have combined U–Pb geochronology and REE analyses (LASS-ICP-MS) of accessory minerals in migmatitic paragneiss (monazite, zircon) and mylonitic amphibolites (titanite) to constrain the evolution. A Middle Devonian minimum age for HP metamorphism has been obtained.
Anna M. Dichiarante, Ken J. W. McCaffrey, Robert E. Holdsworth, Tore I. Bjørnarå, and Edward D. Dempsey
Solid Earth, 11, 2221–2244, https://doi.org/10.5194/se-11-2221-2020, https://doi.org/10.5194/se-11-2221-2020, 2020
Short summary
Short summary
We studied the characteristics of fracture systems in the Devonian rocks of the Orcadian Basin in Caithness. These mineral-filled fractures have properties that may be used to predict the size and spatial arrangement of similar structures in offshore basins. This includes the Clair field in the Faroe–Shetland Basin.
Leonardo Del Sole, Marco Antonellini, Roger Soliva, Gregory Ballas, Fabrizio Balsamo, and Giulio Viola
Solid Earth, 11, 2169–2195, https://doi.org/10.5194/se-11-2169-2020, https://doi.org/10.5194/se-11-2169-2020, 2020
Short summary
Short summary
This study focuses on the impact of deformation bands on fluid flow and diagenesis in porous sandstones in two different case studies (northern Apennines, Italy; Provence, France) by combining a variety of multiscalar mapping techniques, detailed field and microstructural observations, and stable isotope analysis. We show that deformation bands buffer and compartmentalize fluid flow and foster and localize diagenesis, recorded by carbonate cement nodules spatially associated with the bands.
Billy James Andrews, Zoe Kai Shipton, Richard Lord, and Lucy McKay
Solid Earth, 11, 2119–2140, https://doi.org/10.5194/se-11-2119-2020, https://doi.org/10.5194/se-11-2119-2020, 2020
Short summary
Short summary
Through geological mapping we find that fault zone internal structure depends on whether or not the fault cuts multiple lithologies, the presence of shale layers, and the orientation of joints and coal cleats at the time of faulting. During faulting, cementation of fractures (i.e. vein formation) is highest where the fractures are most connected. This leads to the counter-intuitive result that the highest-fracture-density part of the network often has the lowest open-fracture connectivity.
Nicolas Mansard, Holger Stünitz, Hugues Raimbourg, Jacques Précigout, Alexis Plunder, and Lucille Nègre
Solid Earth, 11, 2141–2167, https://doi.org/10.5194/se-11-2141-2020, https://doi.org/10.5194/se-11-2141-2020, 2020
Short summary
Short summary
Our rock deformation experiments (solid-medium Griggs-type apparatus) on wet assemblages of mafic compositions show that the ability of minerals to react controls the portions of rocks that deform and that minor chemical and mineralogical variations can considerably modify the strength of deformed assemblages. Our study suggests that the rheology of mafic rocks, which constitute a large part of the oceanic crust, cannot be summarized as being rheologically controlled by monophase materials.
Vladimir Shipilin, David C. Tanner, Hartwig von Hartmann, and Inga Moeck
Solid Earth, 11, 2097–2117, https://doi.org/10.5194/se-11-2097-2020, https://doi.org/10.5194/se-11-2097-2020, 2020
Short summary
Short summary
In our work, we carry out an in-depth structural analysis of a geometrically decoupled fault system in the southern German Molasse Basin using a high-resolution 3-D seismic dataset. Based on this analysis, we reconstruct the tectonic history and changes in the stress regimes to explain the structure and evolution of faults. The results contribute in understanding the driving mechanisms behind formation, propagation, and reactivation of faults during foreland basin formation.
Nick M. W. Roberts, Jack K. Lee, Robert E. Holdsworth, Christopher Jeans, Andrew R. Farrant, and Richard Haslam
Solid Earth, 11, 1931–1945, https://doi.org/10.5194/se-11-1931-2020, https://doi.org/10.5194/se-11-1931-2020, 2020
Short summary
Short summary
We characterise a well-known fractured and faulted exposure of Cretaceous chalk in NE England, combining field observations with novel U–Pb calcite dating. We show that the faulting and associated fluid flow occurred during the interval of ca. 64–56 Ma, predating earlier estimates of Alpine-related tectonic inversion. We demonstrate that the main extensional fault zone acted as a conduit linking voluminous fluid flow and linking deeper sedimentary layers with the shallow subsurface.
