Articles | Volume 12, issue 10
https://doi.org/10.5194/se-12-2327-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-2327-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of basement thrust faults on low-angle normal faults and rift basin evolution: a case study in the Enping sag, Pearl River Basin
State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
Rixiang Zhu
CORRESPONDING AUTHOR
Institute of Geology and Geophysics, Chinese
Academy of Sciences, Beijing, 100029, China
State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
Jianhui Han
College of Energy, Chengdu University of Technology, Chengdu, 610059, China
Yu Shu
Shenzhen Branch Company of CNOOC, Shenzhen, 518054, China
Yuxiang Wu
Shenzhen Branch Company of CNOOC, Shenzhen, 518054, China
Kefeng Hou
Changqing Oil Field, PetroChina Company Limited, CNPC, Xi'an, 710021, China
Wei Long
College of Energy, Chengdu University of Technology, Chengdu, 610059, China
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Structural geology
Driven magmatism and crustal thinning of coastal southern China in response to subduction
Selection and characterization of the target fault for fluid-induced activation and earthquake rupture experiments
Naturally fractured reservoir characterisation in heterogeneous sandstones: insight for uranium in situ recovery (Imouraren, Niger)
Influence of water on crystallographic preferred orientation patterns in a naturally-deformed quartzite
Multiscalar 3D temporal structural characterisation of Smøla island, mid-Norwegian passive margin: an analogue for unravelling the tectonic history of offshore basement highs
Localized shear versus distributed strain accumulation as shear-accommodation mechanisms in ductile shear zones: Constraining their dictating factors
Impact of faults on the remote stress state
Subduction plate interface shear stress associated with rapid subduction at deep slow earthquake depths: example from the Sanbagawa belt, southwestern Japan
Multiple phase rifting and subsequent inversion in the West Netherlands Basin: implications for geothermal reservoir characterization
Analogue modelling of basin inversion: implications for the Araripe Basin (Brazil)
Geomorphic expressions of active rifting reflect the role of structural inheritance: A new model for the evolution of the Shanxi Rift, North China
Natural fracture patterns at Swift Reservoir anticline, NW Montana: the influence of structural position and lithology from multiple observation scales
Rapid hydration and weakening of anhydrite under stress: implications for natural hydration in the Earth's crust and mantle
Analogue experiments on releasing and restraining bends and their application to the study of the Barents Shear Margin
Structural framework and timing of the Pahtohavare Cu ± Au deposits, Kiruna mining district, Sweden
Does the syn- versus post-rift thickness ratio have an impact on the inversion-related structural style?
Inversion of accommodation zones in salt-bearing extensional systems: insights from analog modeling
Structural control of inherited salt structures during inversion of a domino basement-fault system from an analogue modelling approach
Kinematics and time-resolved evolution of the main thrust-sense shear zone in the Eo-Alpine orogenic wedge (the Vinschgau Shear Zone, eastern Alps)
Role of inheritance during tectonic inversion of a rift system in basement-involved to salt-decoupled transition: analogue modelling and application to the Pyrenean–Biscay system
Water release and homogenization by dynamic recrystallization of quartz
Hydrothermal activity of the Lake Abhe geothermal field (Djibouti): Structural controls and paths for further exploration
Time-dependent frictional properties of granular materials used in analogue modelling: implications for mimicking fault healing during reactivation and inversion
Large grain-size-dependent rheology contrasts of halite at low differential stress: evidence from microstructural study of naturally deformed gneissic Zechstein 2 rock salt (Kristallbrockensalz) from the northern Netherlands
Analogue modelling of the inversion of multiple extensional basins in foreland fold-and-thrust belts
A contribution to the quantification of crustal shortening and kinematics of deformation across the Western Andes ( ∼ 20–22° S)
Rift thermal inheritance in the SW Alps (France): insights from RSCM thermometry and 1D thermal numerical modelling
The Luangwa Rift Active Fault Database and fault reactivation along the southwestern branch of the East African Rift
Clustering has a meaning: optimization of angular similarity to detect 3D geometric anomalies in geological terrains
Shear zone evolution and the path of earthquake rupture
Mechanical compaction mechanisms in the input sediments of the Sumatra subduction complex – insights from microstructural analysis of cores from IODP Expedition 362
Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods
Multiscale lineament analysis and permeability heterogeneity of fractured crystalline basement blocks
Structural characterization and K–Ar illite dating of reactivated, complex and heterogeneous fault zones: lessons from the Zuccale Fault, Northern Apennines
How do differences in interpreting seismic images affect estimates of geological slip rates?
Progressive veining during peridotite carbonation: insights from listvenites in Hole BT1B, Samail ophiolite (Oman)
Tectonic evolution of the Indio Hills segment of the San Andreas fault in southern California, southwestern USA
Structural diagenesis in ultra-deep tight sandstones in the Kuqa Depression, Tarim Basin, China
Variscan structures and their control on latest to post-Variscan basin architecture: insights from the westernmost Bohemian Massif and southeastern Germany
Multi-disciplinary characterizations of the BedrettoLab – a new underground geoscience research facility
Biotite supports long-range diffusive transport in dissolution–precipitation creep in halite through small porosity fluctuations
De-risking the energy transition by quantifying the uncertainties in fault stability
Virtual field trip to the Esla Nappe (Cantabrian Zone, NW Spain): delivering traditional geological mapping skills remotely using real data
Marine forearc structure of eastern Java and its role in the 1994 Java tsunami earthquake
Roughness of fracture surfaces in numerical models and laboratory experiments
Evidence for and significance of the Late Cretaceous Asteroussia event in the Gondwanan Ios basement terranes
Investigating spatial heterogeneity within fracture networks using hierarchical clustering and graph distance metrics
Dating folding beyond folding, from layer-parallel shortening to fold tightening, using mesostructures: lessons from the Apennines, Pyrenees, and Rocky Mountains
Deformation-enhanced diagenesis and bacterial proliferation in the Nankai accretionary prism
Rheological stratification in impure rock salt during long-term creep: morphology, microstructure, and numerical models of multilayer folds in the Ocnele Mari salt mine, Romania
Jinbao Su, Wenbin Zhu, and Guangwei Li
Solid Earth, 15, 1133–1141, https://doi.org/10.5194/se-15-1133-2024, https://doi.org/10.5194/se-15-1133-2024, 2024
Short summary
Short summary
The late Mesozoic igneous rocks in the South China Block exhibit flare-ups and lulls, which form in compressional or extensional backgrounds. The ascending of magma forms a mush-like head and decreases crustal thickness. The presence of faults and pre-existing magmas will accelerate emplacement of underplating magma. The magmatism at different times may be formed under similar subduction conditions, and the boundary compression forces will delay magma ascent.
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024, https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary
Short summary
We detail the selection and characterization of a fault zone for earthquake experiments in the Fault Activation and Earthquake Ruptures (FEAR) project at the Bedretto Lab. FEAR, which studies earthquake processes, overcame data collection challenges near faults. The fault zone in Rotondo granite was selected based on geometry, monitorability, and hydro-mechanical properties. Remote sensing, borehole logging, and geological mapping were used to create a 3D model for precise monitoring.
Maxime Jamet, Gregory Ballas, Roger Soliva, Olivier Gerbeaud, Thierry Lefebvre, Christine Leredde, and Didier Loggia
Solid Earth, 15, 895–920, https://doi.org/10.5194/se-15-895-2024, https://doi.org/10.5194/se-15-895-2024, 2024
Short summary
Short summary
This study characterizes the Tchirezrine II sandstone reservoir in northern Niger. Crucial for potential uranium in situ recovery (ISR), our multifaceted approach reveals (i) a network of homogeneously distributed orthogonal structures, (ii) the impact of clustered E–W fault structures on anisotropic fluid flow, and (iii) local changes in the matrix behaviour of the reservoir as a function of the density and nature of the deformation structure.
Jeffrey M. Rahl, Brendan Moehringer, Kenneth S. Befus, and John S. Singleton
EGUsphere, https://doi.org/10.5194/egusphere-2024-1567, https://doi.org/10.5194/egusphere-2024-1567, 2024
Short summary
Short summary
At the high temperatures present in the deeper crust, minerals such as quartz can flow much like silly putty. The detailed mechanisms of how atoms are reorganized depends upon several factors, such as the temperature and the rate of which the mineral changes shape. We present observations from a naturally-deformed rock showing that the amount of water present also influences the type of deformation in quartz, with implications for geological interpretations.
Matthew S. Hodge, Guri Venvik, Jochen Knies, Roelant van der Lelij, Jasmin Schönenberger, Øystein Nordgulen, Marco Brönner, Aziz Nasuti, and Giulio Viola
Solid Earth, 15, 589–615, https://doi.org/10.5194/se-15-589-2024, https://doi.org/10.5194/se-15-589-2024, 2024
Short summary
Short summary
Smøla island, in the mid-Norwegian margin, has complex fracture and fault patterns resulting from tectonic activity. This study uses a multiple-method approach to unravel Smøla's tectonic history. We found five different phases of deformation related to various fracture geometries and minerals dating back hundreds of millions of years. 3D models of these features visualise these structures in space. This approach may help us to understand offshore oil and gas reservoirs hosted in the basement.
Pramit Chatterjee, Arnab Roy, and Nibir Mandal
EGUsphere, https://doi.org/10.5194/egusphere-2024-1077, https://doi.org/10.5194/egusphere-2024-1077, 2024
Short summary
Short summary
Understanding the strain accumulation processes in ductile shear zones is essential to explain the failure mechanisms at great crustal depths. This study explores the rheological and kinematic factors determining the varying modes of shear accommodation in natural shear zones. Numerical simulations suggest that an interplay of the following parameters: initial bulk viscosity, bulk shear rate, and internal cohesion governs the dominance of one accommodation mechanism over the other.
