Articles | Volume 9, issue 2
https://doi.org/10.5194/se-9-385-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-9-385-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Monte Carlo simulation for uncertainty estimation on structural data in implicit 3-D geological modeling, a guide for disturbance distribution selection and parameterization
Evren Pakyuz-Charrier
CORRESPONDING AUTHOR
Centre for Exploration Targeting, The University of Western Australia,
35 Stirling Hwy, Crawley WA 6009, Australia
Mark Lindsay
Centre for Exploration Targeting, The University of Western Australia,
35 Stirling Hwy, Crawley WA 6009, Australia
Vitaliy Ogarko
The International Centre for Radio Astronomy Research, The University
of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
Jeremie Giraud
Centre for Exploration Targeting, The University of Western Australia,
35 Stirling Hwy, Crawley WA 6009, Australia
Mark Jessell
Centre for Exploration Targeting, The University of Western Australia,
35 Stirling Hwy, Crawley WA 6009, Australia
Related authors
Evren Pakyuz-Charrier, Mark Jessell, Jérémie Giraud, Mark Lindsay, and Vitaliy Ogarko
Solid Earth, 10, 1663–1684, https://doi.org/10.5194/se-10-1663-2019, https://doi.org/10.5194/se-10-1663-2019, 2019
Short summary
Short summary
This paper improves the Monte Carlo simulation for uncertainty propagation (MCUP) method for 3-D geological modeling. Topological heterogeneity is observed in the model suite. The study demonstrates that such heterogeneity arises from piecewise nonlinearity inherent to 3-D geological models and contraindicates use of global uncertainty estimation methods. Topological-clustering-driven uncertainty estimation is proposed as a demonstrated alternative to address plausible model heterogeneity.
Jeremie Giraud, Mark Lindsay, Vitaliy Ogarko, Mark Jessell, Roland Martin, and Evren Pakyuz-Charrier
Solid Earth, 10, 193–210, https://doi.org/10.5194/se-10-193-2019, https://doi.org/10.5194/se-10-193-2019, 2019
Short summary
Short summary
We propose the quantitative integration of geology and geophysics in an algorithm integrating the probability of observation of rocks with gravity data to improve subsurface imaging. This allows geophysical modelling to adjust models preferentially in the least certain areas while honouring geological information and geophysical data. We validate our algorithm using an idealized case and apply it to the Yerrida Basin (Australia), where we can recover the geometry of buried greenstone belts.
Léonard Moracchini, Guillaume Pirot, Kerry Bardot, Mark W. Jessell, and James L. McCallum
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-154, https://doi.org/10.5194/gmd-2024-154, 2024
Preprint under review for GMD
Short summary
Short summary
To facilitate the exploration of alternative hydrogeological scenarios, we propose to approximate costly physical simulations of contaminant transport by more affordable shortest distances computations. It enables to accept or reject scenarios within a predefined confidence interval. In particular, it can allow to estimate the probability of a fault acting as a preferential path or a barrier.
Vitaliy Ogarko, Kim Frankcombe, Taige Liu, Jeremie Giraud, Roland Martin, and Mark Jessell
Geosci. Model Dev., 17, 2325–2345, https://doi.org/10.5194/gmd-17-2325-2024, https://doi.org/10.5194/gmd-17-2325-2024, 2024
Short summary
Short summary
We present a major release of the Tomofast-x open-source gravity and magnetic inversion code that is enhancing its performance and applicability for both industrial and academic studies. We focus on real-world mineral exploration scenarios, while offering flexibility for applications at regional scale or for crustal studies. The optimisation work described in this paper is fundamental to allowing more complete descriptions of the controls on magnetisation, including remanence.
