Articles | Volume 11, issue 5
https://doi.org/10.5194/se-11-1773-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-11-1773-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mapping the fracture network in the Lilstock pavement, Bristol Channel, UK: manual versus automatic
Christopher Weismüller
CORRESPONDING AUTHOR
Neotectonics and Natural Hazards, RWTH Aachen University, Aachen,
Germany
Rahul Prabhakaran
Department of Geoscience and Engineering, Delft University of
Technology, Delft, the Netherlands
Department of Mechanical Engineering, Eindhoven University of
Technology, the Netherlands
Martijn Passchier
Structural Geology, Tectonics and Geomechanics, RWTH Aachen
University, Aachen, Germany
Janos L. Urai
Structural Geology, Tectonics and Geomechanics, RWTH Aachen
University, Aachen, Germany
Giovanni Bertotti
Department of Geoscience and Engineering, Delft University of
Technology, Delft, the Netherlands
Klaus Reicherter
Neotectonics and Natural Hazards, RWTH Aachen University, Aachen,
Germany
Related authors
Peter Biermanns, Benjamin Schmitz, Silke Mechernich, Christopher Weismüller, Kujtim Onuzi, Kamil Ustaszewski, and Klaus Reicherter
Solid Earth, 13, 957–974, https://doi.org/10.5194/se-13-957-2022, https://doi.org/10.5194/se-13-957-2022, 2022
Short summary
Short summary
We introduce two up to 7 km long normal fault scarps near the city of Bar (Montenegro). The fact that these widely visible seismogenic structures have never been described before is even less surprising than the circumstance that they apparently do not fit the tectonic setting that they are located in. By quantifying the age and movement of the newly discovered fault scarps and by partly re-interpreting local tectonics, we introduce approaches to explain how this is still compatible.
Jasper Hupkes, Pierre-Olivier Bruna, Giovanni Bertotti, Myrthe Doesburg, and Andrea Moscariello
EGUsphere, https://doi.org/10.5194/egusphere-2025-4175, https://doi.org/10.5194/egusphere-2025-4175, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
We use analogue outcrops to predict orientations of the background fracture network in the subsurface. The novelty of our research is that we group different sets of fractures into associations, based on the orientation of the stress field in which they formed. We apply this methodology to the Geneva Basin. Regional observations enable us to predict fracture orientations in the subsurface. 45 % of the fractures observed on image logs of two wells fit the prediction.
Alejandro Jiménez-Bonilla, Lucía Martegani, Miguel Rodríguez-Rodríguez, Fernando Gázquez, Manuel Díaz-Azpíroz, Sergio Martos, Klaus Reicherter, and Inmaculada Expósito
Hydrol. Earth Syst. Sci., 28, 5311–5329, https://doi.org/10.5194/hess-28-5311-2024, https://doi.org/10.5194/hess-28-5311-2024, 2024
Short summary
Short summary
We conducted an interdisciplinary study of the Fuente de Piedra playa lake's evolution in southern Spain. We made water balances for the Fuente de Piedra playa lake's lifespan. Our results indicate that the Fuente de Piedra playa lake's level moved and tilted south-west, which was caused by active faults.
Rashid Haider, Sajid Ali, Gösta Hoffmann, and Klaus Reicherter
Nat. Hazards Earth Syst. Sci., 24, 3279–3290, https://doi.org/10.5194/nhess-24-3279-2024, https://doi.org/10.5194/nhess-24-3279-2024, 2024
Short summary
Short summary
The coastlines bordering the Arabian Sea have yielded various tsunamites reflecting its high hazard potential and recurrences. My PhD project aims at the estimation and zonation of the hazards and risks associated with. This publication is a continuation of the previous publication (Haider et al., 2023), which focused on hazard estimation through a multi-proxy approach. This part of the study estimates the risk potential through integrated tsunami inundation analysis.