Karsten Reiter, Oliver Heidbach, and Moritz O. Ziegler
Solid Earth, 15, 305–327, https://doi.org/10.5194/se-15-305-2024, https://doi.org/10.5194/se-15-305-2024, 2024
Short summary
Short summary
It is generally assumed that faults have an influence on the stress state of the Earth’s crust. It is questionable whether this influence is still present far away from a fault. Simple numerical models were used to investigate the extent of the influence of faults on the stress state. Several models with different fault representations were investigated. The stress fluctuations further away from the fault (> 1 km) are very small.
Yukinojo Koyama, Simon R. Wallis, and Takayoshi Nagaya
Solid Earth, 15, 143–166, https://doi.org/10.5194/se-15-143-2024, https://doi.org/10.5194/se-15-143-2024, 2024
Short summary
Short summary
Stress along a subduction plate boundary is important for understanding subduction phenomena such as earthquakes. We estimated paleo-stress using quartz recrystallized grain size combined with deformation temperature and P–T paths of exhumed rocks. The obtained results show differential stresses of 30.8–82.7 MPa consistent over depths of 17–27 km in the paleo-subduction boundary. The obtained stress may represent the initial conditions under which slow earthquakes nucleated in the same domain.
Annelotte Weert, Kei Ogata, Francesco Vinci, Coen Leo, Giovanni Bertotti, Jerome Amory, and Stefano Tavani
Solid Earth, 15, 121–141, https://doi.org/10.5194/se-15-121-2024, https://doi.org/10.5194/se-15-121-2024, 2024
Short summary
Short summary
On the road to a sustainable planet, geothermal energy is considered one of the main substitutes when it comes to heating. The geological history of an area can have a major influence on the application of these geothermal systems, as demonstrated in the West Netherlands Basin. Here, multiple episodes of rifting and subsequent basin inversion have controlled the distribution of the reservoir rocks, thus influencing the locations where geothermal energy can be exploited.
Pâmela C. Richetti, Frank Zwaan, Guido Schreurs, Renata S. Schmitt, and Timothy C. Schmid
Solid Earth, 14, 1245–1266, https://doi.org/10.5194/se-14-1245-2023, https://doi.org/10.5194/se-14-1245-2023, 2023
Short summary
Short summary
The Araripe Basin in NE Brazil was originally formed during Cretaceous times, as South America and Africa broke up. The basin is an important analogue to offshore South Atlantic break-up basins; its sediments were uplifted and are now found at 1000 m height, allowing for studies thereof, but the cause of the uplift remains debated. Here we ran a series of tectonic laboratory experiments that show how a specific plate tectonic configuration can explain the evolution of the Araripe Basin.
Malte Froemchen, Ken J. W. McCaffrey, Mark B. Allen, Jeroen van Hunen, Thomas B. Phillips, and Yueren Xu
EGUsphere, https://doi.org/10.5194/egusphere-2023-2563, https://doi.org/10.5194/egusphere-2023-2563, 2023
Short summary
Short summary
The Shanxi Rift is a young active rift in North China that formed superimposed on a Proterozoic orogen. The impact of these structures on the active rift faults is poorly constrained. Here we quantify the landscape response to active faulting and compare these to published maps of inherited structures. We find that inherited structures played an important role in the segmentation of the Shanxi Rift and in the development of Rift Interaction Zones, the most active regions of the Shanxi Rift.
Adam J. Cawood, Hannah Watkins, Clare E. Bond, Marian J. Warren, and Mark A. Cooper
Solid Earth, 14, 1005–1030, https://doi.org/10.5194/se-14-1005-2023, https://doi.org/10.5194/se-14-1005-2023, 2023
Short summary
Short summary
Here we test conceptual models of fracture development by investigating fractures across multiple scales. We find that most fractures increase in abundance towards the fold hinge, and we interpret these as being fold related. Other fractures at the site show inconsistent orientations and are unrelated to fold formation. Our results show that predicting fracture patterns requires the consideration of multiple geologic variables.
Johanna Heeb, David Healy, Nicholas E. Timms, and Enrique Gomez-Rivas
Solid Earth, 14, 985–1003, https://doi.org/10.5194/se-14-985-2023, https://doi.org/10.5194/se-14-985-2023, 2023
Short summary
Short summary
Hydration of rocks is a key process in the Earth’s crust and mantle that is accompanied by changes in physical traits and mechanical behaviour of rocks. This study assesses the influence of stress on hydration reaction kinetics and mechanics in experiments on anhydrite. We show that hydration occurs readily under stress and results in localized hydration along fractures and mechanic weakening. New gypsum growth is selective and depends on the stress field and host anhydrite crystal orientation.
Roy Helge Gabrielsen, Panagiotis Athanasios Giannenas, Dimitrios Sokoutis, Ernst Willingshofer, Muhammad Hassaan, and Jan Inge Faleide
Solid Earth, 14, 961–983, https://doi.org/10.5194/se-14-961-2023, https://doi.org/10.5194/se-14-961-2023, 2023
Short summary
Short summary
The Barents Shear Margin defines the border between the relatively shallow Barents Sea that is situated on a continental plate and the deep ocean. This margin's evolution history was probably influenced by plate tectonic reorganizations. From scaled experiments, we deduced several types of structures (faults, folds, and sedimentary basins) that help us to improve the understanding of the history of the opening of the North Atlantic.
Leslie Logan, Ervin Veress, Joel B. H. Andersson, Olof Martinsson, and Tobias E. Bauer
Solid Earth, 14, 763–784, https://doi.org/10.5194/se-14-763-2023, https://doi.org/10.5194/se-14-763-2023, 2023
Short summary
Short summary
The Pahtohavare Cu ± Au deposits in the Kiruna mining district have a dubious timing of formation and have not been contextualized within an up-to-date tectonic framework. Structural mapping was carried out to reveal that the deposits are hosted in brittle structures that cut a noncylindrical, SE-plunging anticline constrained to have formed during the late-Svecokarelian orogeny. These results show that Cu ± Au mineralization formed more than ca. 80 Myr after iron oxide–apatite mineralization.
Alexandra Tamas, Dan M. Tamas, Gabor Tari, Csaba Krezsek, Alexandru Lapadat, and Zsolt Schleder
Solid Earth, 14, 741–761, https://doi.org/10.5194/se-14-741-2023, https://doi.org/10.5194/se-14-741-2023, 2023
Short summary
Short summary
Tectonic processes are complex and often difficult to understand due to the limitations of surface or subsurface data. One such process is inversion tectonics, which means that an area initially developed in an extension (such as the opening of an ocean) is reversed to compression (the process leading to mountain building). In this research, we use a laboratory method (analogue modelling), and with the help of a sandbox, we try to better understand structures (folds/faults) related to inversion.
Elizabeth Parker Wilson, Pablo Granado, Pablo Santolaria, Oriol Ferrer, and Josep Anton Muñoz
Solid Earth, 14, 709–739, https://doi.org/10.5194/se-14-709-2023, https://doi.org/10.5194/se-14-709-2023, 2023
Short summary
Short summary
This work focuses on the control of accommodation zones on extensional and subsequent inversion in salt-detached domains using sandbox analogue models. During extension, the transfer zone acts as a pathway for the movement of salt, changing the expected geometries. When inverted, the salt layer and syn-inversion sedimentation control the deformation style in the salt-detached cover system. Three natural cases are compared to the model results and show similar inversion geometries.
Oriol Ferrer, Eloi Carola, and Ken McClay
Solid Earth, 14, 571–589, https://doi.org/10.5194/se-14-571-2023, https://doi.org/10.5194/se-14-571-2023, 2023
Short summary
Short summary
Using an experimental approach based on scaled sandbox models, this work aims to understand how salt above different rotational fault blocks influences the cover geometry and evolution, first during extension and then during inversion. The results show that inherited salt structures constrain contractional deformation. We show for the first time how welds and fault welds are reopened during contractional deformation, having direct implications for the subsurface exploration of natural resources.
Chiara Montemagni, Stefano Zanchetta, Martina Rocca, Igor M. Villa, Corrado Morelli, Volkmar Mair, and Andrea Zanchi
Solid Earth, 14, 551–570, https://doi.org/10.5194/se-14-551-2023, https://doi.org/10.5194/se-14-551-2023, 2023
Short summary
Short summary
The Vinschgau Shear Zone (VSZ) is one of the largest and most significant shear zones developed within the Late Cretaceous thrust stack in the Austroalpine domain of the eastern Alps. 40Ar / 39Ar geochronology constrains the activity of the VSZ between 97 and 80 Ma. The decreasing vorticity towards the core of the shear zone, coupled with the younging of mylonites, points to a shear thinning behavior. The deepest units of the Eo-Alpine orogenic wedge were exhumed along the VSZ.
Jordi Miró, Oriol Ferrer, Josep Anton Muñoz, and Gianreto Manastchal
Solid Earth, 14, 425–445, https://doi.org/10.5194/se-14-425-2023, https://doi.org/10.5194/se-14-425-2023, 2023
Short summary
Short summary
Using the Asturian–Basque–Cantabrian system and analogue (sandbox) models, this work focuses on the linkage between basement-controlled and salt-decoupled domains and how deformation is accommodated between the two during extension and subsequent inversion. Analogue models show significant structural variability in the transitional domain, with oblique structures that can be strongly modified by syn-contractional sedimentation. Experimental results are consistent with the case study.