Jiateng Guo, Xuechuang Xu, Luyuan Wang, Xulei Wang, Lixin Wu, Mark Jessell, Vitaliy Ogarko, Zhibin Liu, and Yufei Zheng
Geosci. Model Dev., 17, 957–973, https://doi.org/10.5194/gmd-17-957-2024, https://doi.org/10.5194/gmd-17-957-2024, 2024
Short summary
Short summary
This study proposes a semi-supervised learning algorithm using pseudo-labels for 3D geological modelling. We establish a 3D geological model using borehole data from a complex real urban local survey area in Shenyang and make an uncertainty analysis of this model. The method effectively expands the sample space, which is suitable for geomodelling and uncertainty analysis from boreholes. The modelling results perform well in terms of spatial morphology and geological semantics.
Jérémie Giraud, Guillaume Caumon, Lachlan Grose, Vitaliy Ogarko, and Paul Cupillard
Solid Earth, 15, 63–89, https://doi.org/10.5194/se-15-63-2024, https://doi.org/10.5194/se-15-63-2024, 2024
Short summary
Short summary
We present and test an algorithm that integrates geological modelling into deterministic geophysical inversion. This is motivated by the need to model the Earth using all available data and to reconcile the different types of measurements. We introduce the methodology and test our algorithm using two idealised scenarios. Results suggest that the method we propose is effectively capable of improving the models recovered by geophysical inversion and may be applied in real-world scenarios.
Jérémie Giraud, Hoël Seillé, Mark D. Lindsay, Gerhard Visser, Vitaliy Ogarko, and Mark W. Jessell
Solid Earth, 14, 43–68, https://doi.org/10.5194/se-14-43-2023, https://doi.org/10.5194/se-14-43-2023, 2023
Short summary
Short summary
We propose and apply a workflow to combine the modelling and interpretation of magnetic anomalies and resistivity anomalies to better image the basement. We test the method on a synthetic case study and apply it to real world data from the Cloncurry area (Queensland, Australia), which is prospective for economic minerals. Results suggest a new interpretation of the composition and structure towards to east of the profile that we modelled.
Guillaume Pirot, Ranee Joshi, Jérémie Giraud, Mark Douglas Lindsay, and Mark Walter Jessell
Geosci. Model Dev., 15, 4689–4708, https://doi.org/10.5194/gmd-15-4689-2022, https://doi.org/10.5194/gmd-15-4689-2022, 2022
Short summary
Short summary
Results of a survey launched among practitioners in the mineral industry show that despite recognising the importance of uncertainty quantification it is not very well performed due to lack of data, time requirements, poor tracking of interpretations and relative complexity of uncertainty quantification. To alleviate the latter, we provide an open-source set of local and global indicators to measure geological uncertainty among an ensemble of geological models.
Richard Scalzo, Mark Lindsay, Mark Jessell, Guillaume Pirot, Jeremie Giraud, Edward Cripps, and Sally Cripps
Geosci. Model Dev., 15, 3641–3662, https://doi.org/10.5194/gmd-15-3641-2022, https://doi.org/10.5194/gmd-15-3641-2022, 2022
Short summary
Short summary
This paper addresses numerical challenges in reasoning about geological models constrained by sensor data, especially models that describe the history of an area in terms of a sequence of events. Our method ensures that small changes in simulated geological features, such as the position of a boundary between two rock layers, do not result in unrealistically large changes to resulting sensor measurements, as occur presently using several popular modeling packages.
Mark Jessell, Jiateng Guo, Yunqiang Li, Mark Lindsay, Richard Scalzo, Jérémie Giraud, Guillaume Pirot, Ed Cripps, and Vitaliy Ogarko
Earth Syst. Sci. Data, 14, 381–392, https://doi.org/10.5194/essd-14-381-2022, https://doi.org/10.5194/essd-14-381-2022, 2022
Short summary
Short summary
To robustly train and test automated methods in the geosciences, we need to have access to large numbers of examples where we know
the answer. We present a suite of synthetic 3D geological models with their gravity and magnetic responses that allow researchers to test their methods on a whole range of geologically plausible models, thus overcoming one of the fundamental limitations of automation studies.