Annelotte Weert, Kei Ogata, Francesco Vinci, Coen Leo, Giovanni Bertotti, Jerome Amory, and Stefano Tavani
Solid Earth, 15, 121–141, https://doi.org/10.5194/se-15-121-2024, https://doi.org/10.5194/se-15-121-2024, 2024
Short summary
Short summary
On the road to a sustainable planet, geothermal energy is considered one of the main substitutes when it comes to heating. The geological history of an area can have a major influence on the application of these geothermal systems, as demonstrated in the West Netherlands Basin. Here, multiple episodes of rifting and subsequent basin inversion have controlled the distribution of the reservoir rocks, thus influencing the locations where geothermal energy can be exploited.
Claudia Finger, Marco P. Roth, Marco Dietl, Aileen Gotowik, Nina Engels, Rebecca M. Harrington, Brigitte Knapmeyer-Endrun, Klaus Reicherter, Thomas Oswald, Thomas Reinsch, and Erik H. Saenger
Earth Syst. Sci. Data, 15, 2655–2666, https://doi.org/10.5194/essd-15-2655-2023, https://doi.org/10.5194/essd-15-2655-2023, 2023
Short summary
Short summary
Passive seismic analyses are a key technology for geothermal projects. The Lower Rhine Embayment, at the western border of North Rhine-Westphalia in Germany, is a geologically complex region with high potential for geothermal exploitation. Here, we report on a passive seismic dataset recorded with 48 seismic stations and a total extent of 20 km. We demonstrate that the network design allows for the application of state-of-the-art seismological methods.
Jessica Barabasch, Joyce Schmatz, Jop Klaver, Alexander Schwedt, and Janos L. Urai
Solid Earth, 14, 271–291, https://doi.org/10.5194/se-14-271-2023, https://doi.org/10.5194/se-14-271-2023, 2023
Short summary
Short summary
We analysed Zechstein salt with microscopes and observed specific microstructures that indicate much faster deformation in rock salt with fine halite grains when compared to salt with larger grains. This is important because people build large cavities in the subsurface salt for energy storage or want to deposit radioactive waste inside it. When engineers and scientists use grain-size data and equations that include this mechanism, it will help to make better predictions in geological models.
Trudy M. Wassenaar, Cees W. Passchier, Nora Groschopf, Anna Jantschke, Regina Mertz-Kraus, and Janos L. Urai
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-32, https://doi.org/10.5194/bg-2023-32, 2023
Manuscript not accepted for further review
Short summary
Short summary
Marbles in the desert areas of Namibia and Oman were found to be consumed from inside the rock mass by microbiological activity of a thus far unknown nature that created bands of parallel tubules. These bands formed along fractures in the rock and only surfaced after erosion made them visible. We consider this a new niche for life that has so far not been described. These life forms may have an unknown impact on the global carbon cycle.
Sivaji Lahiri, Kitty L. Milliken, Peter Vrolijk, Guillaume Desbois, and Janos L. Urai
Solid Earth, 13, 1513–1539, https://doi.org/10.5194/se-13-1513-2022, https://doi.org/10.5194/se-13-1513-2022, 2022
Short summary
Short summary
Understanding the mechanism of mechanical compaction is important. Previous studies on mechanical compaction were mostly done by performing experiments. Studies on natural rocks are rare due to compositional heterogeneity of the sedimentary succession with depth. Due to remarkable similarity in composition and grain size, the Sumatra subduction complex provides a unique opportunity to study the micromechanism of mechanical compaction on natural samples.
Manuel D. Menzel, Janos L. Urai, Estibalitz Ukar, Thierry Decrausaz, and Marguerite Godard
Solid Earth, 13, 1191–1218, https://doi.org/10.5194/se-13-1191-2022, https://doi.org/10.5194/se-13-1191-2022, 2022
Short summary
Short summary
Mantle rocks can bind large quantities of carbon by reaction with CO2, but this capacity requires fluid pathways not to be clogged by carbonate. We studied mantle rocks from Oman to understand the mechanisms allowing their transformation into carbonate and quartz. Using advanced imaging techniques, we show that abundant veins were essential fluid pathways driving the reaction. Our results show that tectonic stress was important for fracture opening and a key ingredient for carbon fixation.