Junichi Fukuda, Takamoto Okudaira, and Yukiko Ohtomo
Solid Earth, 14, 409–424, https://doi.org/10.5194/se-14-409-2023, https://doi.org/10.5194/se-14-409-2023, 2023
Short summary
Short summary
We measured water distributions in deformed quartz by infrared spectroscopy mapping and used the results to discuss changes in water distribution resulting from textural development. Because of the grain size reduction process (dynamic recrystallization), water contents decrease from 40–1750 wt ppm in host grains of ~2 mm to 100–510 wt ppm in recrystallized regions composed of fine grains of ~10 µm. Our results indicate that water is released and homogenized by dynamic recrystallization.
Bastien Walter, Yves Géraud, Alexiane Favier, Nadjib Chibati, and Marc Diraison
EGUsphere, https://doi.org/10.5194/egusphere-2023-397, https://doi.org/10.5194/egusphere-2023-397, 2023
Preprint archived
Short summary
Short summary
Lake Abhe in southwestern Djibouti is known for its exposures of massive hydrothermal chimneys and hot springs on the lake’s eastern shore. This study highlights the control of the main structural faults of the area on the development of these hydrothermal features. This work contributes to better understand hydrothermal fluid pathways in this area and may help further exploration for the geothermal development of this remarkable site.
Michael Rudolf, Matthias Rosenau, and Onno Oncken
Solid Earth, 14, 311–331, https://doi.org/10.5194/se-14-311-2023, https://doi.org/10.5194/se-14-311-2023, 2023
Short summary
Short summary
Analogue models of tectonic processes rely on the reproduction of their geometry, kinematics and dynamics. An important property is fault behaviour, which is linked to the frictional characteristics of the fault gouge. This is represented by granular materials, such as quartz sand. In our study we investigate the time-dependent frictional properties of various analogue materials and highlight their impact on the suitability of these materials for analogue models focusing on fault reactivation.
Jessica Barabasch, Joyce Schmatz, Jop Klaver, Alexander Schwedt, and Janos L. Urai
Solid Earth, 14, 271–291, https://doi.org/10.5194/se-14-271-2023, https://doi.org/10.5194/se-14-271-2023, 2023
Short summary
Short summary
We analysed Zechstein salt with microscopes and observed specific microstructures that indicate much faster deformation in rock salt with fine halite grains when compared to salt with larger grains. This is important because people build large cavities in the subsurface salt for energy storage or want to deposit radioactive waste inside it. When engineers and scientists use grain-size data and equations that include this mechanism, it will help to make better predictions in geological models.
Nicolás Molnar and Susanne Buiter
Solid Earth, 14, 213–235, https://doi.org/10.5194/se-14-213-2023, https://doi.org/10.5194/se-14-213-2023, 2023
Short summary
Short summary
Progression of orogenic wedges over pre-existing extensional structures is common in nature, but deciphering the spatio-temporal evolution of deformation from the geological record remains challenging. Our laboratory experiments provide insights on how horizontal stresses are transferred across a heterogeneous crust, constrain which pre-shortening conditions can either favour or hinder the reactivatation of extensional structures, and explain what implications they have on critical taper theory.
Tania Habel, Martine Simoes, Robin Lacassin, Daniel Carrizo, and German Aguilar
Solid Earth, 14, 17–42, https://doi.org/10.5194/se-14-17-2023, https://doi.org/10.5194/se-14-17-2023, 2023
Short summary
Short summary
The Central Andes are one of the most emblematic reliefs on Earth, but their western flank remains understudied. Here we explore two rare key sites in the hostile conditions of the Atacama desert to build cross-sections, quantify crustal shortening, and discuss the timing of this deformation at ∼20–22°S. We propose that the structures of the Western Andes accommodated significant crustal shortening here, but only during the earliest stages of mountain building.
Naïm Célini, Frédéric Mouthereau, Abdeltif Lahfid, Claude Gout, and Jean-Paul Callot
Solid Earth, 14, 1–16, https://doi.org/10.5194/se-14-1-2023, https://doi.org/10.5194/se-14-1-2023, 2023
Short summary
Short summary
We investigate the peak temperature of sedimentary rocks of the SW Alps (France), using Raman spectroscopy on carbonaceous material. This method provides an estimate of the peak temperature achieved by organic-rich rocks. To determine the timing and the tectonic context of the origin of these temperatures we use 1D thermal modelling. We find that the high temperatures up to 300 °C were achieved during precollisional extensional events, not during tectonic burial in the Western Alps.
Luke N. J. Wedmore, Tess Turner, Juliet Biggs, Jack N. Williams, Henry M. Sichingabula, Christine Kabumbu, and Kawawa Banda
Solid Earth, 13, 1731–1753, https://doi.org/10.5194/se-13-1731-2022, https://doi.org/10.5194/se-13-1731-2022, 2022
Short summary
Short summary
Mapping and compiling the attributes of faults capable of hosting earthquakes are important for the next generation of seismic hazard assessment. We document 18 active faults in the Luangwa Rift, Zambia, in an active fault database. These faults are between 9 and 207 km long offset Quaternary sediments, have scarps up to ~30 m high, and are capable of hosting earthquakes from Mw 5.8 to 8.1. We associate the Molaza Fault with surface ruptures from two unattributed M 6+ 20th century earthquakes.
Michał P. Michalak, Lesław Teper, Florian Wellmann, Jerzy Żaba, Krzysztof Gaidzik, Marcin Kostur, Yuriy P. Maystrenko, and Paulina Leonowicz
Solid Earth, 13, 1697–1720, https://doi.org/10.5194/se-13-1697-2022, https://doi.org/10.5194/se-13-1697-2022, 2022
Short summary
Short summary
When characterizing geological/geophysical surfaces, various geometric attributes are calculated, such as dip angle (1D) or dip direction (2D). However, the boundaries between specific values may be subjective and without optimization significance, resulting from using default color palletes. This study proposes minimizing cosine distance among within-cluster observations to detect 3D anomalies. Our results suggest that the method holds promise for identification of megacylinders or megacones.
Erik M. Young, Christie D. Rowe, and James D. Kirkpatrick
Solid Earth, 13, 1607–1629, https://doi.org/10.5194/se-13-1607-2022, https://doi.org/10.5194/se-13-1607-2022, 2022
Short summary
Short summary
Studying how earthquakes spread deep within the faults they originate from is crucial to improving our understanding of the earthquake process. We mapped preserved ancient earthquake surfaces that are now exposed in South Africa and studied their relationship with the shape and type of rocks surrounding them. We determined that these surfaces are not random and are instead associated with specific kinds of rocks and that their shape is linked to the evolution of the faults in which they occur.
Sivaji Lahiri, Kitty L. Milliken, Peter Vrolijk, Guillaume Desbois, and Janos L. Urai
Solid Earth, 13, 1513–1539, https://doi.org/10.5194/se-13-1513-2022, https://doi.org/10.5194/se-13-1513-2022, 2022
Short summary
Short summary
Understanding the mechanism of mechanical compaction is important. Previous studies on mechanical compaction were mostly done by performing experiments. Studies on natural rocks are rare due to compositional heterogeneity of the sedimentary succession with depth. Due to remarkable similarity in composition and grain size, the Sumatra subduction complex provides a unique opportunity to study the micromechanism of mechanical compaction on natural samples.
Dongwon Lee, Nikolaos Karadimitriou, Matthias Ruf, and Holger Steeb
Solid Earth, 13, 1475–1494, https://doi.org/10.5194/se-13-1475-2022, https://doi.org/10.5194/se-13-1475-2022, 2022
Short summary
Short summary
This research article focuses on filtering and segmentation methods employed in high-resolution µXRCT studies for crystalline rocks, bearing fractures, or fracture networks, of very small aperture. Specifically, we focus on the identification of artificially induced (via quenching) fractures in Carrara marble samples. Results from the same dataset from all five different methods adopted were produced and compared with each other in terms of their output quality and time efficiency.
Alberto Ceccato, Giulia Tartaglia, Marco Antonellini, and Giulio Viola
Solid Earth, 13, 1431–1453, https://doi.org/10.5194/se-13-1431-2022, https://doi.org/10.5194/se-13-1431-2022, 2022
Short summary
Short summary
The Earth's surface is commonly characterized by the occurrence of fractures, which can be mapped, and their can be geometry quantified on digital representations of the surface at different scales of observation. Here we present a series of analytical and statistical tools, which can aid the quantification of fracture spatial distribution at different scales. In doing so, we can improve our understanding of how fracture geometry and geology affect fluid flow within the fractured Earth crust.
Giulio Viola, Giovanni Musumeci, Francesco Mazzarini, Lorenzo Tavazzani, Manuel Curzi, Espen Torgersen, Roelant van der Lelij, and Luca Aldega
Solid Earth, 13, 1327–1351, https://doi.org/10.5194/se-13-1327-2022, https://doi.org/10.5194/se-13-1327-2022, 2022
Short summary
Short summary
A structural-geochronological approach helps to unravel the Zuccale Fault's architecture. By mapping its internal structure and dating some of its fault rocks, we constrained a deformation history lasting 20 Myr starting at ca. 22 Ma. Such long activity is recorded by now tightly juxtaposed brittle structural facies, i.e. different types of fault rocks. Our results also have implications on the regional evolution of the northern Apennines, of which the Zuccale Fault is an important structure.
Wan-Lin Hu
Solid Earth, 13, 1281–1290, https://doi.org/10.5194/se-13-1281-2022, https://doi.org/10.5194/se-13-1281-2022, 2022
Short summary
Short summary
Having a seismic image is generally expected to enable us to better determine fault geometry and thus estimate geological slip rates accurately. However, the process of interpreting seismic images may introduce unintended uncertainties, which have not yet been widely discussed. Here, a case of a shear fault-bend fold in the frontal Himalaya is used to demonstrate how differences in interpretations can affect the following estimates of slip rates and dependent conclusions.