Elizabeth S. Petrie, Kelly K. Bradbury, Laura Cuccio, Kayla Smith, James P. Evans, John P. Ortiz, Kellie Kerner, Mark Person, and Peter Mozley
Solid Earth, 11, 1803–1821, https://doi.org/10.5194/se-11-1803-2020, https://doi.org/10.5194/se-11-1803-2020, 2020
Short summary
Short summary
A summary of observed rock properties across the contact between crystalline basement rock and the overlying younger sedimentary rocks from outcrop and core samples is presented. The data span a range of tectonic settings and describe the rock types immediately adjacent to the contact. The range of features observed at these contacts can influence the migration of fluids. The observations presented here are critical for the safe implementation of fluid injection and geothermal production.
Christopher Weismüller, Rahul Prabhakaran, Martijn Passchier, Janos L. Urai, Giovanni Bertotti, and Klaus Reicherter
Solid Earth, 11, 1773–1802, https://doi.org/10.5194/se-11-1773-2020, https://doi.org/10.5194/se-11-1773-2020, 2020
Short summary
Short summary
We photographed a fractured limestone pavement with a drone to compare manual and automatic fracture tracing and analyze the evolution and spatial variation of the fracture network in high resolution. We show that automated tools can produce results comparable to manual tracing in shorter time but do not yet allow the interpretation of fracture generations. This work pioneers the automatic fracture mapping of a complete outcrop in detail, and the results can be used as fracture benchmark.
I. Tonguç Uysal, Claudio Delle Piane, Andrew James Todd, and Horst Zwingmann
Solid Earth, 11, 1653–1679, https://doi.org/10.5194/se-11-1653-2020, https://doi.org/10.5194/se-11-1653-2020, 2020
Short summary
Short summary
This study represents an integrated approach to radiometric age dating using potassium-bearing clay minerals formed during faulting and provides insights into the enigmatic time–space distribution of Precambrian tectonic zones in north-central Australia. Specifically, our work firmly indicates a late Mesoproterzoic minimum age for the Millungera Basin in north Australia and a previously unrecorded concealed late Mesoproterozoic–early Neoproterozoic tectonic event in north-central Australia.
Stefano Tavani, Pablo Granado, Amerigo Corradetti, Thomas Seers, Josep Maria Casas, and Josep Anton Muñoz
Solid Earth, 11, 1643–1651, https://doi.org/10.5194/se-11-1643-2020, https://doi.org/10.5194/se-11-1643-2020, 2020
Short summary
Short summary
Using orthophotos, we manually digitized 30 000 joints in the eastern Ebro Basin of the Pyrenees. Joints are perpendicular to the belt in the frontal portion of the belt and in the inner and central portion of the foredeep basin. Joint orientations in the external portion of the foredeep become less clustered. Joints in the studied area formed in the foredeep in response to foredeep-parallel stretching, which becomes progressively less intense within the external portion of the foredeep basin.
Thomas B. Phillips, Christopher A.-L. Jackson, and James R. Norcliffe
Solid Earth, 11, 1489–1510, https://doi.org/10.5194/se-11-1489-2020, https://doi.org/10.5194/se-11-1489-2020, 2020
Short summary
Short summary
Normal faults often reactivate under compression, in a process called inversion. The 3D geometry of these structures (and the effect on resultant inversion structural style) is often not considered. Using seismic reflection data, we examine how stresses form different inversion styles that are controlled by the geometry of the pre-existing structure. Geometrically simple faults are preferentially reactivated; more complex areas are typically not reactivated and instead experience bulk uplift.
Ashton Krajnovich, Wendy Zhou, and Marte Gutierrez
Solid Earth, 11, 1457–1474, https://doi.org/10.5194/se-11-1457-2020, https://doi.org/10.5194/se-11-1457-2020, 2020
Short summary
Short summary
In this paper, a novel methodology of 3D geologic model uncertainty assessment that considers both input data and prior knowledge is developed and applied to characterize fault zones – areas of damaged rock surrounding a fault surface that are important to subsurface engineering projects. The results of the study demonstrate how existing frameworks can be expanded to incorporate new types of information to arrive at a realistic and straightforward model of fault zone geometry in the subsurface.
