Articles | Volume 12, issue 11
https://doi.org/10.5194/se-12-2467-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-2467-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Marine forearc structure of eastern Java and its role in the 1994 Java tsunami earthquake
Research Division 4: Dynamic of the Ocean Floor, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
Jacob Geersen
Christian-Albrechts-Universität zu Kiel, Kiel, Germany
Dirk Klaeschen
Research Division 4: Dynamic of the Ocean Floor, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
Bo Ma
Research Division 4: Dynamic of the Ocean Floor, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
Dietrich Lange
Research Division 4: Dynamic of the Ocean Floor, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
Michael Riedel
Research Division 4: Dynamic of the Ocean Floor, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
Michael Schnabel
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hanover, Germany
Heidrun Kopp
Research Division 4: Dynamic of the Ocean Floor, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
Christian-Albrechts-Universität zu Kiel, Kiel, Germany
Related authors
Yueyang Xia, Dirk Klaeschen, Heidrun Kopp, and Michael Schnabel
Solid Earth, 13, 367–392, https://doi.org/10.5194/se-13-367-2022, https://doi.org/10.5194/se-13-367-2022, 2022
Short summary
Short summary
Geological interpretations based on seismic depth images depend on an accurate subsurface velocity model. Reflection tomography is one method to iteratively update a velocity model based on depth error analysis. We used a warping method to estimate closely spaced data-driven depth error displacement fields. The application to a multichannel seismic line across the Sunda subduction zone illustrates the approach which leads to more accurate images of complex geological structures.
Yueyang Xia, Dirk Klaeschen, Heidrun Kopp, and Michael Schnabel
Solid Earth, 13, 367–392, https://doi.org/10.5194/se-13-367-2022, https://doi.org/10.5194/se-13-367-2022, 2022
Short summary
Short summary
Geological interpretations based on seismic depth images depend on an accurate subsurface velocity model. Reflection tomography is one method to iteratively update a velocity model based on depth error analysis. We used a warping method to estimate closely spaced data-driven depth error displacement fields. The application to a multichannel seismic line across the Sunda subduction zone illustrates the approach which leads to more accurate images of complex geological structures.
Felix N. Wolf, Dietrich Lange, Anke Dannowski, Martin Thorwart, Wayne Crawford, Lars Wiesenberg, Ingo Grevemeyer, Heidrun Kopp, and the AlpArray Working Group
Solid Earth, 12, 2597–2613, https://doi.org/10.5194/se-12-2597-2021, https://doi.org/10.5194/se-12-2597-2021, 2021
Short summary
Short summary
The Ligurian Sea opened ~30–15 Ma during SE migration of the Calabrian subduction zone. Using ambient seismic noise from stations on land and at the ocean bottom, we calculated a 3D shear-velocity model of the Ligurian Basin. In keeping with existing 2D studies, we find a shallow crust–mantle transition at the SW basin centre that deepens towards the northeast, Corsica, and the Liguro-Provençal coast. We observe a separation of SW and NE basins. We do not observe high crustal vP/vS ratios.
Martin Thorwart, Anke Dannowski, Ingo Grevemeyer, Dietrich Lange, Heidrun Kopp, Florian Petersen, Wayne C. Crawford, Anne Paul, and the AlpArray Working Group
Solid Earth, 12, 2553–2571, https://doi.org/10.5194/se-12-2553-2021, https://doi.org/10.5194/se-12-2553-2021, 2021
Short summary
Short summary
We analyse broadband ocean bottom seismometer data of the AlpArray OBS network in the Ligurian Basin. Two earthquake clusters with thrust faulting focal mechanisms indicate compression of the rift basin. The locations of seismicity suggest reactivation of pre-existing rift structures and strengthening of crust and uppermost mantle during rifting-related extension. Slightly different striking directions of faults may mimic the anti-clockwise rotation of the Corsica–Sardinia block.
Cited articles
Abercrombie, R. E., Antolik, M., Felzer, K., Ekstrom, G., and Ekström,
G.: The 1994 Java tsunami earthquake: Slip over a subducting seamount, J.
Geophys. Res. Solid Earth, 106, 6595–6607, https://doi.org/10.1029/2000jb900403,
2001.
Ammon, C. J., Kanamori, H., Lay, T., and Velasco, A. A.: The 17 July 2006
Java tsunami earthquake, Geophys. Res. Lett., 33, 1–5, https://doi.org/10.1029/2006GL028005, 2006.
Bell, R., Sutherland, R., Barker, D. H. N., Henrys, S., Bannister, S.,
Wallace, L., and Beavan, J.: Seismic reflection character of the Hikurangi
subduction interface, New Zealand, in the region of repeated Gisborne slow
slip events, Geophys. J. Int., 180, 34–48,
https://doi.org/10.1111/j.1365-246X.2009.04401.x, 2010.