Manuel D. Menzel, Janos L. Urai, Estibalitz Ukar, Thierry Decrausaz, and Marguerite Godard
Solid Earth, 13, 1191–1218, https://doi.org/10.5194/se-13-1191-2022, https://doi.org/10.5194/se-13-1191-2022, 2022
Short summary
Short summary
Mantle rocks can bind large quantities of carbon by reaction with CO2, but this capacity requires fluid pathways not to be clogged by carbonate. We studied mantle rocks from Oman to understand the mechanisms allowing their transformation into carbonate and quartz. Using advanced imaging techniques, we show that abundant veins were essential fluid pathways driving the reaction. Our results show that tectonic stress was important for fracture opening and a key ingredient for carbon fixation.
Jean-Baptiste P. Koehl, Steffen G. Bergh, and Arthur G. Sylvester
Solid Earth, 13, 1169–1190, https://doi.org/10.5194/se-13-1169-2022, https://doi.org/10.5194/se-13-1169-2022, 2022
Short summary
Short summary
The San Andreas fault is a major active fault associated with ongoing earthquake sequences in southern California. The present study investigates the development of the Indio Hills area in the Coachella Valley along the main San Andreas fault and the Indio Hills fault. The Indio Hills area is located near an area with high ongoing earthquake activity (Brawley seismic zone), and, therefore, its recent tectonic evolution has implications for earthquake prediction.
Jin Lai, Dong Li, Yong Ai, Hongkun Liu, Deyang Cai, Kangjun Chen, Yuqiang Xie, and Guiwen Wang
Solid Earth, 13, 975–1002, https://doi.org/10.5194/se-13-975-2022, https://doi.org/10.5194/se-13-975-2022, 2022
Short summary
Short summary
(1) Structural diagenesis analysis is performed on the ultra-deep tight sandstone. (2) Fracture and intergranular pores are related to the low in situ stress magnitudes. (3) Dissolution is associated with the presence of fracture.
Hamed Fazlikhani, Wolfgang Bauer, and Harald Stollhofen
Solid Earth, 13, 393–416, https://doi.org/10.5194/se-13-393-2022, https://doi.org/10.5194/se-13-393-2022, 2022
Short summary
Short summary
Interpretation of newly acquired FRANKEN 2D seismic survey data in southeeastern Germany shows that upper Paleozoic low-grade metasedimentary rocks and possible nappe units are transported by Variscan shear zones to ca. 65 km west of the Franconian Fault System (FFS). We show that the locations of post-Variscan upper Carboniferous–Permian normal faults and associated graben and half-graben basins are controlled by the geometry of underlying Variscan shear zones.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Berit Schwichtenberg, Florian Fusseis, Ian B. Butler, and Edward Andò
Solid Earth, 13, 41–64, https://doi.org/10.5194/se-13-41-2022, https://doi.org/10.5194/se-13-41-2022, 2022
Short summary
Short summary
Hydraulic rock properties such as porosity and permeability are relevant factors that have an impact on groundwater resources, geological repositories and fossil fuel reservoirs. We investigate the influence of chemical compaction upon the porosity evolution in salt–biotite mixtures and related transport length scales by conducting laboratory experiments in combination with 4-D analysis. Our observations invite a renewed discussion of the effect of sheet silicates on chemical compaction.
David Healy and Stephen Paul Hicks
Solid Earth, 13, 15–39, https://doi.org/10.5194/se-13-15-2022, https://doi.org/10.5194/se-13-15-2022, 2022
Short summary
Short summary
The energy transition requires operations in faulted rocks. To manage the technical challenges and public concern over possible induced earthquakes, we need to quantify the risks. We calculate the probability of fault slip based on uncertain inputs, stresses, fluid pressures, and the mechanical properties of rocks in fault zones. Our examples highlight the specific gaps in our knowledge. Citizen science projects could produce useful data and include the public in the discussions about hazards.
Manuel I. de Paz-Álvarez, Thomas G. Blenkinsop, David M. Buchs, George E. Gibbons, and Lesley Cherns
Solid Earth, 13, 1–14, https://doi.org/10.5194/se-13-1-2022, https://doi.org/10.5194/se-13-1-2022, 2022
Short summary
Short summary
We describe a virtual geological mapping course implemented in response to travelling and social restrictions derived from the ongoing COVID-19 pandemic. The course was designed to replicate a physical mapping exercise as closely as possible with the aid of real field data and photographs collected by the authors during previous years in the Cantabrian Zone (NW Spain). The course is delivered through Google Earth via a KMZ file with outcrop descriptions and links to GitHub-hosted photographs.
Yueyang Xia, Jacob Geersen, Dirk Klaeschen, Bo Ma, Dietrich Lange, Michael Riedel, Michael Schnabel, and Heidrun Kopp
Solid Earth, 12, 2467–2477, https://doi.org/10.5194/se-12-2467-2021, https://doi.org/10.5194/se-12-2467-2021, 2021
Short summary
Short summary
The 2 June 1994 Java tsunami earthquake ruptured in a seismically quiet subduction zone and generated a larger-than-expected tsunami. Here, we re-process a seismic line across the rupture area. We show that a subducting seamount is located up-dip of the mainshock in a region that did not rupture during the earthquake. Seamount subduction modulates the topography of the marine forearc and acts as a seismic barrier in the 1994 earthquake rupture.
Steffen Abe and Hagen Deckert
Solid Earth, 12, 2407–2424, https://doi.org/10.5194/se-12-2407-2021, https://doi.org/10.5194/se-12-2407-2021, 2021
Short summary
Short summary
We use numerical simulations and laboratory experiments on rock samples to investigate how stress conditions influence the geometry and roughness of fracture surfaces. The roughness of the surfaces was analyzed in terms of absolute roughness and scaling properties. The results show that the surfaces are self-affine but with different scaling properties between the numerical models and the real rock samples. Results suggest that stress conditions have little influence on the surface roughness.
Sonia Yeung, Marnie Forster, Emmanuel Skourtsos, and Gordon Lister
Solid Earth, 12, 2255–2275, https://doi.org/10.5194/se-12-2255-2021, https://doi.org/10.5194/se-12-2255-2021, 2021
Short summary
Short summary
We do not know when the ancient Tethys Ocean lithosphere began to founder, but one clue can be found in subduction accreted tectonic slices, including Gondwanan basement terranes on the island of Ios, Cyclades, Greece. We propose a 250–300 km southwards jump of the subduction megathrust with a period of flat-slab subduction followed by slab break-off. The initiation and its subsequent rollback of a new subduction zone would explain the onset of Oligo–Miocene extension and accompanying magmatism.
Rahul Prabhakaran, Giovanni Bertotti, Janos Urai, and David Smeulders
Solid Earth, 12, 2159–2209, https://doi.org/10.5194/se-12-2159-2021, https://doi.org/10.5194/se-12-2159-2021, 2021
Short summary
Short summary
Rock fractures are organized as networks with spatially varying arrangements. Due to networks' influence on bulk rock behaviour, it is important to quantify network spatial variation. We utilize an approach where fracture networks are treated as spatial graphs. By combining graph similarity measures with clustering techniques, spatial clusters within large-scale fracture networks are identified and organized hierarchically. The method is validated on a dataset with nearly 300 000 fractures.
Olivier Lacombe, Nicolas E. Beaudoin, Guilhem Hoareau, Aurélie Labeur, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 12, 2145–2157, https://doi.org/10.5194/se-12-2145-2021, https://doi.org/10.5194/se-12-2145-2021, 2021
Short summary
Short summary
This paper aims to illustrate how the timing and duration of contractional deformation associated with folding in orogenic forelands can be constrained by the dating of brittle mesostructures observed in folded strata. The study combines new and already published absolute ages of fractures to provide, for the first time, an educated discussion about the factors controlling the duration of the sequence of deformation encompassing layer-parallel shortening, fold growth, and late fold tightening.
Vincent Famin, Hugues Raimbourg, Muriel Andreani, and Anne-Marie Boullier
Solid Earth, 12, 2067–2085, https://doi.org/10.5194/se-12-2067-2021, https://doi.org/10.5194/se-12-2067-2021, 2021
Short summary
Short summary
Sediments accumulated in accretionary prisms are deformed by the compression imposed by plate subduction. Here we show that deformation of the sediments transforms some minerals in them. We suggest that these mineral transformations are due to the proliferation of microorganisms boosted by deformation. Deformation-enhanced microbial proliferation may change our view of sedimentary and tectonic processes in subduction zones.
Marta Adamuszek, Dan M. Tămaş, Jessica Barabasch, and Janos L. Urai
Solid Earth, 12, 2041–2065, https://doi.org/10.5194/se-12-2041-2021, https://doi.org/10.5194/se-12-2041-2021, 2021
Short summary
Short summary
We analyse folded multilayer sequences in the Ocnele Mari salt mine (Romania) to gain insight into the long-term rheological behaviour of rock salt. Our results indicate the large role of even a small number of impurities in the rock salt for its effective mechanical behaviour. We demonstrate how the development of folds that occur at various scales can be used to constrain the viscosity ratio in the deformed multilayer sequence.
Cited articles
Ackermann, R. V. and Schlische, R. W.: Anticlustering of small normal
faults around larger faults, Geology, 25, 1127–1130, 1997.
Anderson, E. M.: The Dynamics of Faulting, Olivier and Boyd, Edinburgh, ISSN: 0371-6260, 1951.
Axen, G.: Pore pressure, stress increase and fault weakening in low-angle
normal faulting, J. Geophys. Res.-Sol. Ea., 97, 8979–8991,
1992.
Axen, G. J.: The geometry of planar domino-style normal faults above a
dipping basal detachment, J. Struct. Geol., 10, 405–411,
1988.