Sreyashi Bhowmick and Tridib Kumar Mondal
Solid Earth, 11, 1227–1246, https://doi.org/10.5194/se-11-1227-2020, https://doi.org/10.5194/se-11-1227-2020, 2020
Short summary
Short summary
We explore pre-existing fabric in metabasalts replete with a wide range of crisscross fractures/faults, hosting quartz veins of variable orientations and thicknesses in the Chitradurga region, India. The fractures are identified as components of a riedel shear system. We evaluate reactivation potential of fractures and conclude that episodic changes in fluid pressure conditions triggered fault-valve action, thereby reactivating fabric and fractures, leading to vein emplacement in the region.
Tim P. Dooley and Michael R. Hudec
Solid Earth, 11, 1187–1204, https://doi.org/10.5194/se-11-1187-2020, https://doi.org/10.5194/se-11-1187-2020, 2020
Short summary
Short summary
Sandbox models investigated extension and inversion of salt-bearing rifts such as those found in the Moroccan High Atlas, North Africa. Sand packs were stretched and the structural lows were filled with a salt analog. Models were then subjected to additional extension and loading that remobilized the salt into diapirs. During shortening the distribution of the salt in the overburden governed the structural styles and trends in the supra-salt strata, strongly decoupled from subsalt deformation.
Christopher A.-L. Jackson, Paul S. Whipp, Robert L. Gawthorpe, and Matthew M. Lewis
Solid Earth, 11, 1027–1051, https://doi.org/10.5194/se-11-1027-2020, https://doi.org/10.5194/se-11-1027-2020, 2020
Short summary
Short summary
Plate tectonics describes the creation, motion, and ultimate destruction of the Earth's continents and oceans. A key plate tectonic process is continental extension; this occurs when the Earth's plates are pulled apart to ultimately form a new ocean. Giant fractures (faults) accommodate plate stretching, although buckling (folding) is thought to be locally important. We use field data to understand how fracturing and buckling relate to each other, demonstrating they are spatially complex.
Efstratios Delogkos, Muhammad Mudasar Saqab, John J. Walsh, Vincent Roche, and Conrad Childs
Solid Earth, 11, 935–945, https://doi.org/10.5194/se-11-935-2020, https://doi.org/10.5194/se-11-935-2020, 2020
Short summary
Short summary
Normal faults have irregular geometries on a range of scales. A quantitative model has been presented which illustrates the range of deformation arising from movement on fault surface irregularities, with fault-bend folding generating geometries reminiscent of normal drag and reverse drag. We show that fault throw can be subject to errors of up to ca. 50 % for realistic fault bend geometries (up to ca. 40°), even on otherwise sub-planar faults with constant displacement.
David A. Ferrill, Kevin J. Smart, and Alan P. Morris
Solid Earth, 11, 899–908, https://doi.org/10.5194/se-11-899-2020, https://doi.org/10.5194/se-11-899-2020, 2020
Short summary
Short summary
This paper explores failure modes and deformation behavior of faults in the mechanically layered Eagle Ford Formation, an ultra-low permeability self-sourced oil and gas reservoir and aquitard in southwest Texas, USA. The role of dilation versus slip relates in predictable ways to mechanical stratigraphy, stress field, and dilation and slip tendency. We conclude that dilation tendency vs. slip tendency can be used to infer fault and fracture deformation modes and conduit versus seal behaviour.
Raúl Pérez-López, José F. Mediato, Miguel A. Rodríguez-Pascua, Jorge L. Giner-Robles, Adrià Ramos, Silvia Martín-Velázquez, Roberto Martínez-Orío, and Paula Fernández-Canteli
Solid Earth, 11, 719–739, https://doi.org/10.5194/se-11-719-2020, https://doi.org/10.5194/se-11-719-2020, 2020
Short summary
Short summary
Long-term monitoring of CO2 of onshore storage has to consider thousands of years as a medium lifetime of the storage. In this wide time interval, the stress and strain properties of the reservoir change and earthquakes could occur. Therefore, we have to identify those fault sets which can be reactivated by changing the stress conditions. We need to know the role of active fault sets and model the changing conditions to prevent induced seismicity.
Joel B. H. Andersson, Tobias E. Bauer, and Edward P. Lynch
Solid Earth, 11, 547–578, https://doi.org/10.5194/se-11-547-2020, https://doi.org/10.5194/se-11-547-2020, 2020
Short summary
Short summary
In this field-based study, geological structures and hydrothermal alterations in one of the least known geological terrains in Sweden are investigated. The area is located above the polar circle in northwestern Sweden that produces a significant portion of the iron and copper in the EU. A new tectonic model based on field evidence and microstructures is presented and it is shown that minerals typical for iron and copper–gold deposits can be linked to different phases of the structural evolution.