Ranee Joshi, Kavitha Madaiah, Mark Jessell, Mark Lindsay, and Guillaume Pirot
Geosci. Model Dev., 14, 6711–6740, https://doi.org/10.5194/gmd-14-6711-2021, https://doi.org/10.5194/gmd-14-6711-2021, 2021
Short summary
Short summary
We have developed a software that allows the user to extract and standardize drill hole information from legacy datasets and/or different drilling campaigns. It also provides functionality to upscale the lithological information. These functionalities were possible by developing thesauri to identify and group geological terminologies together.
Jérémie Giraud, Vitaliy Ogarko, Roland Martin, Mark Jessell, and Mark Lindsay
Geosci. Model Dev., 14, 6681–6709, https://doi.org/10.5194/gmd-14-6681-2021, https://doi.org/10.5194/gmd-14-6681-2021, 2021
Short summary
Short summary
We review different techniques to model the Earth's subsurface from geophysical data (gravity field anomaly, magnetic field anomaly) using geological models and measurements of the rocks' properties. We show examples of application using idealised examples reproducing realistic features and provide theoretical details of the open-source algorithm we use.
Mahtab Rashidifard, Jérémie Giraud, Mark Lindsay, Mark Jessell, and Vitaliy Ogarko
Solid Earth, 12, 2387–2406, https://doi.org/10.5194/se-12-2387-2021, https://doi.org/10.5194/se-12-2387-2021, 2021
Short summary
Short summary
One motivation for this study is to develop a workflow that enables the integration of geophysical datasets with different coverages that are quite common in exploration geophysics. We have utilized a level set approach to achieve this goal. The utilized technique parameterizes the subsurface in the same fashion as geological models. Our results indicate that the approach is capable of integrating information from seismic data in 2D to guide the 3D inversion results of the gravity data.
Lachlan Grose, Laurent Ailleres, Gautier Laurent, Guillaume Caumon, Mark Jessell, and Robin Armit
Geosci. Model Dev., 14, 6197–6213, https://doi.org/10.5194/gmd-14-6197-2021, https://doi.org/10.5194/gmd-14-6197-2021, 2021
Short summary
Short summary
Fault discontinuities in rock packages represent the plane where two blocks of rock have moved. They are challenging to incorporate into geological models because the geometry of the faulted rock units are defined by not only the location of the discontinuity but also the kinematics of the fault. In this paper, we outline a structural geology framework for incorporating faults into geological models by directly incorporating kinematics into the mathematical framework of the model.
Mark Jessell, Vitaliy Ogarko, Yohan de Rose, Mark Lindsay, Ranee Joshi, Agnieszka Piechocka, Lachlan Grose, Miguel de la Varga, Laurent Ailleres, and Guillaume Pirot
Geosci. Model Dev., 14, 5063–5092, https://doi.org/10.5194/gmd-14-5063-2021, https://doi.org/10.5194/gmd-14-5063-2021, 2021
Short summary
Short summary
We have developed software that allows the user to extract sufficient information from unmodified digital maps and associated datasets that we are able to use to automatically build 3D geological models. By automating the process we are able to remove human bias from the procedure, which makes the workflow reproducible.
Lachlan Grose, Laurent Ailleres, Gautier Laurent, and Mark Jessell
Geosci. Model Dev., 14, 3915–3937, https://doi.org/10.5194/gmd-14-3915-2021, https://doi.org/10.5194/gmd-14-3915-2021, 2021
Short summary
Short summary
LoopStructural is an open-source 3D geological modelling library with a model design allowing for multiple different algorithms to be used for comparison for the same geology. Geological structures are modelled using structural geology concepts and techniques, allowing for complex structures such as overprinted folds and faults to be modelled. In the paper, we demonstrate automatically generating a 3-D model from map2loop-processed geological survey data of the Flinders Ranges, South Australia.