Axen, G. J.: Ramp-flat detachment faulting and low-angle normal reactivation
of the Tule Springs thrust, southern Nevada, Geol. Soc. Am. Bull., 105, 1076–1090, 1993.
Axen, G. J., Skelly, M. J., Taylor, W. J., and Wernicke, B.: Mesozoic and
Cenozoic tectonics of the Sevier thrust belt in the Virgin River Valley
area, southern Nevada, in: Basin and Range Extensional Tectonics Near the Latitude of Las Vegas Nevada, edited by: Wernicke, B., Mem. Geol. Soc. Am., 176, 123–153, 1990.
Axen, G. J., Bartley, J. M., and Selverstone, J.: Structural expression of a
rolling hinge in the footwall of the Brenner Line normal fault, eastern
Alps, Tectonics, 14, 1380–1392, 1995.
Badley, M., Price, J., Dahl, C. R., and Agdestein, T.: The structural evolution
of the northern Viking Graben and its bearing upon extensional modes of
basin formation, J. Geol. Soc., 145, 455–472, 1988.
Baudon, C. and Cartwright, J.: The kinematics of reactivation of normal faults
using high resolution throw mapping, J. Struct. Geol., 30, 1072–1084, 2008.
Bell, R. E., Jackson, C. A. L., Whipp, P. S., and Clements, B.: Strain migration
during multiphase extension: observations from the northern North Sea,
Tectonics, 33, 1936–1963, 2014.
Bellahsen, N. and Daniel, J. M.: Fault reactivation control on normal
fault growth: An experimental study, J. Struct. Geol., 27,
769–780, 2005.
Bellahsen, N., Fournier, M., d'Acremont, E., Leroy, S., and Daniel, J.: Fault
reactivation and rift localization: Northeastern Gulf of Aden margin,
Tectonics, 25, TC1007, https://doi.org/10.1029/2004TC001626, 2006.
Bird, P. C., Cartwright, J. A., and Davies, T. L.: Basement reactivation in
the development of rift basins: An example of reactivated Caledonide
structures in the west Orkney Basin, J. Geol. Soc. Lond., 172, 77–85, 2015.
Bonini, L., Basili, R., Burrato, P., Cannelli, V., Fracassi, U., Maesano,
F. E., Melini, D., Tarabusi, G., Tiberti, M. M., Vannoli, P., and Valensise, G.:
Testing different tectonic models for the source of the Mw 6.5, 30 October
2016, Norcia earthquake (central Italy): a youthful normal fault, or
negative inversion of an old thrust?, Tectonics, 38, 990–1017,
https://doi.org/10.1029/2018TC005185, 2019.
Bonini, L., Basili, R., Toscani, G., Burrato, P., Seno, S., and Valensise,
G.: The role of pre-existing discontinuities in the development of
extensional faults: an analog modeling perspective, J. Struct. Geol., 74, 145–158, 2015.
Bonini, M., Souriot, T., Boccaletti, M., and Brun, J. P.: Successive
orthogonal and oblique extension episodes in a rift zone: Laboratory
experiments with application to the Ethiopian rift, Tectonics, 16, 347–362, 1997.
Briais, A., Patriat, P., and Tapponnier, P.: Updated interpretation of magnetic
anomalies and sea-floor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast-Asia, J. Geophys. Res.-Sol. Ea., 98, 6299–6328, 1993.
Buck, W.: Flexural rotation of normal faults, Tectonics, 7, 959–974, 1988.
Byerlee, J.: Friction of rocks, Pure Appl. Geophys., 116, 615–626, 1978.
Campbell-Stone, E., John, B. E., Foster, D. A., Geissman, J. W., and
Livaccari, R. F.: Mechanisms for accommodation of Miocene extension:
Low-angle normal faulting, magmatism, and secondary breakaway faulting in
the southern Sacramento Mountains, southeastern California, Tectonics,
19, 566–587, https://doi.org/10.1029/1999TC001133, 2000.
Cartwright, J., Bouroullec, R., James, D., and Johnson, H.: Polycyclic motion
history of some Gulf Coast growth faults from high-resolution displacement
analysis, Geology, 26, 819–822, 1998.
Cartwright, J., Trudgill, B. D., and Mansfield, C. S.: Fault growth and
segment linkage: An explanation for scatter in maximum displacement and
trace length data from the Canyonlands grabens of Se Utah, J. Struct. Geol., 17, 1319–1326, 1995.
Charvet, J., Lapierre, H., and Yu, Y.: Geodynamic significance of the Mesozoic
volcanism of southeastern China, J. SE Asian Earth Sci., 9, 387–396, 1994.
Chattopadhyay, A. and Chakra, M.: Influence of pre-existing pervasive
fabrics on fault patterns during orthogonal and oblique rifting: An
experimental approach, Mar. Pet. Geol., 39, 74–91, https://doi.org/10.1016/j.marpetgeo.2012.09.009, 2013.
Chiaraluce, L., Chiarabba, C., Collettini, C., Piccinini, D., and Cocco, M.:
Architecture and mechanics of an active low angle normal fault: Alto
Tiberina Fault, northern Apennines, Italy, J. Geophys. Res., 112, B10310, https://doi.org/10.1029/2007JB005015, 2007.
Childs, C., Watterson, J., and Walsh, J. J.: Fault overlap zones within
developing normal fault systems, J. Geol. Soc., 152, 535–549, 1995.
Childs, C., Nicol, A., Walsh, J. J., and Watterson, J.: Growth of vertically
segmented normal faults, J. Struct. Geol., 18, 1389–1397, 1996.
Claringbould, J. S., Bell, R. E., Jackson, A. L., Gawthorpe, R. L., and Odinsen, T.: Pre-existing normal faults have limited control on the rift
geometry of the northern north sea, Earth Planet. Sci. Lett.,
475, 190–206, 2017.
Collettini, C. and Sibson, R.: Normal faults, normal friction?, Geology, 29, 927–930, 2001.
Collettini, C., De Paola, N., Holdsworth, R. E., and Barchi, M. R.: The
development and behaviour of low-angle normal faults during Cenozoic
asymmetric extension in the Northern Apennines, Italy, J. Struct. Geol., 28, 333–352, https://doi.org/10.1016/j.jsg.2005.10.003,
2006.
Collettini, C., Niemeijer, A., Viti, C., and Marone, C.: Fault zone fabric and fault weakness, Nature, 462, 907–910, https://doi.org/10.1038/nature08585, 2009a.
Collettini, C., Viti, C., Smith, S., and Holdsworth, R.: The development of
inter-connected talc networks and weakening of continental low-angle normal
faults, Geology, 37, 567–570, 2009b.
Corti, G.: Continental rift evolution: From rift initiation to incipient
break-up in the Main Ethiopian Rift, East Africa, Earth-Sci. Rev., 96, 1–53, 2009.
Coward, M. P., Enfield, M. A., and Fischer, M. W.: Devonian basins of northern
Scotland: Extension and inversion related to late Caledonian – Variscan
tectonics, in: Inversion Tectonics, edited by: Cooper, M. A. and Williams, G. D., Geol. Soc. London Spec. Publ., 44, 275–308, https://doi.org/10.1144/GSL.SP.1989.044.01.16, 1989.
Cowie, P. and Roberts, G. P.: Constraining slip rates and spacings for active
normal faults, J. Struct. Geol., 23, 1901–1915, 2001.
Cowie, P., Attal, M., Tucker, G. E., Whittaker, A. C., Naylor, M., Ganas, A.,
and Roberts, G. P.: Investigating the surface process response to fault
interaction and linkage using a numerical modelling approach, Basin Res., 18, 231–266, https://doi.org/10.1111/j.1365-2117.2006.00298.x, 2006.
Cowie, P. A., Gupta, S., and Dawers, N. H.: Implications of fault array evolution
for synrift depocetre development: insights from a numerical fault growth
model, Basin Res., 12, 241–261, 2000.
Cowie, P. A., Underhill, J. R., Behn, M. D., Jian, L., and Gill, C. E.:
Spatio-temporal evolution of strain accumulation derived from multi-scale
observations of late jurassic rifting in the northern north sea: a critical
test of models for lithospheric extension, Earth Planet. Sci. Lett., 234, 401–419, 2015.
Davis, G. A. and Lister, G. S.: Detachment faulting in continental
extension: Perspectives from the southwestern US Cordillera, Spec. Pap. Geol. Soc. Am., 218, 133–159, 1988.
Davis, G. H.: Shear-zone model for the origin of metamorphic core complexes, Geology, 11, 342–347, 1983.
Dawers, N. H. and Anders, M. H.: Displacement-length scaling and fault
linkage, J. Struct. Geol., 17, 607–614, 1995.
Del Ventisette, C., Bonini, M., Maestrelli, D., Sani, F., Iavarone, E., and
Montanari, D.: 3D-thrust fault pattern control on negative inversion: An analogue modelling perspective on central Italy, J. Struct. Geol., 143, 104254, https://doi.org/10.1016/j.jsg.2020.104254, 2021.
Deng, C., Fossen, H., Gawthorpe, R. L., Rotevatn, A., Jackson, A. L., and
Fazlikhani, H.: Influence of fault reactivation during multiphase rifting:
The Oseberg area, northern North Sea rift, Mar. Pet. Geol., 86,
1252–1272, 2017a.
Deng, C., Gawthorpe, R. L., Finch, E., and Fossen, H.: Influence of a
pre-existing basement weakness on normal fault growth during oblique
extension: Insights from discrete element modeling, J. Struct.
Geol., 105, 44–61, 2017b.
Deng, C., Gawthorpe, R. L., Finch, E., and Fossen, H.: How does the
orientation of a preexisting basement weakness influence fault development
during renewed rifting? insights from three-dimensional discrete element
modeling, Tectonics, 37, 2221–2242, 2018.