Peter Biermanns, Benjamin Schmitz, Silke Mechernich, Christopher Weismüller, Kujtim Onuzi, Kamil Ustaszewski, and Klaus Reicherter
Solid Earth, 13, 957–974, https://doi.org/10.5194/se-13-957-2022, https://doi.org/10.5194/se-13-957-2022, 2022
Short summary
Short summary
We introduce two up to 7 km long normal fault scarps near the city of Bar (Montenegro). The fact that these widely visible seismogenic structures have never been described before is even less surprising than the circumstance that they apparently do not fit the tectonic setting that they are located in. By quantifying the age and movement of the newly discovered fault scarps and by partly re-interpreting local tectonics, we introduce approaches to explain how this is still compatible.
Lisa Winhausen, Kavan Khaledi, Mohammadreza Jalali, Janos L. Urai, and Florian Amann
Solid Earth, 13, 901–915, https://doi.org/10.5194/se-13-901-2022, https://doi.org/10.5194/se-13-901-2022, 2022
Short summary
Short summary
Triaxial compression tests at different effective stresses allow for analysing the deformation behaviour of Opalinus Clay, the potential host rock for nuclear waste in Switzerland. We conducted microstructural investigations of the deformed samples to relate the bulk hydro-mechanical behaviour to the processes on the microscale. Results show a transition from brittle- to more ductile-dominated deformation. We propose a non-linear failure envelop associated with the failure mode transition.
Christoph Grützner, Simone Aschenbrenner, Petra Jamšek
Rupnik, Klaus Reicherter, Nour Saifelislam, Blaž Vičič, Marko Vrabec, Julian Welte, and Kamil Ustaszewski
Solid Earth, 12, 2211–2234, https://doi.org/10.5194/se-12-2211-2021, https://doi.org/10.5194/se-12-2211-2021, 2021
Short summary
Short summary
Several large strike-slip faults in western Slovenia are known to be active, but most of them have not produced strong earthquakes in historical times. In this study we use geomorphology, near-surface geophysics, and fault excavations to show that two of these faults had surface-rupturing earthquakes during the Holocene. Instrumental and historical seismicity data do not capture the strongest events in this area.
Rahul Prabhakaran, Giovanni Bertotti, Janos Urai, and David Smeulders
Solid Earth, 12, 2159–2209, https://doi.org/10.5194/se-12-2159-2021, https://doi.org/10.5194/se-12-2159-2021, 2021
Short summary
Short summary
Rock fractures are organized as networks with spatially varying arrangements. Due to networks' influence on bulk rock behaviour, it is important to quantify network spatial variation. We utilize an approach where fracture networks are treated as spatial graphs. By combining graph similarity measures with clustering techniques, spatial clusters within large-scale fracture networks are identified and organized hierarchically. The method is validated on a dataset with nearly 300 000 fractures.
Lisa Winhausen, Jop Klaver, Joyce Schmatz, Guillaume Desbois, Janos L. Urai, Florian Amann, and Christophe Nussbaum
Solid Earth, 12, 2109–2126, https://doi.org/10.5194/se-12-2109-2021, https://doi.org/10.5194/se-12-2109-2021, 2021
Short summary
Short summary
An experimentally deformed sample of Opalinus Clay (OPA), which is being considered as host rock for nuclear waste in Switzerland, was studied by electron microscopy to image deformation microstructures. Deformation localised by forming micrometre-thick fractures. Deformation zones show dilatant micro-cracking, granular flow and bending grains, and pore collapse. Our model, with three different stages of damage accumulation, illustrates microstructural deformation in a compressed OPA sample.
Marta Adamuszek, Dan M. Tămaş, Jessica Barabasch, and Janos L. Urai
Solid Earth, 12, 2041–2065, https://doi.org/10.5194/se-12-2041-2021, https://doi.org/10.5194/se-12-2041-2021, 2021
Short summary
Short summary
We analyse folded multilayer sequences in the Ocnele Mari salt mine (Romania) to gain insight into the long-term rheological behaviour of rock salt. Our results indicate the large role of even a small number of impurities in the rock salt for its effective mechanical behaviour. We demonstrate how the development of folds that occur at various scales can be used to constrain the viscosity ratio in the deformed multilayer sequence.