Bilek, S. L. and Engdahl, E. R.: Rupture characterization and aftershock
relocations for the 1994 and 2006 tsunami earthquakes in the Java subduction
zone, Geophys. Res. Lett., 34, L20311, https://doi.org/10.1029/2007GL031357, 2007.
Bilek, S. L. and Lay, T.: Tsunami earthquakes possibly widespread
manifestations of frictional conditional stability, Geophys. Res. Lett.,
29, 1–4, https://doi.org/10.1029/2002GL015215, 2002.
Blaser, L., Krüger, F., Ohrnberger, M., and Scherbaum, F.: Scaling
relations of earthquake source parameter estimates with special focus on
subduction environment, Bull. Seismol. Soc. Am., 100, 2914–2926,
https://doi.org/10.1785/0120100111, 2010.
Bundesamt für Seeschifffahrt und Hydrographie (BSH): Homepage, available at: https://www.bsh.de/, last access: 25 October 2021.
Byrne, D. E., Wang, W., and Davis, D. M.: Mechanical role of backstops in the
growth of forearcs, Tectonics, 12, 123–144, https://doi.org/10.1029/92TC00618, 1993.
Dziewonski, A. M. and Anderson, D. L.: Preliminary reference Earth model,
Phys. Earth Planet. Inter., 25, 297–356,
https://doi.org/10.1016/0031-9201(81)90046-7, 1981 (data available at: https://www.globalcmt.org/, last access: 4 December 2018).
Ekström, G., Nettles, M., and Dziewoński, A. M.: The global CMT
project 2004–2010: Centroid-moment tensors for 13,017 earthquakes, Phys.
Earth Planet. Inter., 200–201, 1–9, https://doi.org/10.1016/j.pepi.2012.04.002, 2012 (data available at: https://www.globalcmt.org/, last access: 4 December 2018).
Engdahl, E. R., Di Giacomo, D., Sakarya, B., Gkarlaouni, C. G., Harris, J.,
and Storchak, D. A.: ISC-EHB 1964–2016, an Improved Data Set for Studies of
Earth Structure and Global Seismicity, Earth Sp. Sci., 7, 1–13,
https://doi.org/10.1029/2019EA000897, 2020 (data available at: https://doi.org/10.31905/PY08W6S3).
Fan, W., Bassett, D., Jiang, J., Shearer, P. M., and Ji, C.: Rupture
evolution of the 2006 Java tsunami earthquake and the possible role of splay
faults, Tectonophysics, 721, 143–150,
https://doi.org/10.1016/j.tecto.2017.10.003, 2017.
GEBCO Bathymetric Compilation Group 2020: The GEBCO_2020 Grid
– a continuous terrain model of the global oceans and land. British
Oceanographic Data Centre, National Oceanography Centre [data set], NERC, UK,
https://doi.org/10/dtg3, 2020.
Geersen, J.: Sediment-starved trenches and rough subducting plates are
conducive to tsunami earthquakes, Tectonophysics, 762, 28–44,
https://doi.org/10.1016/j.tecto.2019.04.024, 2019.
Guitton, A. and Verschuur, D. J.: Adaptive subtraction of multiples using
the L1-norm, Geophys. Prospect., 52, 27–38, 2004.
Hananto, N. D., Leclerc, F., Li, L., Etchebes, M., Carton, H., Tapponnier,
P., Qin, Y., Avianto, P., Singh, S. C., and Wei, S.: Tsunami earthquakes:
Vertical pop-up expulsion at the forefront of subduction megathrust, Earth
Planet. Sci. Lett., 538, 1–14, https://doi.org/10.1016/j.epsl.2020.116197, 2020.
Kanamori, H.: Mechanism of tsunami earthquakes, Phys. Earth Planet. Inter.,
6, 346–359, https://doi.org/10.1016/0031-9201(72)90058-1, 1972.
Kodaira, S., Takahashi, N., Nakanishi, A., Miura, S., and Kaneda, Y.:
Subducted seamount imaged in the rupture zone of the 1946 Nankaido
earthquake, Science 289, 104–106,
https://doi.org/10.1126/science.289.5476.104, 2000.
Kopp, H., Flueh, E. R., Petersen, C. J., Weinrebe, W., Wittwer, A., and
Meramex Scientists: The Java margin revisited: Evidence for subduction erosion
off Java, Earth Planet. Sci. Lett., 242, 130–142,
https://doi.org/10.1016/j.epsl.2005.11.036, 2006.