Cited articles
Adams, C., Barley, M., Fletcher, I., and Pickard, A.: Evidence from U–Pb
zircon and 40Ar∕39Ar muscovite detrital mineral ages in
metasandstones for movement of the Torlesse suspect terrane around the
eastern margin of Gondwanaland, Terra Nova, 10, 183–189, 1998. a
Adams, C., Mortimer, N., Campbell, H., and Griffin, W.: Detrital zircon ages
in Buller and Takaka terranes, New Zealand: constraints on early Zealandia
history, New Zeal. J. Geol. Geop., 58, 176–201, 2015. a
Alexander, R. J. and Harper, G. D.: The Josephine ophiolite: an ancient
analogue for slow-to intermediate-spreading oceanic ridges, Geological
Society, London, Special Publications, 60, 3–38, 1992. a
Allibone, A. and Tulloch, A.: Early Cretaceous dextral transpressional
deformation within the Median Batholith, Stewart Island, New
Zealand, New Zeal. J. Geol. Geop., 51, 115–134, 2008. a
Allibone, A., Jongens, R., Turnbull, I., Milan, L., Daczko, N. R., DePaoli, M.,
and Tulloch, A.: Plutonic rocks of Western Fiordland, New Zealand: Field
relations, geochemistry, correlation, and nomenclature, New Zeal. J. Geol. Geop., 52, 379–415, 2009. a
Allmendinger, R. W., Cardozo, N., and Fisher, D. M.: Structural geology
algorithms: Vectors and tensors, Cambridge University Press, Cambridge, UK, 2011. a
Auzende, A.-L., Devouard, B., Guillot, S., Daniel, I., Baronnet, A., and
Lardeaux, J.-M.: Serpentinites from Central Cuba: petrology and HRTEM study,
Eur. J. Mineral., 14, 905–914, 2002. a
Auzende, A.-L., Guillot, S., Devouard, B., and Baronnet, A.: Serpentinites in
an Alpine convergent setting: effects of metamorphic grade and deformation on
microstructures, Eur. J. Mineral., 18, 21–33, 2006. a
Auzende, A.-L., Escartin, J., Walte, N. P., Guillot, S., Hirth, G., and Frost,
D. J.: Deformation mechanisms of antigorite serpentinite at subduction zone
conditions determined from experimentally and naturally deformed rocks, Earth
Planet. Sc. Lett., 411, 229–240, 2015. a
Bach, W., Paulick, H., Garrido, C. J., Ildefonse, B., Meurer, W. P., and
Humphris, S. E.: Unraveling the sequence of serpentinization reactions:
Petrography, mineral chemistry, and petrophysics of serpentinites from MAR
15∘ N (ODP Leg 209, Site 1274), Geophys. Res. Lett., 33, 4–7,
2006. a
Barth, N. C., Boulton, C., Carpenter, B. M., Batt, G. E., and Toy, V. G.: Slip
localization on the southern Alpine Fault New Zealand, Tectonics, 32,
620–640, 2013. a
Beall, A., Fagereng, Å., and Ellis, S.: Strength of strained two-phase
mixtures: Application to rapid creep and stress amplification in subduction
zone mélange, Geophys. Res. Lett., 46, 169–178, 2019. a
Bebout, G. E.: Metasomatism in subduction zones of subducted oceanic slabs,
mantle wedges, and the slab-mantle interface, in: Metasomatism and the
Chemical Transformation of Rock, pp. 289–349, Springer, Berlin, 2013. a
Bebout, G. E. and Barton, M. D.: Metasomatism during subduction: products and
possible paths in the Catalina Schist, California, Chem. Geol., 108,
61–92, 1993. a
Bebout, G. E. and Penniston-Dorland, S. C.: Fluid and mass transfer at
subduction interfaces – The field metamorphic record, Lithos, 240, 228–258,
2016. a
Bellot, J.-P.: Natural deformation related to serpentinisation of an ultramafic
inclusion within a continental shear zone: The key role of fluids,
Tectonophysics, 449, 133–144, 2008. a
Berthé, D., Choukroune, P., and Jégouzo, P.: Orthogneiss, mylonite and
non coaxial deformation of granites: the example of the South Armorican Shear
Zone, J. Struct. Geol., 1, 31–42, 1979. a