Dubois, A., Odonne, F., Massonnat, G., Lebourg, T., and Fabre, R.: Analogue modelling of fault reactivation: Tectonic inversion and oblique
remobilisation of grabens, J. Struct.
Geol., 24, 1741–1752, 2002.
Duffy, O. B., Bell, R. E., Jackson, C. A., Gawthorpe, R. L., and Whipp, P. S.: Fault growth and interactions in a multiphase rift fault network: Horda
Platform, Norwegian North Sea, J. Struct. Geol., 80, 99–119,
2015.
Etheridge, M. A.: On the reactivation of extensional fault systems, Philos. T. R. Soc. A., 317, 179–194, 1986.
Færseth, R.: Interaction of Permo-Triassic and Jurassic extensional
fault-blocks during the development of the northern North Sea, J. Geol. Soc., 153, 931–944, 1996.
Færseth, R. B., Knudsen, B. E., Liljedahl, T., Midbøe, P. S., and Søderstrøm, B.: Oblique rifting and sequential faulting in the
Jurassic development of the northern North Sea, J. Geol. Soc., 19, 1285–1302, 1997.
Faure, M., Sun, Y., Shu, L., Monie, P., and Charvet, J.: Extensional tectonics within a subduction-type orogen. The case study of the Wugongshan dome (Jiangxi Province, southeastern China), Tectonophysics, 263, 77–106, 1996.
Fazlikhani, H., Fossen, H., Gawthorpe, R. L., Faleide, J. I., and Bell, R.
E.: Basement structure and its influence on the structural configuration of
the northern North Sea rift, Tectonics, 36, 1151–1177,
https://doi.org/10.1002/2017TC004514, 2017.
Frankowicz, E. and McClay, K.: Extensional fault segmentation and linkages,
Bonaparte Basin, outer North west shelf, Australia, AAPG Bull., 94, 977–1010, 2010.
Gawthorpe, R. L. and Leeder, M. R.: Tectono-sedimentary evolution of active
extensional basins, Basin Res., 12, 195–218,
https://doi.org/10.1111/j.1365-2117.2000.00121.x, 2000.
Ghisetti, F. and Vezzani, L.: Depth and modes of Pliocene–Pleistocene crustal extension of the Apennines (Italy), Terra Nova, 11, 67–72,
https://doi.org/10.1046/j.1365-3121.1999.00227.x, 1999.
Gilley, L. D., Harrison, T. M., Leloup, P. H., Ryerson, F. J., Lovera, O. M., and Wang, J.-H.: Direct dating of left-lateral deformation along the Red River shear zone, China and Vietnam, J. Geophys. Res., 108, 2127, https://doi.org/10.1029/2001JB001726, 2003.
Gouiza, M. and Naliboff, J.: Rheological inheritance controls the formation of segmented rifted margins in cratonic lithosphere, Nat. Commun., 12, 1–9, https://doi.org/10.1038/s41467-021-24945-5, 2021.
Gupta, A. and Scholz, C. H.: A model of normal fault interaction based on
observations and theory, J. Struct. Geol., 22, 865–879, 2000.
Gupta, S., Cowie, P. A., Dawers, N. H., and Underhill, J. R.: A mechanism to
explain rift-basin subsidence and stratigraphic patterns through fault-array
evolution, Geology, 26, 595–598, 1998.
Haines, S., Marone, C., and Saffer, D.: Frictional properties of low-angle
normal fault gouges and implications for low-angle normal fault slip, Earth Planet. Sci. Lett., 408, 57–65, 2014.
Hall, R.: Cenozoic geological and plate tectonic evolution of SE Asia and
the SW Pacific: computer-based reconstructions, model and animations, J. Asian Earth Sci., 20, 353–431, 2002.
Hamilton, W.: Detachment faulting in the Death Valley region, California and
Nevada, U.S. Geol. Surv. Bull., 1790, 763–771, 1988.
Hayman, N., Knott, J., Cowan, D. S., Nemser, E., and Sarna-Wojcicki, A.:
Quaternary low-angle slip on detachment faults in Death Valley, California, Geology, 31, 343–346, 2003.
Henstra, G. A., Rotevatn, A., Gawthorpe, R. L., and Ravnås, R.: Evolution of a
major segmented normal fault during multiphase rifting: the origin of
plan-view zigzag geometry, J. Struct. Geol., 74, 45–63,
https://doi.org/10.1016/j.jsg.2015.02.005, 2015.
Henza, A. A., Withjack, M. O., and Schlische, R. W.: Normal-fault
development during two phases of non-coaxial extension: An experimental
study, J. Struct. Geol., 32, 1656–1667, 2010.
Henza, A. A., Withjack, M. O., and Schlische, R. W.: How do the properties
of a pre-existing normal-fault population influence fault development during
a subsequent phase of extension?, J. Struct. Geol., 33,
1312–1324, 2011.
Holloway, N. H.: North Palawan block, Philippines – its relation to Asian
mainland and role in evolution of South China Sea, AAPG Bull., 66, 1355–1383, 1982.
Hu, B., Wang, L., Yan, W., Liu, S., Cai, D., Zhang, G., Zhong, K., Pei, J., and Sun, B.: The tectonic evolution of the qiongdongnan basin in the northern margin of the south china sea, J. Asian Earth Sci., 77, 163–182, 2013.
Jackson, C. A.-L. and Rotevatn, A.: 3D seismic analysis of the structure
and evolution of a salt-influenced normal fault zone: A test of competing
fault growth models, J. Struct. Geol., 54, 215–234, 2013.
Keep, M. and McClay, K.: Analogue modelling of multiphase rift systems, Tectonophysics, 273, 239–270, 1997.
Lai, K., Campbell, S. D. G., and Shaw, R.: Geology of the Northeastern New
Territories, Geological Survey Memoir No. 5, Geotechnical
Engineering Office, Hong Kong, 143, 1996.
Le Turdu, C., Richert, J. P., Xavier, J.-P., Renaut, R. W., Tiercelin, J.-J., Rolet, J., Lezzar, K. E., and Coussement, C.: Influence of pre-existing oblique discontinuities on
the geometry and evolution of extensional fault patterns: Evidence from the
Kenya rift using SPOT imagery, edited by: Morley, C. K., Geoscience of rift systems – Evolution of East Africa, 44, 173–191, Tulsa, OK, AAPG, 1999.
Lee, T. Y. and Lawver, L. A.: Cenozoic plate reconstructions of Southeast Asia,
Tectonophysics, 251, 85–138, 1995.
Leloup, P. H., Lacassin, R., Tapponnier, P., Scharer, U., Zhong, D. L., Liu,
X. H., Zhang, L. S., Ji, S. C., and Trinh, P. T.: The Ailao Shan-Red River shear
zone (Yunnan, China), Tertiary transform boundary of Indochina,
Tectonophysics, 251, 3–84, 1995.
Leloup, P. H., Arnaud, N., Lacassin, R., Kienast, J. R., Harrison, T. M.,
Trong, T. T. P., Replumaz, A., and Tapponnier, P.: New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia, J. Geophys. Res.-Sol. Ea., 106, 6683–6732, 2001.
Lepvrier, C., Fournier, M., Bérard, T., and Roger, J.: Cenozoic extension in
coastal Dhofar (southern Oman): implications on the oblique rifting of the
Gulf of Aden, Tectonophysics, 357, 279–293, 2002.
Lezzar, K. E., Tiercelin, J.-J.,
Le Turdu, C.,
Cohen, A. S.,
Reynolds, D. J., Le Gall, B., and Scholz, C. A.: Control of normal fault interaction of major
Neogene sedimentary depocenters, Lake Tanganyika, East African rift, AAPG Bulletin, 86, 1027–1059, 2002.
Li, C. F., Zhou, Z. Y., Li, J. B., Hao, H. J., and Geng, J. H.: Structures of the
northeasternmost South China Sea continental margin and ocean basin:
geophysical constraints and tectonic implications, Mar. Geophys. Res., 28, 59–79, 2007.
Li, C. F., Zhou, Z. Y., Hao, H. J., Chen, H. J., Wang, J. L., Chen, B., and Wu, J. S.:
Late Mesozoic tectonic structure and evolution along the present-day
northeastern South China Sea continental margin, J. Asian Earth Sci., 31, 546–561, 2008.
Li, J., Zhang, Y., Dong, S., and Johnston, S. T.: Cretaceous tectonic evolution
of south china: a preliminary synthesis, Earth Sci. Rev., 134, 98–136, 2014.
Li, P. L.: Cenozoic Tectonic Movements in the Pearl River Mouth Basin, China Offshore Oil and Gas, 7, 11–17, 1993 (in Chinese with English Abstract).
Li, P. L., Liang, H. X., Dai, Y. D., and Lin, H. M.: Origin and tectonic setting of
the Yanshanian igneous rocks in the Pearl River Mouth basin, Guangdong Geol., 14, 1–8, 1999 (in Chinese with English Abstract).
Li, X.-h.: Cretaceous magmatism and lithospheric extension in Southeast China, J. Asian Earth Sci., 18, 293–305,
https://doi.org/10.1016/S1367-9120(99)00060-7, 2000.
Li, Z., Qiu, J. S., and Yang, X. M.: A review of the geochronology and
geochemistry of Late Yanshanian (Cretaceous) plutons along the Fujian
coastal area of southeastern China: implications for magma evolution related to slab break-off and roll-back in the Cretaceous, Earth Sci. Rev., 128,
232–248, 2014.
Li, Z. H. and Li, X. H.: Formation of the 1300 km-wide intracontinental orogen
and postorogenic magmatic province in Mesozoic South China: a flat-slab
subduction model, Geology, 35, 179–182, 2007.
