Articles | Volume 8, issue 6
https://doi.org/10.5194/se-8-1161-2017
https://doi.org/10.5194/se-8-1161-2017
Research article
 | 
22 Nov 2017
Research article |  | 22 Nov 2017

Extension parallel to the rift zone during segmented fault growth: application to the evolution of the NE Atlantic

Alodie Bubeck, Richard J. Walker, Jonathan Imber, Robert E. Holdsworth, Christopher J. MacLeod, and David A. Holwell

Related authors

Unraveling the origins and P-T-t evolution of the allochthonous Sobrado unit (Órdenes Complex, NW Spain) using combined U–Pb titanite, monazite and zircon geochronology and rare-earth element (REE) geochemistry
José Manuel Benítez-Pérez, Pedro Castiñeiras, Juan Gómez-Barreiro, José R. Martínez Catalán, Andrew Kylander-Clark, and Robert Holdsworth
Solid Earth, 11, 2303–2325, https://doi.org/10.5194/se-11-2303-2020,https://doi.org/10.5194/se-11-2303-2020, 2020
Short summary
Fracture attribute scaling and connectivity in the Devonian Orcadian Basin with implications for geologically equivalent sub-surface fractured reservoirs
Anna M. Dichiarante, Ken J. W. McCaffrey, Robert E. Holdsworth, Tore I. Bjørnarå, and Edward D. Dempsey
Solid Earth, 11, 2221–2244, https://doi.org/10.5194/se-11-2221-2020,https://doi.org/10.5194/se-11-2221-2020, 2020
Short summary
Near-surface Palaeocene fluid flow, mineralisation and faulting at Flamborough Head, UK: new field observations and U–Pb calcite dating constraints
Nick M. W. Roberts, Jack K. Lee, Robert E. Holdsworth, Christopher Jeans, Andrew R. Farrant, and Richard Haslam
Solid Earth, 11, 1931–1945, https://doi.org/10.5194/se-11-1931-2020,https://doi.org/10.5194/se-11-1931-2020, 2020
Short summary
Mechanical models to estimate the paleostress state from igneous intrusions
Tara L. Stephens, Richard J. Walker, David Healy, Alodie Bubeck, and Richard W. England
Solid Earth, 9, 847–858, https://doi.org/10.5194/se-9-847-2018,https://doi.org/10.5194/se-9-847-2018, 2018
Short summary

Related subject area

Structural geology
A contribution to the quantification of crustal shortening and kinematics of deformation across the Western Andes ( ∼ 20–22° S)
Tania Habel, Martine Simoes, Robin Lacassin, Daniel Carrizo, and German Aguilar
Solid Earth, 14, 17–42, https://doi.org/10.5194/se-14-17-2023,https://doi.org/10.5194/se-14-17-2023, 2023
Short summary
Rift thermal inheritance in the SW Alps (France): insights from RSCM thermometry and 1D thermal numerical modelling
Naïm Célini, Frédéric Mouthereau, Abdeltif Lahfid, Claude Gout, and Jean-Paul Callot
Solid Earth, 14, 1–16, https://doi.org/10.5194/se-14-1-2023,https://doi.org/10.5194/se-14-1-2023, 2023
Short summary
The Luangwa Rift Active Fault Database and fault reactivation along the southwestern branch of the East African Rift
Luke N. J. Wedmore, Tess Turner, Juliet Biggs, Jack N. Williams, Henry M. Sichingabula, Christine Kabumbu, and Kawawa Banda
Solid Earth, 13, 1731–1753, https://doi.org/10.5194/se-13-1731-2022,https://doi.org/10.5194/se-13-1731-2022, 2022
Short summary
Clustering has a meaning: optimization of angular similarity to detect 3D geometric anomalies in geological terrains
Michał P. Michalak, Lesław Teper, Florian Wellmann, Jerzy Żaba, Krzysztof Gaidzik, Marcin Kostur, Yuriy P. Maystrenko, and Paulina Leonowicz
Solid Earth, 13, 1697–1720, https://doi.org/10.5194/se-13-1697-2022,https://doi.org/10.5194/se-13-1697-2022, 2022
Short summary
Time-dependent Frictional Properties of Granular Materials Used In Analogue Modelling: Implications for mimicking fault healing during reactivation and inversion
Michael Rudolf, Matthias Rosenau, and Onno Oncken
EGUsphere, https://doi.org/10.5194/egusphere-2022-1178,https://doi.org/10.5194/egusphere-2022-1178, 2022
Short summary

Cited articles

Ackermann, R. V. and Schlische, R. W.: Anticlustering of small normal faults around larger faults, Geology, 25, 1127–1130, 1997.
Ackermann, R. V., Schlische, R. W., and Withjack, M. O.: The geometric and statistical evolution of normal fault systems: an experimental study of the effects of mechanical layer thickness on scaling laws, J. Struct. Geol., 23, 1803–1819, 2001.
Acocella, V., Morvillo, P., and Funiciello, R.: What controls relay ramps and transfer faults within rift zones? Insights from analogue models, J. Struct. Geol., 27, 397–408, https://doi.org/10.1016/j.jsg.2004.11.006, 2005.
Carbotte, S. M. and Macdonald, K. C.: Comparison of seafloor tectonic fabric at intermediate, fast, and super fast spreading ridges: Influence of spreading rate, plate motions, and ridge segmentation on fault patterns, J. Geophys. Res.-Solid Earth, 99, 13609–13631, https://doi.org/10.1029/93jb02971, 1994.
Cartwright, J., Mansfield, C. S., and Trudgill, B.: The growth of normal faults by segment linkage, in: Modern Developments in Structural Interpretation, Validation and Modelling, edited by: Buchanan, P. G. and Nieuland, D. A., Vol. Geological Society Special Publication No. 99, London, UK, The Geological Society, 1996.
Download
Short summary
We present a field-based study of relay zone development using examples from the Koa’e fault system (Hawai’i) and the Krafla fissure swarm (Iceland). We show the evolution of second-order deformation within these zones and illustrate the effects of horizontal (heave) displacement gradients in evolving continental rift systems. Data are consistent with faults and intrusions from the Faroe Islands and E Greenland. We propose a new model for the evolution of segmented basins along the NE Atlantic.