Bishop, D. G., Bradshaw, J. D., Landis, C. A.: Provisional terrane map of South Island, New Zealand, in: Tectonostratigraphic Terranes of the Circum-Pacific Region. Earth Science Series, edited by: Howell, D. G., 1. Circum-Pacific Council for Energy and Mineral Resources, Houston, TX, 515–521, 1985. a
Bradshaw, J.: A review of the Median Tectonic Zone: terrane boundaries and
terrane amalgamation near the Median Tectonic Line, New Zeal. J. Geol. Geop., 36, 117–125, 1993. a
Brantut, N., Passelègue, F. X., Deldicque, D., Rouzaud, J. N., and
Schubnel, A.: Dynamic weakening and amorphization in serpentinite during
laboratory earthquakes, Geology, 44, 607–610, 2016. a
Cann, J. R., Blackman, D. K., Smith, D. K., McAllister, E., Janssen, B., Mello,
S., Avgerinos, E., Pascoe, A. R., and Escartin, J.: Corrugated slip surfaces
formed at ridge–transform intersections on the Mid-Atlantic Ridge, Nature,
385, 329–332, 1997. a
Chen, S., Pe-Piper, G., Piper, D. J., and Guo, Z.: Ophiolitic mélanges in
crustal-scale fault zones: Implications for the Late Palaeozoic tectonic
evolution in West Junggar, China, Tectonics, 33, 2419–2443, 2014. a
Coleman, R. G.: Petrologic and geophysical nature of serpentinites, Geol.
Soc. Am. B., 82, 897–918, 1971. a
Cooper, A. F. and Ireland, T. R.: The Pounamu terrane, a new Cretaceous exotic
terrane within the Alpine Schist, New Zealand; tectonically emplaced,
deformed and metamorphosed during collision of the LIP Hikurangi Plateau with
Zealandia, Gondwana Res., 27, 1255–1269, 2015. a
Cooper, R.: Early Paleozoic terranes of New Zealand, J. Roy.
Soc. New Zeal., 19, 73–112, 1989. a
Cronshaw, H.: The Connemara serpentine rocks, Geological Magazine, 60,
467–471, 1923. a
Escartín, J., Mével, C., MacLeod, C. J., and McCaig, A. M.:
Constraints on deformation conditions and the origin of oceanic detachments:
The Mid-Atlantic Ridge core complex at 15∘45′ N, Geochem. Geophys.
Geosyst., 4, 1067, https://doi.org/10.1029/2002GC000472, 2003. a
Fagereng, Å. and Sibson, R. H.: Mélange rheology and seismic style,
Geology, 38, 751–754, 2010. a
Gaina, C., Müller, D. R., Royer, J.-Y., Stock, J., Hardebeck, J., and
Symonds, P.: The tectonic history of the Tasman Sea: a puzzle with 13 pieces,
J. Geophys. Res.-Sol. Ea., 103, 12413–12433, 1998. a
Gates, A. E.: Domainal failure of serpentinite in shear zones, State-Line mafic
complex, Pennsylvania, USA, J. Struct. Geol., 14, 19–28, 1992. a
Gray, D. R., Foster, D. A., Maas, R., Spaggiari, C. V., Gregory, R. T.,
Goscombe, B., and Hoffmann, K.: Continental growth and recycling by accretion
of deformed turbidite fans and remnant ocean basins: Examples from
Neoproterozoic and Phanerozoic orogens, Memoirs-Geological Society Of
America, 200, 63–92, 2007. a
Guillot, S. and Hattori, K.: Serpentinites: Essential roles in geodynamics,
arc volcanism, sustainable development, and the origin of life, Elements, 9,
95–98, 2013. a
Guillot, S., Schwartz, S., Hattori, K., Auzende, A., and Lardeaux, J.: The
Monviso ophiolitic massif (Western Alps), a section through a serpentinite
subduction channel, Journal of the Virtual Explorer, 16, 17 pp., 2004. a
Harper, G. D., Grady, K., and Coulton, A. J.: Origin of the amphibolite
“sole” of the Josephine ophiolite: Emplacement of a cold ophiolite over a
hot arc, Tectonics, 15, 296–313, 1996. a
Hirauchi, K. I. and Yamaguchi, H.: Unique deformation processes involving the
recrystallization of chrysotile within serpentinite: Implications for
aseismic slip events within subduction zones, Terra Nova, 19, 454–461,
2007. a
Hirauchi, K. I., den Hartog, S. A. M., and Spiers, C. J.: Weakening of the
slab-mantle wedge interface induced by metasomatic growth of talc, Geology,
41, 75–78, 2013. a
Hutton, C. O.: Basic and ultrabasic rocks in north-west Otago, Trans. Roy.