Sarah Mader, Joachim R. R. Ritter, Klaus Reicherter, and the AlpArray Working Group
Solid Earth, 12, 1389–1409, https://doi.org/10.5194/se-12-1389-2021, https://doi.org/10.5194/se-12-1389-2021, 2021
Short summary
Short summary
The Albstadt Shear Zone, SW Germany, is an active rupture zone with sometimes damaging earthquakes but no visible surface structure. To identify its segmentations, geometry, faulting pattern and extension, we analyze the continuous earthquake activity in 2011–2018. We find a segmented N–S-oriented fault zone with mainly horizontal and minor vertical movement along mostly NNE- and some NNW-oriented rupture planes. The main horizontal stress is oriented NW and due to Alpine-related loading.
Cited articles
Andrews, B. J., Roberts, J. J., Shipton, Z. K., Bigi, S., Tartarello, M. C., and Johnson, G.: How do we see fractures?, Quantifying subjective bias in fracture data collection, Solid Earth, 10, 487–516, https://doi.org/10.5194/se-10-487-2019, 2019.
Agheshlui, H., Sedaghat, M. H., and Matthai, S.: Stress Influence on Fracture
Aperture and Permeability of Fragmented Rocks, J. Geophys. Res.-Sol. Ea.,
123, 3578–3592, https://doi.org/10.1029/2017JB015365, 2018.
Agisoft: PhotoScan Professional (Version 1.3.2) (Software), Retrieved from: https://www.agisoft.com/downloads/installer/, last access: 6 June 2017.
Azizmohammadi, S. and Matthäi, S. K.: Is the permeability of naturally
fractured rocks scale dependent?, Water Resour. Res., 53, 8041–8063,
https://doi.org/10.1002/2016WR019764, 2017.
Belayneh, M. and Cosgrove, J. W.: Fracture-pattern variations around a major
fold and their implications regarding fracture prediction using limited
data: an example from the Bristol Channel Basin, Geol. Soc. Lond. Spec.
Publ., 231, 89–102, https://doi.org/10.1144/GSL.SP.2004.231.01.06, 2004.
Belayneh, M., Geiger, S., and Matthäi, S. K.: Numerical simulation of
water injection into layered fractured carbonate reservoir analogs, AAPG
Bull., 90, 1473–1493, https://doi.org/10.1306/05090605153, 2006a.
Belayneh, M., Masihi, M., Matthäi, S. K., and King, P. R.: Prediction of
vein connectivity using the percolation approach: model test with field
data, J. Geophys. Eng., 3, 219–229, https://doi.org/10.1088/1742-2132/3/3/003,
2006b.
Bemis, S. P., Micklethwaite, S., Turner, D., James, M. R., Akciz, S.,
Thiele, S. T., and Bangash, H. A.: Ground-based and UAV-Based photogrammetry:
A multi-scale, high-resolution mapping tool for structural geology and
paleoseismology, J. Struct. Geol., 69, 163–178,
https://doi.org/10.1016/j.jsg.2014.10.007, 2014.
Bevan, T. G. and Hancock, P. L.: A late Cenozoic regional mesofracture
system in southern England and northern France, J. Geol. Soc., 143,
355–362, https://doi.org/10.1144/gsjgs.143.2.0355, 1986.
Bisdom, K., Nick, H. M., and Bertotti, G.: An integrated workflow for stress
and flow modelling using outcrop-derived discrete fracture networks, Comput.
Geosci., 103, 21–35, https://doi.org/10.1016/j.cageo.2017.02.019, 2017.
Brooks, M., Trayner, P. M., and Trimble, T. J.: Mesozoic reactivation of
Variscan thrusting in the Bristol Channel area, UK, J. Geol. Soc., 145,
439–444, https://doi.org/10.1144/gsjgs.145.3.0439, 1988.
Crider, J. G. and Peacock, D. C. P.: Initiation of brittle faults in the
upper crust: a review of field observations, J. Struct. Geol., 26,
691–707, https://doi.org/10.1016/j.jsg.2003.07.007, 2004.
Dart, C. J., McClay, K., and Hollings, P. N.: 3D analysis of inverted
extensional fault systems, southern Bristol Channel basin, UK, Geol. Soc.