Kopp, H.: The Java convergent margin: Structure, seismogenesis and
subduction processes, Geol. Soc. Spec. Publ., 355, 111–137,
https://doi.org/10.1144/SP355.6, 2011.
Kopp, H. and Kukowski, N.: Backstop geometry and accretionary mechanics of
the Sunda margin, Tectonics, 22, 1072, https://doi.org/10.1029/2002TC001420, 2003.
Lallemand, S. and Le Pichon, X.: Coulomb wedge model applied to the
subduction of seamounts in the Japan Trench, Geology, 15, 1065–1069,
https://doi.org/10.1130/0091-7613(1987)15<1065:CWMATT>2.0.CO;2,
1987.
Lüschen, E., Müller, C., Kopp, H., Engels, M., Lutz, R., Planert,
L., Shulgin, A., Djajadihardja, Y. S.:
Structure, evolution and tectonic activity of the eastern Sunda forearc,
Indonesia, from marine seismic investigations, Tectonophysics, 508,
6–21, https://doi.org/10.1016/j.tecto.2010.06.008, 2011.
Martínez-Loriente, S., Sallarès, V., R. Ranero, C., B. Ruh, J.,
Barckhausen, U., Grevemeyer, I., and Bangs, N.: Influence of Incoming Plate
Relief on Overriding Plate Deformation and Earthquake Nucleation: Cocos
Ridge Subduction (Costa Rica), Tectonics, 38, 4360–4377,
https://doi.org/10.1029/2019TC005586, 2019.
Masson, D. G., Parson, L. M., Milsom, J., Nichols, G., Sikumbang, N.,
Dwiyanto, B., and Kallagher, H.: Subduction of seamounts at the Java Trench:
a view with long-range sidescan sonar, Tectonophysics, 185, 51–65,
https://doi.org/10.1016/0040-1951(90)90404-V, 1990.
Müller, C. and Neben, S.: Research Cruise SO190 Leg 1, SINDBAD, Seismic
and geoacoustic investigations along the Sunda-Banda Arc transition
(Seismische und geoakustische Untersuchungen entlang des Übergangs vom
Sunda- zum Banda-Bogen) with RV SONNE, Jakarta, Indonesia 9 October,
Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany, 142,
https://doi.org/10.2312/cr_so190_1, 2006.
Planert, L., Kopp, H., Lueschen, E., Mueller, C., Flueh, E. R., Shulgin, A.,
Djajadihardja, Y., and Krabbenhoeft, A.: Lower plate structure and upper
plate deformational segmentation at the Sunda-Banda arc transition,
Indonesia, J. Geophys. Res.-Sol. Ea., 115, 1–25, https://doi.org/10.1029/2009jb006713,
2010.
Polet, J. and Kanamori, H.: Shallow subduction zone earthquakes and their
tsunamigenic potential, Geophys. J. Int., 142, 684–702,
https://doi.org/10.1046/j.1365-246X.2000.00205.x, 2000.
Ruh, J. B., Sallarès, V., Ranero, C. R., and Gerya, T.: Crustal
deformation dynamics and stress evolution during seamount subduction:
High-resolution 3-D numerical modeling, J. Geophys. Res.-Sol. Ea.,
121, 6880–6902, https://doi.org/10.1002/2016JB013250, 2016.
Sallarès, V. and Ranero, C. R.: Upper-plate rigidity determines depth-varying rupture behaviour of megathrust earthquakes, Nature, 576, 96–101, https://doi.org/10.1038/s41586-019-1784-0, 2019.
Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E., and Francis,
R.: New global marine gravity model from CryoSat-2 and Jason-1 reveals
buried tectonic structure, Science, 346, 65–67,
https://doi.org/10.1126/science.1258213, 2014 (data available at: https://topex.ucsd.edu/marine_grav/mar_grav.html, last access: 8 July 2021).
Satake, K., Fujii, Y., Harada, T., and Namegaya, Y.: Time and space
distribution of co-seismic slip of the 2011 Tohoku earthquake as inferred
from Tsunami waveform data, Bull. Seismol. Soc. Am., 103, 1473–1492,
https://doi.org/10.1785/0120120122, 2013.
Satake, K. and Tanioka, Y.: Sources of Tsunami and Tsunamigenic Earthquakes
in Subduction Zones, Pure Appl. Geophys., 154, 467–483,
https://doi.org/10.1007/s000240050240, 1999.
Scholz, C. H., Ando, R., and Shaw, B. E.: The mechanics of first order splay
faulting: The strike-slip case, J. Struct. Geol., 32, 118–126,
https://doi.org/10.1016/j.jsg.2009.10.007, 2010.