Soc. NZ, 66, 231–254, 1936. a
Imber, J., Holdsworth, R. E., Butler, C. A., and Lloyd, G. E.: Fault-zone
weakening processes along the reactivated Outer Hebrides Fault Zone,
Scotland, J. Geol. Soc., 154, 105–109, 1997. a
Jefferies, S. P., Holdsworth, R. E., Wibberley, C. A. J., Shimamoto, T.,
Spiers, C. J., Niemeijer, A. R., and Lloyd, G. E.: The nature and importance
of phyllonite development in crustal-scale fault cores: an example from the
Median Tectonic Line, Japan, J. Struct. Geol., 28, 220–235,
2006. a
Jugum, D., Norris, R., and Palin, J.: Late Jurassic detrital zircons from the
Haast Schist and their implications for New Zealand terrane assembly and
metamorphism, New Zeal. J. Geol. Geop., 56, 223–228,
2013. a
Kimbrough, D., Tulloch, A., Coombs, D., Landis, C., Johnston, M., and
Mattinson, J.: Uranium-lead zircon ages from the median tectonic zone, New
Zealand, New Zeal. J. Geol. Geop., 37, 393–419, 1994. a
Kimbrough, D. L., Mattinson, J. M., Coombs, D. S., Landis, C. A., and Johnston,
M. R.: Uranium-lead ages from the Dun Mountain ophiolite belt and Brook
Street terrane, South Island, New Zealand, Geol. Soc. Am.
B., 104, 429–443, 1992. a
Kohli, A. H., Goldsby, D. L., Hirth, G., and Tullis, T.: Flash weakening of
serpentinite at near-seismic slip rates, J. Geophys. Res.-Sol. Ea., 116, 1–18, 2011. a
Landis, C. and Coombs, D.: Metamorphic belts and orogenesis in southern New
Zealand, Tectonophysics, 4, 501–518, 1967. a
Landis, C., Campbell, H., Aslund, T., Cawood, P., Douglas, A., Kimbrough, D.,
Pillai, D., Raine, J., and Willsman, A.: Permian-Jurassic strata at
Productus Creek, Southland, New Zealand: implications for terrane dynamics of
the eastern Gondwanaland margin, New Zeal. J. Geol. Geop., 42, 255–278, 1999. a
Lister, G. S. and Snoke, A. W.: S-C mylonites, J. Struct. Geol.,
6, 617–638, 1984. a
MacKinnon, T. C.: Origin of the Torlesse terrane and coeval rocks, South
Island, New Zealand, Geol. Soc. Am. B., 94, 967–985,
1983. a
MacPherson, E.: An outline of Late Cretaceous and Tertiary diastrophism in New
Zealand, New Zealand Dept. Sci. Ind. Res., 6, 1–32, 1946. a
Maltman, A., Labaume, P., and Housen, B.: Structural geology of the
décollement at the toe of the barbados accretionary prism 1, Proc.
ODP, Scientific Results, 156, 156, 279–292, 1997. a
Maltman, A. J.: Serpentinite textures in Anglesey, North Wales, United Kingdom,
Geol. Soc. Am. B., 89, 972–980, 1978. a
Mellini, M., Rumori, C., and Viti, C.: Hydrothermally reset magmatic spinels
in retrograde serpentinites: formation of “ferritchromit” rims and
chlorite aureoles, Contrib. Mineral. Petr., 149, 266–275,
2005. a
Melosh, B. L.: Fault initiation in serpentinite, Geochem. Geophys.
Geosyst., https://doi.org/10.1029/2018GC008092, 2019. a, b
Melson, W. G. and Thompson, G.: Petrology of a transform fault zone and
adjacent ridge segments, Phil. Trans. R. Soc. Lond. A, 268, 423–441, 1971. a
Moore, D. E. and Lockner, D. A.: Chemical controls on fault behavior:
Weakening of serpentinite sheared against quartz-bearing rocks and its
significance for fault creep in the San Andreas system, J.
