Articles | Volume 10, issue 1
https://doi.org/10.5194/se-10-357-2019
https://doi.org/10.5194/se-10-357-2019
Peer-reviewed comment
 | 
27 Feb 2019
Peer-reviewed comment |  | 27 Feb 2019

Comment on “Channel flow, tectonic overpressure, and exhumation of high-pressure rocks in the Greater Himalayas” by Marques et al. (2018)

John P. Platt

Related authors

Structural and rheological evolution of the Laramide subduction channel in southern California
Haoran Xia and John P. Platt
Solid Earth, 8, 379–403, https://doi.org/10.5194/se-8-379-2017,https://doi.org/10.5194/se-8-379-2017, 2017
Short summary
Rheological transitions in the middle crust: insights from Cordilleran metamorphic core complexes
Frances J. Cooper, John P. Platt, and Whitney M. Behr
Solid Earth, 8, 199–215, https://doi.org/10.5194/se-8-199-2017,https://doi.org/10.5194/se-8-199-2017, 2017
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Structural geology
Natural fracture patterns at Swift Reservoir anticline, NW Montana: the influence of structural position and lithology from multiple observation scales
Adam J. Cawood, Hannah Watkins, Clare E. Bond, Marian J. Warren, and Mark A. Cooper
Solid Earth, 14, 1005–1030, https://doi.org/10.5194/se-14-1005-2023,https://doi.org/10.5194/se-14-1005-2023, 2023
Short summary
Rapid hydration and weakening of anhydrite under stress: implications for natural hydration in the Earth's crust and mantle
Johanna Heeb, David Healy, Nicholas E. Timms, and Enrique Gomez-Rivas
Solid Earth, 14, 985–1003, https://doi.org/10.5194/se-14-985-2023,https://doi.org/10.5194/se-14-985-2023, 2023
Short summary
Analogue experiments on releasing and restraining bends and their application to the study of the Barents Shear Margin
Roy Helge Gabrielsen, Panagiotis Athanasios Giannenas, Dimitrios Sokoutis, Ernst Willingshofer, Muhammad Hassaan, and Jan Inge Faleide
Solid Earth, 14, 961–983, https://doi.org/10.5194/se-14-961-2023,https://doi.org/10.5194/se-14-961-2023, 2023
Short summary
Structural framework and timing of the Pahtohavare Cu ± Au deposits, Kiruna mining district, Sweden
Leslie Logan, Ervin Veress, Joel B. H. Andersson, Olof Martinsson, and Tobias E. Bauer
Solid Earth, 14, 763–784, https://doi.org/10.5194/se-14-763-2023,https://doi.org/10.5194/se-14-763-2023, 2023
Short summary
Does the syn- versus post-rift thickness ratio have an impact on the inversion-related structural style?
Alexandra Tamas, Dan M. Tamas, Gabor Tari, Csaba Krezsek, Alexandru Lapadat, and Zsolt Schleder
Solid Earth, 14, 741–761, https://doi.org/10.5194/se-14-741-2023,https://doi.org/10.5194/se-14-741-2023, 2023
Short summary

Cited articles

Beaumont, C., Jamieson, R. A., Nguyen, M. H., and Lee, B.: Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation, Nature, 414, 738–742, 2001. 
Beaumont, C., Jamieson, R. A., Butler, J. P., and Warren, C. J.: Crustal structure: A key constraint on the mechanism of ultra-high-pressure rock exhumation, Earth Planet. Sc. Lett., 287, 116–129, https://doi.org/10.1016/j.epsl.2009.08.001, 2009. 
Behr, W. M. and Platt, J. P.: Brittle faults are weak, yet the ductile middle crust is strong: Implications for lithospheric mechanics, Geophys. Res. Lett., 41, 8067–8075, https://doi.org/10.1002/2014GL061349, 2014. 
Cloos, M.: Flow melanges: Numerical modeling and geologic constraints on their origin in the Franciscan subduction complex, California, Geol. Soc. Am. Bull., 93, 330–345, 1982. 
England, P. C. and Holland, T. J. B.: Archimedes and the Tauern eclogites – role of buoyancy in the preservation of exotic eclogite blocks, Earth Planet. Sc. Lett., 44, 287–294, 1979. 
Short summary
The channel flow model proposed by Marques et al (2018) for the Himalayas has a geometry that would not generate any excess pressure. The excess pressure calculated by the authors, based on a different and highly improbable geometry, is so high that the overlying rocks would not be able to contain it: they would bend or break in such a way as to relieve the pressure. The conclusions drawn by the authors are therefore unwarranted and misleading.