Articles | Volume 12, issue 10
https://doi.org/10.5194/se-12-2159-2021
https://doi.org/10.5194/se-12-2159-2021
Research article
 | 
30 Sep 2021
Research article |  | 30 Sep 2021

Investigating spatial heterogeneity within fracture networks using hierarchical clustering and graph distance metrics

Rahul Prabhakaran, Giovanni Bertotti, Janos Urai, and David Smeulders

Related authors

Mapping the fracture network in the Lilstock pavement, Bristol Channel, UK: manual versus automatic
Christopher Weismüller, Rahul Prabhakaran, Martijn Passchier, Janos L. Urai, Giovanni Bertotti, and Klaus Reicherter
Solid Earth, 11, 1773–1802, https://doi.org/10.5194/se-11-1773-2020,https://doi.org/10.5194/se-11-1773-2020, 2020
Short summary
An automated fracture trace detection technique using the complex shearlet transform
Rahul Prabhakaran, Pierre-Olivier Bruna, Giovanni Bertotti, and David Smeulders
Solid Earth, 10, 2137–2166, https://doi.org/10.5194/se-10-2137-2019,https://doi.org/10.5194/se-10-2137-2019, 2019
Short summary
A new methodology to train fracture network simulation using multiple-point statistics
Pierre-Olivier Bruna, Julien Straubhaar, Rahul Prabhakaran, Giovanni Bertotti, Kevin Bisdom, Grégoire Mariethoz, and Marco Meda
Solid Earth, 10, 537–559, https://doi.org/10.5194/se-10-537-2019,https://doi.org/10.5194/se-10-537-2019, 2019
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Structural geology
Time-dependent frictional properties of granular materials used in analogue modelling: implications for mimicking fault healing during reactivation and inversion
Michael Rudolf, Matthias Rosenau, and Onno Oncken
Solid Earth, 14, 311–331, https://doi.org/10.5194/se-14-311-2023,https://doi.org/10.5194/se-14-311-2023, 2023
Short summary
Large grain-size-dependent rheology contrasts of halite at low differential stress: evidence from microstructural study of naturally deformed gneissic Zechstein 2 rock salt (Kristallbrockensalz) from the northern Netherlands
Jessica Barabasch, Joyce Schmatz, Jop Klaver, Alexander Schwedt, and Janos L. Urai
Solid Earth, 14, 271–291, https://doi.org/10.5194/se-14-271-2023,https://doi.org/10.5194/se-14-271-2023, 2023
Short summary
Analogue modelling of the inversion of multiple extensional basins in foreland fold-and-thrust belts
Nicolás Molnar and Susanne Buiter
Solid Earth, 14, 213–235, https://doi.org/10.5194/se-14-213-2023,https://doi.org/10.5194/se-14-213-2023, 2023
Short summary
A contribution to the quantification of crustal shortening and kinematics of deformation across the Western Andes ( ∼ 20–22° S)
Tania Habel, Martine Simoes, Robin Lacassin, Daniel Carrizo, and German Aguilar
Solid Earth, 14, 17–42, https://doi.org/10.5194/se-14-17-2023,https://doi.org/10.5194/se-14-17-2023, 2023
Short summary
Rift thermal inheritance in the SW Alps (France): insights from RSCM thermometry and 1D thermal numerical modelling
Naïm Célini, Frédéric Mouthereau, Abdeltif Lahfid, Claude Gout, and Jean-Paul Callot
Solid Earth, 14, 1–16, https://doi.org/10.5194/se-14-1-2023,https://doi.org/10.5194/se-14-1-2023, 2023
Short summary

Cited articles

Andresen, C., Hansen, A., Le Goc, R., Davy, P., and Hope, S.: Topology of fracture networks, AIP Conf. Proc., 1, 7, https://doi.org/10.3389/fphy.2013.00007, 2013. a, b, c, d, e
Bagrow, J. P. and Bollt, E. M.: An information-theoretic, all-scales approach to comparing networks, Applied Network Science, 4, 45, https://doi.org/10.1007/s41109-019-0156-x, 2019. a, b, c, d, e
Bagrow, J. P., Bollt, E. M., Skufca, J. D., and ben Avraham, D.: Portraits of complex networks, Europhys. Lett., 81, 68004, https://doi.org/10.1209/0295-5075/81/68004, 2008. a
Barthelemy, M.: Morphogenesis of Spatial Networks, Lecture Notes in Morphogenesis, Springer International Publishing, 2018 edn., https://doi.org/10.1007/978-3-319-20565-6, 2018. a, b
Belayneh, M.: Palaeostress orientation inferred from surface morphology of joints on the southern margin of the Bristol Channel Basin, UK, pp. 243–255, 1, Geol. Soc. Sp., 231, 243–255, https://doi.org/10.1144/GSL.SP.2004.231.01.14, 2004. a
Download
Short summary
Rock fractures are organized as networks with spatially varying arrangements. Due to networks' influence on bulk rock behaviour, it is important to quantify network spatial variation. We utilize an approach where fracture networks are treated as spatial graphs. By combining graph similarity measures with clustering techniques, spatial clusters within large-scale fracture networks are identified and organized hierarchically. The method is validated on a dataset with nearly 300 000 fractures.