Geophys. Res.-Sol. Ea., 118, 2558–2570, 2013. a
Moore, D. E., Lockner, D., Summers, R., Shengli, M., and Byerlee, J.: Strength
of chrysotile-serpentinite gouge under hydrothermal conditions: Can it
explain a weak San Andreas Fault?, Geology, 24, 1041–1044, 1996. a
Moore, D. E., Lockner, D. A., Tanaka, H., and Iwata, K.: The coefficient of
friction of Chrysotile gouge at seismogenic depths, Int. Geol.
Rev., 46, 385–398, 2004. a
Moore, D. E., McLaughlin, R. J., and Lienkaemper, J. J.: Serpentinite-Rich
Gouge in a Creeping Segment of the Bartlett Springs Fault, Northern
California: Comparison With SAFOD and Implications for Seismic Hazard,
Tectonics, 37, 4515–4534, 2018. a
Moore, J. C.: Structural fabric in Deep Sea Drilling Project cores from
forearcs, vol. 166, Geol. Soc. Am., 1986. a
Mortimer, N., Tulloch, A. J., Spark, R. N., Walker, N. W., Ladley, E.,
Allibone, A., and Kimbrough, D. L.: Overview of the Median Batholith, New
Zealand: a new interpretation of the geology of the Median Tectonic Zone and
adjacent rocks, J. Afr. Earth Sci., 29, 257–268, 1999. a
Mortimer, N., Davey, F. J., Melhuish, A., Yu, J., and Godfrey, N. J.:
Geological interpretation of a deep seismic reflection profile across the
Eastern Province and Median Batholith, New Zealand: Crustal architecture of
an extended Phanerozoic convergent orogen, New Zeal. J. Geol. Geop., 45, 349–363, 2002. a, b
Muir, R., Ireland, T., Weaver, S., and Bradshaw, J.: Ion microprobe dating of
Paleozoic granitoids: Devonian magmatism in New Zealand and correlations with
Australia and Antarctica, Chem. Geol., 127, 191–210, 1996. a
Nicolas, A., Girardeau, J., Marcoux, J., Dupre, B., Xibin, W., Yougong, C.,
Haixiang, Z., and Xuchang, X.: The Xigaze ophiolite (Tibet): a peculiar
oceanic lithosphere, Nature, 294, 414–417, 1981. a
Nishiyama, T.: CO2 metasomatism of a metabasite block in a serpentine
melange from the Nishisonogi metamorphic rocks, Southwest Japan,
Contrib. Mineral. Petr., 104, 35–46, 1990. a
Nishiyama, T., Shiosaki, C. Y., Mori, Y., and Shigeno, M.: Interplay of
irreversible reactions and deformation: a case of hydrofracturing in the
rodingite–serpentinite system, Progress in Earth and Planetary Science, 4,
1, 2017. a
O'Brien, J. and Rodgers, K.: Alpine-type serpentinites from the Auckland
Province—I. The Wairere serpentinite, J. Roy. Soc. New
Zeal., 3, 169–190, 1973. a
O'Hanley, D. S. and Dyar, M. D.: The composition of lizardite 1T and the
formation of magnetite in serpentinites, American Mineralogist, 78,
391–404, 1993. a
Poulet, T., Veveakis, E., Regenauer-Lieb, K., and Yuen, D. A.:
Thermo-poro-mechanics of chemically active creeping faults: 3. The role of
serpentinite in episodic tremor and slip sequences, and transition to chaos,
J. Geophys. Res.-Sol. Ea., 119, 4606–4625, 2014. a
Read, H. H.: On zoned associations of antigorite, talc, actinolite, chlorite,
and biotite in Unst, Shetland Islands, The Mineralogical Magazine and
Journal of The Mineralogical Society, 23, 519–540, 1934. a
Reinen, L. A., Weeks, J. D., and Tullis, T. E.: The frictional behavior of
serpentinite: Implications for aseismic creep on shallow crustal faults,
Geophys. Res. Lett., 18, 1921–1924, 1991. a
Reinen, L. A., Weeks, J. D., and Tullis, T. E.: The frictional behavior of
lizardite and antigorite serpentinites: Experiments, constitutive models, and
implications for natural faults, Pure Appl. Geophys., 143, 317–358,
1994. a
Reynard, B.: Serpentine in active subduction zones, Lithos, 178, 171–185,
2013. a
Saleeby, J. B.: Tectonic significance of serpentinite mobility and ophiolitic
melange, Geological Society of America, Special Paper, 198, 153–168, 1984. a
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.: NIH Image to ImageJ: 25
years of image analysis, Nat. Methods, 9, 671–675, 2012. a
Scott, J. M.: A review of the location and significance of the boundary
between the Western Province and Eastern Province, New Zealand, New Zeal.