Mark D. Lindsay, Sandra Occhipinti, Crystal Laflamme, Alan Aitken, and Lara Ramos
Solid Earth, 11, 1053–1077, https://doi.org/10.5194/se-11-1053-2020, https://doi.org/10.5194/se-11-1053-2020, 2020
Short summary
Short summary
Integrated interpretation of multiple datasets is a key skill required for better understanding the composition and configuration of the Earth's crust. Geophysical and 3D geological modelling are used here to aid the interpretation process in investigating anomalous and cryptic geophysical signatures which suggest a more complex structure and history of a Palaeoproterozoic basin in Western Australia.
Jérémie Giraud, Mark Lindsay, Mark Jessell, and Vitaliy Ogarko
Solid Earth, 11, 419–436, https://doi.org/10.5194/se-11-419-2020, https://doi.org/10.5194/se-11-419-2020, 2020
Short summary
Short summary
We propose a methodology for the identification of rock types using geophysical and geological information. It relies on an algorithm used in machine learning called
self-organizing maps, to which we add plausibility filters to ensure that the results respect base geological rules and geophysical measurements. Application in the Yerrida Basin (Western Australia) reveals that the thinning of prospective greenstone belts at depth could be due to deep structures not seen from surface.
Evren Pakyuz-Charrier, Mark Jessell, Jérémie Giraud, Mark Lindsay, and Vitaliy Ogarko
Solid Earth, 10, 1663–1684, https://doi.org/10.5194/se-10-1663-2019, https://doi.org/10.5194/se-10-1663-2019, 2019
Short summary
Short summary
This paper improves the Monte Carlo simulation for uncertainty propagation (MCUP) method for 3-D geological modeling. Topological heterogeneity is observed in the model suite. The study demonstrates that such heterogeneity arises from piecewise nonlinearity inherent to 3-D geological models and contraindicates use of global uncertainty estimation methods. Topological-clustering-driven uncertainty estimation is proposed as a demonstrated alternative to address plausible model heterogeneity.
Jeremie Giraud, Mark Lindsay, Vitaliy Ogarko, Mark Jessell, Roland Martin, and Evren Pakyuz-Charrier
Solid Earth, 10, 193–210, https://doi.org/10.5194/se-10-193-2019, https://doi.org/10.5194/se-10-193-2019, 2019
Short summary
Short summary
We propose the quantitative integration of geology and geophysics in an algorithm integrating the probability of observation of rocks with gravity data to improve subsurface imaging. This allows geophysical modelling to adjust models preferentially in the least certain areas while honouring geological information and geophysical data. We validate our algorithm using an idealized case and apply it to the Yerrida Basin (Australia), where we can recover the geometry of buried greenstone belts.
Xiaojun Feng, Enyuan Wang, Jérôme Ganne, Roland Martin, and Mark W. Jessell
Solid Earth Discuss., https://doi.org/10.5194/se-2017-142, https://doi.org/10.5194/se-2017-142, 2018
Preprint withdrawn
J. Florian Wellmann, Sam T. Thiele, Mark D. Lindsay, and Mark W. Jessell
Geosci. Model Dev., 9, 1019–1035, https://doi.org/10.5194/gmd-9-1019-2016, https://doi.org/10.5194/gmd-9-1019-2016, 2016
Short summary
Short summary
We often obtain knowledge about the subsurface in the form of structural geological models, as a basis for subsurface usage or resource extraction. Here, we provide a modelling code to construct such models on the basis of significant deformational events in geological history, encapsulated in kinematic equations. Our methods simplify complex dynamic processes, but enable us to evaluate how events interact, and finally how certain we are about predictions of structures in the subsurface.
