Articles | Volume 11, issue 2
Solid Earth, 11, 547–578, 2020
https://doi.org/10.5194/se-11-547-2020
Solid Earth, 11, 547–578, 2020
https://doi.org/10.5194/se-11-547-2020
Research article
17 Apr 2020
Research article | 17 Apr 2020

Evolution of structures and hydrothermal alteration in a Palaeoproterozoic supracrustal belt: Constraining paired deformation–fluid flow events in an Fe and Cu–Au prospective terrain in northern Sweden

Joel B. H. Andersson et al.

Related authors

Structural framework and timing of the Pahtohavare Cu ± Au deposits, Kiruna mining district, Sweden
Leslie Logan, Ervin Veress, Joel B. H. Andersson, Olof Martinsson, and Tobias E. Bauer
EGUsphere, https://doi.org/10.5194/egusphere-2022-1475,https://doi.org/10.5194/egusphere-2022-1475, 2023
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Structural geology
A contribution to the quantification of crustal shortening and kinematics of deformation across the Western Andes ( ∼ 20–22° S)
Tania Habel, Martine Simoes, Robin Lacassin, Daniel Carrizo, and German Aguilar
Solid Earth, 14, 17–42, https://doi.org/10.5194/se-14-17-2023,https://doi.org/10.5194/se-14-17-2023, 2023
Short summary
Rift thermal inheritance in the SW Alps (France): insights from RSCM thermometry and 1D thermal numerical modelling
Naïm Célini, Frédéric Mouthereau, Abdeltif Lahfid, Claude Gout, and Jean-Paul Callot
Solid Earth, 14, 1–16, https://doi.org/10.5194/se-14-1-2023,https://doi.org/10.5194/se-14-1-2023, 2023
Short summary
The Luangwa Rift Active Fault Database and fault reactivation along the southwestern branch of the East African Rift
Luke N. J. Wedmore, Tess Turner, Juliet Biggs, Jack N. Williams, Henry M. Sichingabula, Christine Kabumbu, and Kawawa Banda
Solid Earth, 13, 1731–1753, https://doi.org/10.5194/se-13-1731-2022,https://doi.org/10.5194/se-13-1731-2022, 2022
Short summary
Clustering has a meaning: optimization of angular similarity to detect 3D geometric anomalies in geological terrains
Michał P. Michalak, Lesław Teper, Florian Wellmann, Jerzy Żaba, Krzysztof Gaidzik, Marcin Kostur, Yuriy P. Maystrenko, and Paulina Leonowicz
Solid Earth, 13, 1697–1720, https://doi.org/10.5194/se-13-1697-2022,https://doi.org/10.5194/se-13-1697-2022, 2022
Short summary
Shear zone evolution and the path of earthquake rupture
Erik M. Young, Christie D. Rowe, and James D. Kirkpatrick
Solid Earth, 13, 1607–1629, https://doi.org/10.5194/se-13-1607-2022,https://doi.org/10.5194/se-13-1607-2022, 2022
Short summary

Cited articles

Åhäll, K.-I. and Larsson, S.-Å.: Growth related 1.85–1.55 Ga magmatism in the Baltic Shield; a review addressing the tectonic characteristics of the Svecofennian, TIB-1, and Gothian events, GFF, 122, 193–206, 2000. 
Allen, R. L., Weihed, P., and Svenson, S.-Å.: Setting of Zn-Cu-Au-Ag massive sulfide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte District, Sweden, Econ. Geol., 91, 1022–1053, 1996. 
Andersson, J. B. H.: Structural evolution of two ore-bearing metasupracrustal belts in the Kiruna area, northwestern Fennoscandian shield, Licentiate thesis, Luleå University of Technology, Sweden, 28 pp., 2019. 
Andersson, J. B. H., Bauer, T. E., Martinsson, O., and Wanhainen, C.: The tectonic overprint on the Per Geijer apatite iron ores in Kiruna, northern Sweden, Proceedings of the 14th SGA Biennal Meeting, 20–23 August 2017, Quebec City, Canada, 903–907, 2017. 
Andersson, U. B.: Granitoid episodes and mafic-felsic magma interaction in the Svecofennian of the Fennoscandian Shield, with main emphasis on the ∼1.8 Ga plutonics, Precambrian Res., 51, 127–149, 1991. 
Download
Short summary
In this field-based study, geological structures and hydrothermal alterations in one of the least known geological terrains in Sweden are investigated. The area is located above the polar circle in northwestern Sweden that produces a significant portion of the iron and copper in the EU. A new tectonic model based on field evidence and microstructures is presented and it is shown that minerals typical for iron and copper–gold deposits can be linked to different phases of the structural evolution.