J. Geol. Geop., 56, 276–293, 2013. a
Scott, J. M., Waight, T. E., Van der Meer, Q. H. A., Palin, J. M., Cooper,
A. F., and Münker, C.: Metasomatized ancient lithospheric mantle
beneath the young Zealandia microcontinent and its role in HIMU-like
intraplate magmatism, Geochem. Geophys. Geosyst., 15, 3477–3501,
2014. a
Shackleton, R., Ries, A., Graham, R., and Fitches, W.: Late Precambrian
ophiolitic melange in the Eastern Desert of Egypt, Nature, 285, 472–474, 1980. a
Sinton, J. M.: Equilibration history of the basel alpine-type peridotite, Red
Mountain, New Zealand, J. Petrol., 18, 216–246, 1977. a
Skjerlie, K. and Furnes, H.: Evidence for a fossil transform fault in the
Solund-Stavfjord ophiolite complex: West Norwegian Caledonides, Tectonics, 9,
1631–1648, 1990. a
Stewart, E., Lamb, W., Newman, J., and Tikoff, B.: The petrological and
geochemical evolution of early forearc mantle lithosphere: an example from
the Red Hills Ultramafic Massif, New Zealand, J. Petrol., 57,
751–776, 2016. a
Sutherland, R., Davey, F., and Beavan, J.: Plate boundary deformation in South
Island, New Zealand, is related to inherited lithospheric structure, Earth
Planet. Sc. Lett., 177, 141–151, 2000. a
Tulloch, A., Ramezani, J., Kimbrough, D., Faure, K., and Allibone, A.: U-Pb
geochronology of mid-Paleozoic plutonism in western New Zealand: Implications
for S-type granite generation and growth of the east Gondwana margin,
Geol. Soc. Am. B., 121, 1236–1261, 2009. a
Twiss, R. J. and Gefell, M. J.: Curved slickenfibers: a new brittle shear
sense indicator with application to a sheared serpentinite, J. Struct. Geol., 12, 471–481, 1990. a
Viti, C. and Mellini, M.: Contrasting chemical compositions in associated
lizardite and chrysotile in veins from Elba, Italy, Eur. J. Mineral., 9, 585–596, 1997. a
Wassmann, S., Stöckhert, B., and Trepmann, C. A.: Dissolution precipitation
creep versus crystalline plasticity in high-pressure metamorphic
serpentinites, Geological Society, London, Special Publications, 360,
129–149, 2011. a
Webber, S., Ellis, S., and Fagereng, Å.: “Virtual shear box”
experiments of stress and slip cycling within a subduction interface
mélange, Earth Planet. Sc. Lett., 488, 27–35, 2018. a
Wellman, H.: Data for the study of recent and late Pleistocene faulting in the
South Island of New Zealand, New Zealand Journal of Science and Technology,
34, 270–288, 1953. a
Wicks, F. J.: Deformation Histories As Recorded By Serpentinites – II.
Deformation During and After Serpentinization, Can. Mineral., 22,
197–203, 1984. a
Wintsch, R. P. and Yi, K.: Dissolution and replacement creep: a significant
deformation mechanism in mid-crustal rocks, J. Struct. Geol.,
24, 1179–1193, 2002. a
Wood, B. L.: The geology of the Gore Subdivision, New Zealand Geol.
Surv., 53, 1–128, 1956. a
Short summary
Shear zones dominated by hydrated mantle rocks (serpentinites) occur in many tectonic settings around the world. To better understand the internal structure, composition and possible mechanical behaviour of these shear zones, we performed a detailed field, petrological and microanalytical study of the Livingstone Fault in New Zealand. We propose a conceptual model to account for the main physical and chemical processes that control deformation in large serpentinite shear zones.
Shear zones dominated by hydrated mantle rocks (serpentinites) occur in many tectonic settings...