Articles | Volume 10, issue 1
https://doi.org/10.5194/se-10-357-2019
https://doi.org/10.5194/se-10-357-2019
Peer-reviewed comment
 | 
27 Feb 2019
Peer-reviewed comment |  | 27 Feb 2019

Comment on “Channel flow, tectonic overpressure, and exhumation of high-pressure rocks in the Greater Himalayas” by Marques et al. (2018)

John P. Platt

Related authors

Structural and rheological evolution of the Laramide subduction channel in southern California
Haoran Xia and John P. Platt
Solid Earth, 8, 379–403, https://doi.org/10.5194/se-8-379-2017,https://doi.org/10.5194/se-8-379-2017, 2017
Short summary
Rheological transitions in the middle crust: insights from Cordilleran metamorphic core complexes
Frances J. Cooper, John P. Platt, and Whitney M. Behr
Solid Earth, 8, 199–215, https://doi.org/10.5194/se-8-199-2017,https://doi.org/10.5194/se-8-199-2017, 2017
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Structural geology
Driven magmatism and crustal thinning of coastal southern China in response to subduction
Jinbao Su, Wenbin Zhu, and Guangwei Li
Solid Earth, 15, 1133–1141, https://doi.org/10.5194/se-15-1133-2024,https://doi.org/10.5194/se-15-1133-2024, 2024
Short summary
Selection and characterization of the target fault for fluid-induced activation and earthquake rupture experiments
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024,https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary
Naturally fractured reservoir characterisation in heterogeneous sandstones: insight for uranium in situ recovery (Imouraren, Niger)
Maxime Jamet, Gregory Ballas, Roger Soliva, Olivier Gerbeaud, Thierry Lefebvre, Christine Leredde, and Didier Loggia
Solid Earth, 15, 895–920, https://doi.org/10.5194/se-15-895-2024,https://doi.org/10.5194/se-15-895-2024, 2024
Short summary
Influence of water on crystallographic preferred orientation patterns in a naturally-deformed quartzite
Jeffrey M. Rahl, Brendan Moehringer, Kenneth S. Befus, and John S. Singleton
EGUsphere, https://doi.org/10.5194/egusphere-2024-1567,https://doi.org/10.5194/egusphere-2024-1567, 2024
Short summary
Multiscalar 3D temporal structural characterisation of Smøla island, mid-Norwegian passive margin: an analogue for unravelling the tectonic history of offshore basement highs
Matthew S. Hodge, Guri Venvik, Jochen Knies, Roelant van der Lelij, Jasmin Schönenberger, Øystein Nordgulen, Marco Brönner, Aziz Nasuti, and Giulio Viola
Solid Earth, 15, 589–615, https://doi.org/10.5194/se-15-589-2024,https://doi.org/10.5194/se-15-589-2024, 2024
Short summary

Cited articles

Beaumont, C., Jamieson, R. A., Nguyen, M. H., and Lee, B.: Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation, Nature, 414, 738–742, 2001. 
Beaumont, C., Jamieson, R. A., Butler, J. P., and Warren, C. J.: Crustal structure: A key constraint on the mechanism of ultra-high-pressure rock exhumation, Earth Planet. Sc. Lett., 287, 116–129, https://doi.org/10.1016/j.epsl.2009.08.001, 2009. 
Behr, W. M. and Platt, J. P.: Brittle faults are weak, yet the ductile middle crust is strong: Implications for lithospheric mechanics, Geophys. Res. Lett., 41, 8067–8075, https://doi.org/10.1002/2014GL061349, 2014. 
Cloos, M.: Flow melanges: Numerical modeling and geologic constraints on their origin in the Franciscan subduction complex, California, Geol. Soc. Am. Bull., 93, 330–345, 1982. 
England, P. C. and Holland, T. J. B.: Archimedes and the Tauern eclogites – role of buoyancy in the preservation of exotic eclogite blocks, Earth Planet. Sc. Lett., 44, 287–294, 1979. 
Short summary
The channel flow model proposed by Marques et al (2018) for the Himalayas has a geometry that would not generate any excess pressure. The excess pressure calculated by the authors, based on a different and highly improbable geometry, is so high that the overlying rocks would not be able to contain it: they would bend or break in such a way as to relieve the pressure. The conclusions drawn by the authors are therefore unwarranted and misleading.