Lond. Spec. Publ., 88, 393–413, https://doi.org/10.1144/GSL.SP.1995.088.01.21, 1995.
Dershowitz, W. S. and Herda, H. H.: Interpretation of fracture spacing and
intensity, in ARMA-92-0757, American Rock Mechanics Association,
Santa Fe, New Mexico, p. 10, 1992.
Dimmen, V., Rotevatn, A., Peacock, D. C. P., Nixon, C. W., and Nærland,
K.: Quantifying structural controls on fluid flow: Insights from
carbonate-hosted fault damage zones on the Maltese Islands, J. Struct.
Geol., 101, 43–57, https://doi.org/10.1016/j.jsg.2017.05.012, 2017.
Duelis Viana, C., Endlein, A., Ademar da Cruz Campanha, G., and Henrique
Grohmann, C.: Algorithms for extraction of structural attitudes from 3D
outcrop models, Comput. Geosci., 90, 112–122,
https://doi.org/10.1016/j.cageo.2016.02.017, 2016.
Engelder, T. and Peacock, D. C. P.: Joint development normal to regional
compression during flexural-flow folding: the Lilstock buttress anticline,
Somerset, England, J. Struct. Geol., 23, 259–277, https://doi.org/10.1016/S0191-8141(00)00095-X, 2001.
Esri: ArcGIS (Version 10.7.1), Software, 2019, Esri inc., available at: https://desktop.arcgis.com/en/arcmap/, last access 28 August 2020.
Gillespie, P., Monsen, E., Maerten, L., Hunt, D., Thurmond, J., and Tuck, D.: Fractures in Carbonates: From Digital Outcrops to Mechanical Models,
in Outcrops Revitalized: Tools, Techniques and Applications, SEPM (Society
for Sedimentary Geology), https://doi.org/10.2110/sepmcsp.10, 267 pp., 2011.
Glen, R. A., Hancock, P. L., and Whittaker, A.: Basin inversion by
distributed deformation: the southern margin of the Bristol Channel Basin,
England, J. Struct. Geol., 27, 2113–2134,
https://doi.org/10.1016/j.jsg.2005.08.006, 2005.
Hancock, P. L.: Jointing in the Jurassic limestones of the Cotswold Hills,
Proc. Geol. Assoc., 80, 219–241, https://doi.org/10.1016/S0016-7878(69)80043-X,
1969.
Hancock, P. L. and Engelder, T.: Neotectonic joints, GSA Bull., 101,
1197–1208, https://doi.org/10.1130/0016-7606(1989)101<1197:NJ>2.3.CO;2, 1989.
Hansman, R. J. and Ring, U.: Workflow: From photo-based 3-D reconstruction
of remotely piloted aircraft images to a 3-D geological model, Geosphere,
15, 1393–1408, https://doi.org/10.1130/GES02031.1, 2019.
Kelly, P. G., Peacock, D. C. P., Sanderson, D. J., and McGurk, A. C.:
Selective reverse-reactivation of normal faults, and deformation around
reverse-reactivated faults in the Mesozoic of the Somerset coast, J. Struct.
Geol., 21, 493–509, https://doi.org/10.1016/S0191-8141(99)00041-3, 1999.
Long, J. J., Jones, R. R., and Daniels., S. E.: Reducing uncertainty in
fracture modelling: assessing the sensitivity of inputs from outcrop
analogues, in: The Geology of Fractured Reservoirs, 24–25 October 2018, The
Geological Society of London, The Geological Society of London, oral
Presentation, 2018.
Loosveld, R. J. H. and Franssen, R. C. M. W.: Extensional vs. Shear
Fractures: Implications for Reservoir Characterisation, in SPE-25017-MS, Society of Petroleum Engineers, Cannes, France, p. 8, 1992.
Matthäi, S. K. and Belayneh, M.: Fluid flow partitioning between
fractures and a permeable rock matrix, Geophys. Res. Lett., 31, L07602,
https://doi.org/10.1029/2003GL019027, 2004.
