Articles | Volume 11, issue 4
Solid Earth, 11, 1187–1204, 2020
https://doi.org/10.5194/se-11-1187-2020

Special issue: Inversion tectonics – 30 years later

Solid Earth, 11, 1187–1204, 2020
https://doi.org/10.5194/se-11-1187-2020

Research article 06 Jul 2020

Research article | 06 Jul 2020

Extension and inversion of salt-bearing rift systems

Tim P. Dooley and Michael R. Hudec

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, rock physics, experimental deformation | Discipline: Structural geology
Analysis of deformation bands associated with the Trachyte Mesa intrusion, Henry Mountains, Utah: implications for reservoir connectivity and fluid flow around sill intrusions
Penelope I. R. Wilson, Robert W. Wilson, David J. Sanderson, Ian Jarvis, and Kenneth J. W. McCaffrey
Solid Earth, 12, 95–117, https://doi.org/10.5194/se-12-95-2021,https://doi.org/10.5194/se-12-95-2021, 2021
Short summary
Characterization of discontinuities in potential reservoir rocks for geothermal applications in the Rhine-Ruhr metropolitan area (Germany)
Martin Balcewicz, Benedikt Ahrens, Kevin Lippert, and Erik H. Saenger
Solid Earth, 12, 35–58, https://doi.org/10.5194/se-12-35-2021,https://doi.org/10.5194/se-12-35-2021, 2021
Short summary
On a new robust workflow for the statistical and spatial analysis of fracture data collected with scanlines (or the importance of stationarity)
Andrea Bistacchi, Silvia Mittempergher, Mattia Martinelli, and Fabrizio Storti
Solid Earth, 11, 2535–2547, https://doi.org/10.5194/se-11-2535-2020,https://doi.org/10.5194/se-11-2535-2020, 2020
Short summary
Micro- and nano-porosity of the active Alpine Fault zone, New Zealand
Martina Kirilova, Virginia Toy, Katrina Sauer, François Renard, Klaus Gessner, Richard Wirth, Xianghui Xiao, and Risa Matsumura
Solid Earth, 11, 2425–2438, https://doi.org/10.5194/se-11-2425-2020,https://doi.org/10.5194/se-11-2425-2020, 2020
Short summary
Unraveling the origins and P-T-t evolution of the allochthonous Sobrado unit (Órdenes Complex, NW Spain) using combined U–Pb titanite, monazite and zircon geochronology and rare-earth element (REE) geochemistry
José Manuel Benítez-Pérez, Pedro Castiñeiras, Juan Gómez-Barreiro, José R. Martínez Catalán, Andrew Kylander-Clark, and Robert Holdsworth
Solid Earth, 11, 2303–2325, https://doi.org/10.5194/se-11-2303-2020,https://doi.org/10.5194/se-11-2303-2020, 2020
Short summary

Cited articles

Adam, J., Urai, J., Wieneke, B., Oncken, O., Pfeiffer, K., and Kukowski, N.: Shear localisation and strain distribution during tectonic faulting – new insights from granular-flow experiments and high-resolution optical image correlation techniques, J. Struct. Geol., 27, 283–301, https://doi.org/10.1016/j.jsg.2004.08.008, 2005. 
Amilibia, A., McClay, K. R., Sabat, F., Muñoz, J. A., and Roca, E.: Analogue modelling of inverted oblique rift systems, Geol. Acta, 3, 251–271, 2005. 
Anderson, E. M.: The dynamics of faulting and dyke formation with applications to Britain, in: The dynamics of faulting and dyke formation with applications to Britain, Olivier and Boyd, Edinburgh, 206 pp., 1951. 
Bonini, M., Sani, F., and Antonielli, B.: Basin inversion and contractional reactivation of inherited normal faults: A review based on previous and new experimental models, Tectonophysics, 522–523(C), 55–88, https://doi.org/10.1016/j.tecto.2011.11.014, 2011. 
Brun, J., Sokoutis, D. and Van Den Driessche, J.: Analogue modelling of detachment fault systems and core complexes, Geology, 22, 319–322, 1994. 
Download
Short summary
Sandbox models investigated extension and inversion of salt-bearing rifts such as those found in the Moroccan High Atlas, North Africa. Sand packs were stretched and the structural lows were filled with a salt analog. Models were then subjected to additional extension and loading that remobilized the salt into diapirs. During shortening the distribution of the salt in the overburden governed the structural styles and trends in the supra-salt strata, strongly decoupled from subsalt deformation.