Related subject area
Structural geology
Localized shear and distributed strain accumulation as competing shear accommodation mechanisms in crustal shear zones: constraining their dictating factors
Influence of water on crystallographic preferred orientation patterns in a naturally deformed quartzite
Geomorphic expressions of active rifting reflect the role of structural inheritance: a new model for the evolution of the Shanxi Rift, northern China
Driven magmatism and crustal thinning of coastal southern China in response to subduction
Selection and characterization of the target fault for fluid-induced activation and earthquake rupture experiments
Reconciling post-orogenic faulting, paleostress evolution and structural inheritance in the seismogenic Northern Apennines (Italy): Insights from the Monti Martani Fault System
Naturally fractured reservoir characterisation in heterogeneous sandstones: insight for uranium in situ recovery (Imouraren, Niger)
Understanding the stress field at the lateral termination of a thrust fold using generic geomechanical models and clustering methods
Multiscalar 3D temporal structural characterisation of Smøla island, mid-Norwegian passive margin: an analogue for unravelling the tectonic history of offshore basement highs
Extensional fault geometry and evolution within rifted margin hyper-extended continental crust leading to mantle exhumation and allochthon formation
Impact of faults on the remote stress state
Subduction plate interface shear stress associated with rapid subduction at deep slow earthquake depths: example from the Sanbagawa belt, southwestern Japan
Multiple phase rifting and subsequent inversion in the West Netherlands Basin: implications for geothermal reservoir characterization
Analogue modelling of basin inversion: implications for the Araripe Basin (Brazil)
Natural fracture patterns at Swift Reservoir anticline, NW Montana: the influence of structural position and lithology from multiple observation scales
Rapid hydration and weakening of anhydrite under stress: implications for natural hydration in the Earth's crust and mantle
Analogue experiments on releasing and restraining bends and their application to the study of the Barents Shear Margin
Structural framework and timing of the Pahtohavare Cu ± Au deposits, Kiruna mining district, Sweden
Does the syn- versus post-rift thickness ratio have an impact on the inversion-related structural style?
Inversion of accommodation zones in salt-bearing extensional systems: insights from analog modeling
Structural control of inherited salt structures during inversion of a domino basement-fault system from an analogue modelling approach
Kinematics and time-resolved evolution of the main thrust-sense shear zone in the Eo-Alpine orogenic wedge (the Vinschgau Shear Zone, eastern Alps)
Role of inheritance during tectonic inversion of a rift system in basement-involved to salt-decoupled transition: analogue modelling and application to the Pyrenean–Biscay system
Water release and homogenization by dynamic recrystallization of quartz
Hydrothermal activity of the Lake Abhe geothermal field (Djibouti): Structural controls and paths for further exploration
Time-dependent frictional properties of granular materials used in analogue modelling: implications for mimicking fault healing during reactivation and inversion
Large grain-size-dependent rheology contrasts of halite at low differential stress: evidence from microstructural study of naturally deformed gneissic Zechstein 2 rock salt (Kristallbrockensalz) from the northern Netherlands
Analogue modelling of the inversion of multiple extensional basins in foreland fold-and-thrust belts
A contribution to the quantification of crustal shortening and kinematics of deformation across the Western Andes ( ∼ 20–22° S)
Rift thermal inheritance in the SW Alps (France): insights from RSCM thermometry and 1D thermal numerical modelling
The Luangwa Rift Active Fault Database and fault reactivation along the southwestern branch of the East African Rift
Clustering has a meaning: optimization of angular similarity to detect 3D geometric anomalies in geological terrains
Shear zone evolution and the path of earthquake rupture
Mechanical compaction mechanisms in the input sediments of the Sumatra subduction complex – insights from microstructural analysis of cores from IODP Expedition 362
Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods
Multiscale lineament analysis and permeability heterogeneity of fractured crystalline basement blocks
Structural characterization and K–Ar illite dating of reactivated, complex and heterogeneous fault zones: lessons from the Zuccale Fault, Northern Apennines
How do differences in interpreting seismic images affect estimates of geological slip rates?