Matthäi, S. K., Mezentsev, A. A., and Belayneh, M.: Finite Element -
Node-Centered Finite-Volume Two-Phase-Flow Experiments With Fractured Rock
Represented by Unstructured Hybrid-Element Meshes, SPE Reserv. Eval. Eng.,
10, 740–756, https://doi.org/10.2118/93341-PA, 2007.
Mauldon, M., Dunne, W. M., and Rohrbaugh, M. B.: Circular scanlines and
circular windows: new tools for characterizing the geometry of fracture
traces, J. Struct. Geol., 23, 247–258,
https://doi.org/10.1016/S0191-8141(00)00094-8, 2001.
Morley, C. K. and Nixon, C. W.: Topological characteristics of simple and
complex normal fault networks, J. Struct. Geol., 84, 68–84,
https://doi.org/10.1016/j.jsg.2016.01.005, 2016.
Müller, D., Walter, T. R., Schöpa, A., Witt, T., Steinke, B.,
Gudmundsson, M. T., and Dürig, T.: High-Resolution Digital Elevation
modeling from TLS and UAV Campaign Reveals Structural Complexity at the
2014/2015 Holuhraun Eruption Site, Iceland, Front Earth Sci., 5, 59,
https://doi.org/10.3389/feart.2017.00059, 2017.
Nemčok, M., Gayer, R., and Miliorizos, M.: Structural analysis of the
inverted Bristol Channel Basin: implications for the geometry and timing of
fracture porosity, Geol. Soc. Lond. Spec. Publ., 88, 355–392,
https://doi.org/10.1144/GSL.SP.1995.088.01.20, 1995.
Niethammer, U., James, M. R., Rothmund, S., Travelletti, J., and Joswig, M.:
UAV-based remote sensing of the Super-Sauze landslide: Evaluation and
results, Eng. Geol., 128, 2–11, https://doi.org/10.1016/j.enggeo.2011.03.012, 2012.
Nyberg, B., Nixon, C. W., and Sanderson, D. J.: NetworkGT: A GIS tool for
geometric and topological analysis of two-dimensional fracture networks,
Geosphere, 14, 1618–1634, https://doi.org/10.1130/GES01595.1, 2018.
Pahl, P. J.: Estimating the Mean Length of Discontinuity Traces, Int. J.
Rock Mech. Min. Sci., 18, 221–228, https://doi.org/10.1016/0148-9062(81)90976-1,
1981.
Passchier, M., Urai, J., and Passchier, C.: Structure and age relationship of joint sets on the Lilstock Benches, UK, based on mapping a full resolution UAV-based image, preprint, EarthArXiv., https://doi.org/10.31223/osf.io/g2uxy, 2020.
Peacock, D. C. P. and Sanderson, D. J.: Displacements, segment linkage and
relay ramps in normal fault zones, J. Struct. Geol., 13, 721–733,
https://doi.org/10.1016/0191-8141(91)90033-F, 1991.
Peacock, D. C. P. and Sanderson, D. J.: Geometry and Development of Relay
Ramps in Normal Fault Systems, AAPG Bull., 78, 147–165, 1994.
Peacock, D. C. P. and Sanderson, D. J.: Strike-slip relay ramps, J. Struct.
Geol., 17, 1351–1360, https://doi.org/10.1016/0191-8141(95)97303-W, 1995.
Peacock, D. C. P., Sanderson, D. J., and Rotevatn, A.: Relationships between
fractures, J. Struct. Geol., 106, 41–53, https://doi.org/10.1016/j.jsg.2017.11.010,
2018.
Peacock, D. C. P., Sanderson, D. J., Bastesen, E., Rotevatn, A., and
Storstein, T. H.: Causes of bias and uncertainty in fracture network
analysis, NJG, 99, 113–128, https://doi.org/10.17850/njg99-1-06, 2019.
Pix4D SA (Pix4D AG) (Pix4D Ltd): Pix4Dcapture (Version 2.1.0) [iOS
application], available at: https://apps.apple.com/de/app/pix4dcapture/id953486050, last access: 15 July 2017.