Li, Z. X., Li, X. H., Chung, S. L., Lo, C. H., Xu, X., and Li, W. X.: Magmatic
switch-on and switch-off along the South China continental margin since the
Permian: transition from an Andean-type to a western Pacific-type plate
boundary, Tectonophysics, 532–535, 271–290, 2012.
Lister, G. and Baldwin, S.: Plutonism and the origin of metamorphic core
complexes, Geology, 21, 607–610, 1993.
Lister, G. S., Etheridge, M. A., and Symonds, P. A.: Detachment faulting and the
evolution of passive continental margins, Geology, 14, 246–250, 1986.
Liu, Q., Zhu, H., Shu, Y., Zhu, X., Yang X., Chen, L., Tan, M., and Geng, M.:
Provenance identification and sedimentary analysis of the beach and bar
systems in the Palaeogene of the Enping Sag, Pearl River Mouth Basin, South China Sea, Mar. Pet. Geol., 70, 251–272, https://doi.org/10.1016/j.marpetgeo.2015.12.002, 2016.
Lu, B. L., Wang, P. J., Zhang, G. C., Zhang, B., Sun, X. M., Li, W. Z., and Lang, Y. Q.: Basement structures of an epicontinental basin in the northern South
China Sea and their significance in petroleum prospect, Acta Pet. Sin., 32, 580–587, 2011 (in Chinese with English abstract).
Maestrelli, D., Montanari, D., Corti, G., Del Ventisette, C., Moratti, G., and Bonini, M.: Exploring the interactions between rift propagation and
inherited crustal fabrics through experimental modeling, Tectonics, 39, e2020TC006211, https://doi.org/10.1029/2020TC006211, 2020.
McClay, K. and White, M.: Analogue modelling of orthogonal and oblique rifting, Mar. Pet. Geol., 12, 137–151, 1995.
Melosh, H. J.: Mechanical basis for low-angle normal faulting in the Basin
and Range province, Nature, 343, 331–335, 1990.
Metcalfe, I.: Paleozoic and Mesozoic tectonic evolution and palaeogeography
of East Asian crustal fragments: the Korean Peninsula in context, Gondwana
Res., 9, 24–46, 2006.
Miller, E. L., Gans, P. B., and Garing, J.: The snake range decollement; an
exhumed mid-tertiary ductile-brittle transition, Tectonics, 2, 239–263, 1983.
Molnar, N. E., Cruden, A. R., and Betts, P. G.: Interactions between
propagating rifts and linear weaknesses in the lower crust, Geosphere, 15, 1617–1640, 2019.
Morley, C., Haranya, C., Phoosongsee, W., Pongwapee, S., Kornsawan, A., and Wonganan, N.: Activation of rift oblique and rift parallel preexisting
fabrics during extension and their effect on deformation style: Examples
from the rifts of Thailand, J. Struct. Geol., 26,
1803–1829, 2004.
Morley, C., Gabdi, S., and Seusutthiya, K.: Fault superimposition and
linkage resulting from stress changes during rifting: Examples from 3D
seismic data, Phitsanulok Basin, Thailand, J. Struct. Geol.,
29, 646–663, 2007.
Morley, C. K.: A tectonic model for the Tertiary evolution of strike-slip
faults and rift basins in SE Asia, Tectonophysics, 347, 189–215, 2002.
Morley, C. K.: Late Cretaceous–Early Palaeogene tectonic development of SE
Asia, Earth-Sci. Rev., 115, 37–75, 2012.
Muirhead, J. D. and Kattenhorn, S. A.: Activation of preexisting
transverse structures in an evolving magmatic rift in East Africa, J. Struct. Geol., 106, 1–18, 2017.
Nanni, U. , Pubellier, M. , Chan, L. S., and Sewell, R. J.: Rifting and
reactivation of a cretaceous structural belt at the northern margin of the
south china sea, J. Asian Earth Sci., 136, 110–123, 2017.
Numelin, T., Marone, C., and Kirby, E.: Frictional properties of natural gouge
from a low-angle normal fault, Panamint Vallet, California, Tectonics, 26, TC2004, https://doi.org/10.1029/2005TC001916, 2007.
Odinsen, T., Reemst, P., Beek, P. V. D., Faleide, J. I., and Gabrielsen, R.
H.: Permo-Triassic and Jurassic extension in the northern North Sea: Results
from tectonostratigraphic forward modelling, Geological Society, London, Special Publications, 167, 83–103, https://doi.org/10.1144/GSL.SP.2000.167.01.05, 2000.
Parsons, T. and Thompson, G. A.: Does magmatism influence low-angle
normal faulting?, Geology, 21, 247–250,
https://doi.org/10.1130/0091-7613(1993)021<0247:DMILAN>2.3.CO;2, 1993.
Peacock, D. and Sanderson, D.: Displacements, segment linkage and relay ramps
in normal fault zones, J. Struct. Geol., 13, 721–733, 1991.
Phillips, T. B., Jackson, A. L., Bell, R. E., Duffy, O. B., and Fossen, H.:
Reactivation of intrabasement structures during rifting: A case study from
offshore southern Norway, J. Struct. Geol., 91, 54–73, 2016.
Pigott, J. D. and Ru, K.: Basin superposition on the northern margin of
the South China Sea, Tectonophysics, 235, 27–50, 1994.
Proffett Jr., J. M.: Cenozoic geology of the Yerington District, Nevada,
and implications for nature and origin of Basin and Range faulting, Geol. Soc. Am. Bull., 88, 247–266, 1977.
Ranalli, G. and Yin, Z. M.: Critical stress difference and orientation of
faults in rocks with strength anisotropies: The two-dimensional case, J. Struct. Geol., 12, 1067–1071, 1990.
Rangin, C., Huchon, P., Le Pichon, X., Bellon, H., Lepvrier, C., Roques, D.,
Hoe, N. D., and Quynh, P. V.: Cenozoic deformation of central and south Vietnam,
Tectonophysics, 251, 179–196, https://doi.org/10.1016/0040-1951(95)00006-2, 1995.
Ren, J. Y., Tamaki, K., Li, S. T., and Junxia, Z.: Late Mesozoic and Cenozoic
rifting and its dynamic setting in Eastern China and adjacent areas,
Tectonophysics, 344, 175–205, 2002.
Rice, J.: Fault stress states, pore pressure distributions, and the weakness
of the San Andreas Fault, in: Fault Mechanics
and Transport Properties of Rocks; a Festschrift in Honor of W.F. Brace, edited by: Evans, B. and Wong, T.-F.,
AP San Diego, California, USA, 475–503, ISBN 978-0-1224-3780-9, https://doi.org/10.1016/S0074-6142(08)62835-1, 1992.
Ring, U.: The influence of preexisting structure on the evolution of the
Cenozoic Malawi rift (east African rift system), Tectonics, 13, 313–326, 1994.
Ru, K. and Pigott, J. D.: Episodic rifting and subsidence in the South
China Sea, AAPG Bulletin, 70, 1136–1155, 1986.
Samsu, A., Cruden, A. R., Molnar, N. E., and Weinberg, R. F.: Inheritance
of Penetrative Basement Anisotropies by Extension-Oblique Faults: Insights
From Analogue Experiments, Tectonics, 40, e2020TC006596, https://doi.org/10.1029/2020TC006596, 2021.
Scheiber, T., Viola, G., Bingen, B., Peters, M., and Solli, A.: Multiple
reactivation and strain localization along a Proterozoic orogen-scale
deformation zone: the Kongsberg-Telemark boundary in southern Norway
revisited, Precambrian Res., 265, 78–103, 2015.
Schöpfer, M. P., Childs, C., and Walsh, J. J.: Localisation of normal faults in
multilayer sequences, J. Struct. Geol., 28, 816–833, 2006.
Sewell, R. J., Campbell, S. D. G., Fletcher, C. J. N., Lai, K. W., and Kirk, P. A.: The
Pre-Quaternary Geology of Hong Kong, Geotechnical Engineering Office, Civil Engineering Department, the Government of the Hong Kong Special
Administrative Region, 181, ISBN 962-02-02996, 2000.
Sewell, R. J., Campbell, S. D. G., and Tang, D. L. K.: Volcanic-plutonic connections
in a tilted nested caldera complex in Hong Kong, Geochem. Geophys. Geosyst., 13, Q01006, https://doi.org/10.1029/2011GC003865, 2012.
Shi, H. S. and Li, C. F.: Mesozoic and early Cenozoic tectonic
convergence-to-rifting transition prior to opening of the South China Sea, Int. Geol. Rev. 54, 1801–1828, 2012.
Shi, H. S., Dai, Y. D., Liu, L. H., Jiang, H., Li, H. B., and Bai, J.: Geological
characteristics and distribution model of oil and gas reservoirs in Zhu I Depression, Pearl River Mouth Basin, Acta Pet. Sin., 36, 120–133, 2015.
Shu, L., Zhou, X., Deng, P., Wang, B., Jiang, S.-Y., Yu, J., and Zhao, X.:
Mesozoic tectonic evolution of the southeast china block: new insights from
basin analysis, J. Asian Earth Sci., 34, 376–391, 2009.
Shu, L. S., Faure, M., Jiang, S., Yang, Q., and Wang, Y.: SHRIMP zircon U–Pb age, litho- and biostratigraphic analyses of the Huaiyu Domain in South China, Episodes, 29, 244–252, 2006.
Sibson, R. H.: A note on fault reactivation, J. Struct. Geol.,
7, 751–754, 1985.
Soliva, R., Benedicto, A., and Maerten, L.: Spacing and linkage of confined
normal faults: importance of mechanical thickness, J. Geophys. Res., 111, B01402, https://doi.org/10.1029/2004JB003507, 2006.