Progressive veining during peridotite carbonation: insights from listvenites in Hole BT1B, Samail ophiolite (Oman)
Tectonic evolution of the Indio Hills segment of the San Andreas fault in southern California, southwestern USA
Structural diagenesis in ultra-deep tight sandstones in the Kuqa Depression, Tarim Basin, China
Variscan structures and their control on latest to post-Variscan basin architecture: insights from the westernmost Bohemian Massif and southeastern Germany
Multi-disciplinary characterizations of the BedrettoLab – a new underground geoscience research facility
Biotite supports long-range diffusive transport in dissolution–precipitation creep in halite through small porosity fluctuations
De-risking the energy transition by quantifying the uncertainties in fault stability
Virtual field trip to the Esla Nappe (Cantabrian Zone, NW Spain): delivering traditional geological mapping skills remotely using real data
Marine forearc structure of eastern Java and its role in the 1994 Java tsunami earthquake
Roughness of fracture surfaces in numerical models and laboratory experiments
Impact of basement thrust faults on low-angle normal faults and rift basin evolution: a case study in the Enping sag, Pearl River Basin
Evidence for and significance of the Late Cretaceous Asteroussia event in the Gondwanan Ios basement terranes
Pramit Chatterjee, Arnab Roy, and Nibir Mandal
Solid Earth, 15, 1281–1301, https://doi.org/10.5194/se-15-1281-2024, https://doi.org/10.5194/se-15-1281-2024, 2024
Short summary
Short summary
Understanding strain accumulation processes in shear zones is essential for explaining failure mechanisms at great crustal depths. This study explores the rheological and kinematic factors determining the varying modes of shear accommodation in natural shear zones. Numerical simulations suggest that an interplay of parameters – initial viscosity, bulk shear rate, and internal cohesion – governs the dominance of one accommodation mechanism over another.
Jeffrey M. Rahl, Brendan Moehringer, Kenneth S. Befus, and John S. Singleton
Solid Earth, 15, 1233–1240, https://doi.org/10.5194/se-15-1233-2024, https://doi.org/10.5194/se-15-1233-2024, 2024
Short summary
Short summary
At the high temperatures present in the deeper crust, minerals such as quartz can flow much like silly putty. The detailed mechanisms of how atoms are reorganized depends upon several factors, such as the temperature and the rate of which the mineral changes shape. We present observations from a naturally deformed rock showing that the amount of water present also influences the type of deformation in quartz, with implications for geological interpretations.
Malte Froemchen, Ken J. W. McCaffrey, Mark B. Allen, Jeroen van Hunen, Thomas B. Phillips, and Yueren Xu
Solid Earth, 15, 1203–1231, https://doi.org/10.5194/se-15-1203-2024, https://doi.org/10.5194/se-15-1203-2024, 2024
Short summary
Short summary
The Shanxi Rift is a young, active rift in northern China that formed atop a Proterozoic orogen. The impact of these structures on active rift faults is poorly understood. Here, we quantify the landscape response to active faulting and compare it with published maps of inherited structures. We find that inherited structures played an important role in the segmentation of the Shanxi Rift and in the development of rift interaction zones, which are the most active regions in the Shanxi Rift.
Jinbao Su, Wenbin Zhu, and Guangwei Li
Solid Earth, 15, 1133–1141, https://doi.org/10.5194/se-15-1133-2024, https://doi.org/10.5194/se-15-1133-2024, 2024
Short summary
Short summary
The late Mesozoic igneous rocks in the South China Block exhibit flare-ups and lulls, which form in compressional or extensional backgrounds. The ascending of magma forms a mush-like head and decreases crustal thickness. The presence of faults and pre-existing magmas will accelerate emplacement of underplating magma. The magmatism at different times may be formed under similar subduction conditions, and the boundary compression forces will delay magma ascent.
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024, https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary
Short summary
We detail the selection and characterization of a fault zone for earthquake experiments in the Fault Activation and Earthquake Ruptures (FEAR) project at the Bedretto Lab. FEAR, which studies earthquake processes, overcame data collection challenges near faults. The fault zone in Rotondo granite was selected based on geometry, monitorability, and hydro-mechanical properties. Remote sensing, borehole logging, and geological mapping were used to create a 3D model for precise monitoring.