Prabhakaran, R., Bruna, P.-O., Bertotti, G., and Smeulders, D.: An automated fracture trace detection technique using the complex shearlet transform, Solid Earth, 10, 2137–2166, https://doi.org/10.5194/se-10-2137-2019, 2019.
Priest, S. D. and Hudson, J. A.: Estimation of Discontinuity Spacing and
Trace Length Using Scanline Surveys, Int. J. Rock Mech. Min. Sci., 18,
183–197, https://doi.org/10.1016/0148-9062(81)90973-6, 1981.
Procter, A. and Sanderson, D. J.: Spatial and layer-controlled variability
in fracture networks, J. Struct. Geol., 108, 52–65,
https://doi.org/10.1016/j.jsg.2017.07.008, 2018.
Rawnsley, K. D., Peacock, D. C. P., Rives, T., and Petit, J.-P.: Joints in
the Mesozoic sediments around the Bristol Channel Basin, J. Struct. Geol.,
20, 1641–1661, https://doi.org/10.1016/S0191-8141(98)00070-4, 1998.
Reisenhofer, R., Kiefer, J., and King, E. J.: Shearlet-based detection of
flame fronts, Exp. Fluids, 57, 41, https://doi.org/10.1007/s00348-016-2128-6, 2016.
Rohrbaugh, M. B., Dunne, W. M., and Mauldon, M.: Estimating fracture trace
intensity, density, and mean length using circular scan lines and windows,
AAPG Bull., 86, 2089–2104, https://doi.org/10.1306/61EEDE0E-173E-11D7-8645000102C1865D, 2002.
Sanderson, D. J. and Nixon, C. W.: The use of topology in fracture network
characterization, J. Struct. Geol., 72, 55–66,
https://doi.org/10.1016/j.jsg.2015.01.005, 2015.
Sanderson, D. J., Peacock, D. C. P., Nixon, C. W., and Rotevatn, A.: Graph
theory and the analysis of fracture networks, J. Struct. Geol.,
125, 155–165, https://doi.org/10.1016/j.jsg.2018.04.011, 2019.
Vasuki, Y., Holden, E.-J., Kovesi, P., and Micklethwaite, S.: Semi-automatic
mapping of geological Structures using UAV-based photogrammetric data: An
image analysis approach, 25.04.2014, 69, 22–32, 2014.
Watkins, H., Bond, C. E., Healy, D., and Butler, R. W. H.: Appraisal of
fracture sampling methods and a new workflow to characterise heterogeneous
fracture networks at outcrop, J. Struct. Geol., 72, 67–82,
https://doi.org/10.1016/j.jsg.2015.02.001, 2015.
Weismüller, C., Urai, J. L., Kettermann, M., von Hagke, C., and Reicherter, K.: Structure of massively dilatant faults in Iceland: lessons learned from high-resolution unmanned aerial vehicle data, Solid Earth, 10, 1757–1784, https://doi.org/10.5194/se-10-1757-2019, 2019.
Weismüller, C., Passchier, M., Urai, J. L., and Reicherter, K.: The fracture network in the Lilstock pavement, Bristol Channel, UK: digital elevation models and orthorectified mosaics created from unmanned aerial vehicle imagery, 2020, https://doi.org/10.18154/RWTH-2020-06903, last access: 28 August 2020.
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds,
J. M.: “Structure-from-Motion” photogrammetry: A low-cost, effective tool
for geoscience applications, Geomorphology, 179, 300–314, https://doi.org/10.1016/j.geomorph.2012.08.021, 2012.
Wu, H. and Pollard, D.: An experimental study of the relationship between
joint spacing and layer thickness, J. Struct. Geol., 17, 887–905,
https://doi.org/10.1016/0191-8141(94)00099-L, 1995.
Short summary
We photographed a fractured limestone pavement with a drone to compare manual and automatic fracture tracing and analyze the evolution and spatial variation of the fracture network in high resolution. We show that automated tools can produce results comparable to manual tracing in shorter time but do not yet allow the interpretation of fracture generations. This work pioneers the automatic fracture mapping of a complete outcrop in detail, and the results can be used as fracture benchmark.
We photographed a fractured limestone pavement with a drone to compare manual and automatic...