Sun, Z., Zhou, D., Wu, S. M., Zhong, Z. H., Myra, K., Jiang, J. Q., and Fan, H.:
Patterns and dynamics of rifting on passive continental margin from shelf to
slope of the northern South China Sea: evidence from 3D analogue modeling, J. Earth Sci., 20, 136–146, 2009.
Sun, Z., Zhou, D., Sun, L. T., Chen, C. M., Pang, X., Jiang, J. Q., and Fan, H.:
Dynamic analysis on rifting stage of Pearl River Mouth Basin through
Analogue Modeling, J. Earth Sci., 21, 439–454, 2010.
Sun, Z., Xu, Z., Sun, L., Pang, X., Yan, C., Li, Y., Zhao, Z., Wang, Z., and Zhang, C.: The mechanism
of post-rift fault activities in Baiyun sag, Pearl River Mouth basin, J. Asian Earth Sci., 89, 76–87,
https://doi.org/10.1016/j.jseaes.2014.02.018, 2014.
Tapponnier, P., Peltzer, G., Ledain, A. Y., Armijo, R., and Cobbold, P.:
Propagating extrusion tectonics in Asia – new insights from simple
experiments with plasticine, Geology, 10, 611–616, 1982.
Tapponnier, P., Lacassin, R., Leloup, P. H., Scharer, U., Zhong, D. L., Wu,
H. W., Liu, X. H., Ji, S. C., Zhang, L. S., and Zhong, J. Y.: The Ailao Shan Red River Metamorphic Belt-Tertiary Left-Lateral Shear between Indochina and
South China, Nature, 343, 431–437, 1990.
Tapponnier, P., Xu, Z. Q., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., and
Yang, J. S.: Geology – oblique stepwise rise and growth of the Tibet
plateau, Science, 294, 1671–1677, 2001.
Taylor, B. and Hayes, D. E.: The tectonic evolution of the South China Basin,
in: The Tectonic and Geologic Evolution of Southeast
Asian Seas and Islands, edited by: Hayes, D. E., Geophys. Monogr. Ser., 89–104, 1980.
Taylor, B. and Hayes, D. E.: Origin and history of the South China Sea Basin,
Washington Dc American Geophysical Union, Geophys. Monogr. Ser., 27, 23–56, 1983.
Walsh, J., Childs, C., and Nicol, A.: An alternative model for the growth of faults, J. Struct. Geol., 24, 1669–1675, 2002.
Walsh, J. J., Bailey, W. R., Childs, C., Nicol, A., and Bonson, C. G.:
Formation of segmented normal faults: A 3-D perspective, J. Struct. Geol., 25, 1251–1262, 2003.
Wang, J., Pang, X. , Liu, B., Wang, H., and Zheng, J.: The baiyun and
liwan sags: two supradetachment basins on the passive continental margin of
the northern south china sea, Mar. Pet. Geol., 95, 206–218, 2018.
Wang, L., Maestrelli, D., Corti, G., Zou, Y., and Shen, C.: Normal fault
reactivation during multiphase extension: Analogue models and application to
the Turkana depression, East Africa, Tectonophysics, 811, 228870, https://doi.org/10.1016/j.tecto.2021.228870, 2021.
Wang, Y. L., Qiu, Y., Yan, P., Zheng, H. B., Liu, H. L., and Wang, J.: Seismic
evidence for Mesozoic strata in the northern Nansha waters, South China Sea,
Tectonophysics 677, 190–198, 2016.
Wernicke, B.: Low-angle normal faults and seismicity: a review, J. Geophys. Res. B.-Solid Earth Planets, 100, 20159–20174, 1995.
Wernicke, B. and Axen, G.: On the role of isostasy in the evolution of
low-angle normal fault systems, Geology, 16, 848–851, 1988.
Wernicke, B. and Burchfiel, B. C.: Modes of extensional tectonics, J. Struct. Geol., 4, 105–115, 1982.
Wernicke, B., Walker, J. D., and Beaufait, M. S.: Structural discordance
between Neogene detachments and frontal Sevier thrusts, central Mormon
Mountains, southern Nevada, Tectonics, 4, 213–246, 1985.
Whipp, P., Jackson, C., Gawthorpe, R., Dreyer, T., and Quinn, D.: Normal
fault array evolution above a reactivated rift fabric; A subsurface example
from the northern Horda Platform, Norwegian North Sea, Basin Res.,
26, 523–549, 2014.
Willemse, E. J. M., Pollard, D. D., and Aydin, A.: Three-dimensional analyses of
slip distributions on normal fault arrays with consequences for fault
scaling, J. Struct. Geol., 18, 295–309, 1996.
Wong, M. S. and Gans, P. B.: Geologic, structural, and thermochronologic
constraints on the tectonic evolution of the Sierra Mazatán core
complex, Sonora, Mexico: New insights into metamorphic core complex
formation, Tectonics, 27, TC4013, https://doi.org/10.1029/2007TC002173, 2008.
Wu, S., Gao, J., Zhao, S., Lüdmann, T., Chen, D., and Spence, G.:
Post-rift uplift and focused fluid flow in the passive margin of northern
South China Sea, Tectonophysics, 615, 27–39,
https://doi.org/10.1016/j.tecto.2013.12.013, 2014.
Xiao, H.-B., Dahlen, F. A., and Suppe, J.: Mechanics of extensional wedges, J. Geophys. Res., 96, 10301–10318, https://doi.org/10.1029/91JB00222, 1991.
Xu, X. M., Chen, S. H., Wang, F. G., Hu, K., Yu, S. M., Wang, X. C., Gao, Z. L., and Liu, X. L.: Structural features and its impacts on hydrocarbon accumulation
of Neogene in Enping Sag, Pearl River Mouth Basin, Geosci., 28,
543–550, 2014 (in Chinese with English abstract).
Yan, P. and Liu, H. L.: Tectonic-stratigraphic division and blind fold
structures in Nansha Waters, South China Sea, J. Asian Earth Sci., 24, 337–348, 2004.
Yan, P., Wang, L. L., and Wang, Y. L.: Late Mesozoic compressional folds in
Dongsha Waters, the northern margin of the South China Sea, Tectonophysics,
615, 213–223, 2014.
Ye, Q., Mei, L., Shi, H., Shu, Y., Camanni, G., and Wu, J.: A low-angle
normal fault and basement structures within the Enping Sag, Pearl River
Mouth Basin: Insights into late Mesozoic to early Cenozoic tectonic
evolution of the South China Sea area, Tectonophysics, 731, 1–16, https://doi.org/10.1016/j.tecto.2018.03.003, 2018.
Ye, Q., Mei, L., Shi, H., Du, J., Deng, P., Shu, Y., and Camanni, G.: The influence of pre-existing basement faults on the Cenozoic structure and evolution of the proximal domain, northern South China Sea rifted margin, Tectonics, 39, e2019TC005845, https://doi.org/10.1029/2019TC005845, 2020.
Yin, A.: Origin of regional rooted low-angle normal faults: a mechanical model and its implications, Tectonics, 8, 469–482, 1989.
Yin, A. and Dunn, J.: Structural and stratigraphic development of the
Whipple–Chemehuevi detachment system, southeastern California: implications
for the geometrical evolution of domal and basinal low-angle normal faults, Geol. Soc. Am. Bull., 104, 659–674, 1992.
Yi, H., Zhang, L., and Lin, Z.: Mesozoic tectonic framework and basin
distribution characteristics of northern margin of South China Sea, Pet. Geol. Exp., 34, 388–394, 2012 (in Chinese with English abstract).
Zhou, D., Ru, K., and Chen, H. Z.: Kinematics of Cenozoic extension on the South
China Sea continental margin and its implications for the tectonic evolution
of the region, Tectonophysics, 251, 161–177, 1995.
Zhou, D., Wang, W. Y., Wang, J. L., Pang, X., Cai, D. S., and Sun, Z.: Mesozoic
subduction–accretion zone in northeastern South China inferred from
geophysical interpretations, Sci. Chin. Ser. D, 49, 471–482, 2006.
Zhou, X. and Li, W.: Origin of late Mesozoic igneous rocks in southeastern
china: implications for lithosphere subduction and underplating of mafic magmas, Tectonophysics, 326, 269–287, 2000.
Zhou, Z., Mei, L., Shi, H., and Shu, Y.: Evolution of Low-Angle Normal Faults in
the Enping Sag, the Northern South China Sea: Lateral Growth and Vertical
Rotation, J. Earth Sci., 30, 1326–1340,
https://doi.org/10.1007/s12583-019-0899-4, 2019.
Zhu, W. L. and Jiang, W. R.: Relations between fractures and hydrocarbon
reservoirs in Weixinan sag, Acta Petrol. Ei Sin, 19, 6–10, 1998 (in Chinese with English abstract).
Zwaan, F. and Schreurs, G.: How oblique extension and structural
inheritance influence rift segment interaction: Insights from 4D analog
models, Interpretation, 5, SD119–SD138, https://doi.org/10.1190/INT-2016-0063.1, 2017.
Zwaan, F., Chenin, P., Erratt, D., Manatschal, G., and Schreurs, G.: Complex rift patterns, a result of interacting crustal and mantle weaknesses, or multiphase rifting? Insights from analogue models, Solid Earth, 12, 1473–1495, https://doi.org/10.5194/se-12-1473-2021, 2021.
Short summary
This study uses seismic reflection data to interpret the geometric relationship and evolution of intra-basement and rift-related structures in the Enping sag in the northern South China Sea. Our observations suggest the primary control of pre-existing thrust faults is the formation of low-angle normal faults, with possible help from low-friction materials, and the significant role of pre-existing basement thrust faults in fault geometry, paleotopography, and syn-rift stratigraphy of rift basins.
This study uses seismic reflection data to interpret the geometric relationship and evolution of...