Şen, A. T., Cesca, S., Lange, D., Dahm, T., Tilmann, F., and Heimann, S.:
Systematic changes of earthquake rupture with depth: A case study from the
2010 Mw 8.8 Maule, Chile, earthquake aftershock sequence, Bull. Seismol.
Soc. Am., 105, 2468–2479, https://doi.org/10.1785/0120140123, 2015.
Seno, T.: Tsunami earthquakes as transient phenomena, Geophys. Res. Lett.,
29, 1419, https://doi.org/10.1029/2002gl014868, 2002.
Shulgin, A., Kopp, H., Mueller, C., Planert, L., Lueschen, E., Flueh, E. R., and Djajadihardja, Y.: Structural architecture of oceanic plateau subduction
offshore Eastern Java and the potential implications for geohazards,
Geophys. J. Int., 184, 12–28, https://doi.org/10.1111/j.1365-246X.2010.04834.x,
2011.
Sun, T., Saffer, D., and Ellis, S.: Mechanical and hydrological effects of
seamount subduction on megathrust stress and slip, Nat. Geosci., 13,
249–255, https://doi.org/10.1038/s41561-020-0542-0, 2020.
Tanioka, Y. and Satake, K.: Tsunami generation by horizontal displacement of
ocean bottom, Geophys. Res. Lett., 23, 861–864, https://doi.org/10.1029/96GL00736,
1996.
Tanioka, Y., Ruff, L., and Satake, K.: What controls the lateral variation of
large earthquake occurrence along the Japan Trench?, Isl. Arc, 6,
261–266, https://doi.org/10.1111/j.1440-1738.1997.tb00176.x, 1997.
Tanioka, Y. and Seno, T.: Sediment effect on tsunami generation of the 1896
Sanriku Tsunami Earthquake, Geophys. Res. Lett., 28, 3389–3392,
https://doi.org/10.1029/2001GL013149, 2001.
Tsuji, Y., Imamura, F., Matsutomi, H., Synolakis, C. E., Nanang, P. T.,
Jumadi, Harada, S., Han, S. S., Arai, K., and Cook, B.: Field survey of the
East Java earthquake and tsunami of June 3, 1994, Pure Appl. Geophys.
PAGEOPH, 144, 839–854, https://doi.org/10.1007/BF00874397, 1995.
Verschuur, D. J., Berkhout, A. J., and Wapenaar, C. P. A.: Adaptive
surface-related multiple elimination, Geophysics, 57, 1166–1177, 1992.
von Huene, R., Miller, J. J., Klaeschen, D., and Dartnell, P.: A Possible
Source Mechanism of the 1946 Unimak Alaska Far-Field Tsunami: Uplift of the
Mid-Slope Terrace Above a Splay Fault Zone, Pure Appl. Geophys., 173,
4189–4201, https://doi.org/10.1007/s00024-016-1393-x, 2016.
Wang, K. and Bilek, S. L.: Do subducting seamounts generate or stop large
earthquakes?, Geology, 39, 819–822, https://doi.org/10.1130/G31856.1, 2011.
Wendt, J., Oglesby, D. D., and Geist, E. L.: Tsunamis and splay fault
dynamics, Geophys. Res. Lett., 36, 1–5, https://doi.org/10.1029/2009GL038295, 2009.
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F.,
and Tian, D.: The Generic Mapping Tools Version 6, Geochemistry, Geophys.
Geosystems, 20, 5556–5564, https://doi.org/10.1029/2019GC008515, 2019.
Yang, H., Liu, Y., and Lin, J.: Effects of subducted seamounts on megathrust
earthquake nucleation and rupture propagation, Geophys. Res. Lett., 39,
2–7, https://doi.org/10.1029/2012GL053892, 2012.
Yang, H., Liu, Y., and Lin, J.: Geometrical effects of a subducted seamount
on stopping megathrust ruptures, Geophys. Res. Lett., 40, 2011–2016,
https://doi.org/10.1002/grl.50509, 2013.
Xia, Y., Klaeschen, D., Kopp, H., and Schnabel, M.: Reflection tomography by depth warping: A case study across the Java trench, Solid Earth Discuss. [preprint], https://doi.org/10.5194/se-2021-40, in review, 2021.
Short summary
The 2 June 1994 Java tsunami earthquake ruptured in a seismically quiet subduction zone and generated a larger-than-expected tsunami. Here, we re-process a seismic line across the rupture area. We show that a subducting seamount is located up-dip of the mainshock in a region that did not rupture during the earthquake. Seamount subduction modulates the topography of the marine forearc and acts as a seismic barrier in the 1994 earthquake rupture.
The 2 June 1994 Java tsunami earthquake ruptured in a seismically quiet subduction zone and...