Riccardo Asti, Selina Bonini, Giulio Viola, and Gianluca Vignaroli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2319, https://doi.org/10.5194/egusphere-2024-2319, 2024
Short summary
Short summary
This study addresses the tectonic evolution of the seismogenic Monti Martani Fault System (Northern Apennines, Italy). By applying a field-based structural geology approach, we reconstruct the evolution of the stress field and we challenge the current interpretation of the fault system both in terms of geometry and state of activity. We stress that the peculiar behavior of this system during post-orogenic extension is still significantly influenced by the pre-orogenic structural template.
Maxime Jamet, Gregory Ballas, Roger Soliva, Olivier Gerbeaud, Thierry Lefebvre, Christine Leredde, and Didier Loggia
Solid Earth, 15, 895–920, https://doi.org/10.5194/se-15-895-2024, https://doi.org/10.5194/se-15-895-2024, 2024
Short summary
Short summary
This study characterizes the Tchirezrine II sandstone reservoir in northern Niger. Crucial for potential uranium in situ recovery (ISR), our multifaceted approach reveals (i) a network of homogeneously distributed orthogonal structures, (ii) the impact of clustered E–W fault structures on anisotropic fluid flow, and (iii) local changes in the matrix behaviour of the reservoir as a function of the density and nature of the deformation structure.
Anthony Adwan, Bertrand Maillot, Pauline Souloumiac, Christophe Barnes, Christophe Nussbaum, Meinert Rahn, and Thomas Van Stiphout
EGUsphere, https://doi.org/10.5194/egusphere-2024-1906, https://doi.org/10.5194/egusphere-2024-1906, 2024
Short summary
Short summary
We use computer simulations to study how stress is distributed in large-scale geological models, focusing on how fault lines behave under pressure. By running many 2D and 3D simulations with varying conditions, we discover patterns in how faults form and interact. Our findings reveal that even small changes in conditions can lead to different stress outcomes. This research helps us better understand earthquake mechanics and could improve predictions of fault behavior in real-world scenarios.
Matthew S. Hodge, Guri Venvik, Jochen Knies, Roelant van der Lelij, Jasmin Schönenberger, Øystein Nordgulen, Marco Brönner, Aziz Nasuti, and Giulio Viola
Solid Earth, 15, 589–615, https://doi.org/10.5194/se-15-589-2024, https://doi.org/10.5194/se-15-589-2024, 2024
Short summary
Short summary
Smøla island, in the mid-Norwegian margin, has complex fracture and fault patterns resulting from tectonic activity. This study uses a multiple-method approach to unravel Smøla's tectonic history. We found five different phases of deformation related to various fracture geometries and minerals dating back hundreds of millions of years. 3D models of these features visualise these structures in space. This approach may help us to understand offshore oil and gas reservoirs hosted in the basement.
Júlia Gómez-Romeu and Nick Kusznir
Solid Earth, 15, 477–492, https://doi.org/10.5194/se-15-477-2024, https://doi.org/10.5194/se-15-477-2024, 2024
Short summary
Short summary
We investigate the extensional fault geometry and its evolution during the stretching and thinning of continental crust and lithosphere leading to continental breakup. We focus on the fault-controlled processes that thin and rupture the final 10 km of continental crust at magma-poor margins prior to mantle exhumation. We show that isostatic fault rotation in response to extension is fundamental to understanding the formation of tectonic structures observed on seismic reflection data.
Karsten Reiter, Oliver Heidbach, and Moritz O. Ziegler
Solid Earth, 15, 305–327, https://doi.org/10.5194/se-15-305-2024, https://doi.org/10.5194/se-15-305-2024, 2024
Short summary
Short summary
It is generally assumed that faults have an influence on the stress state of the Earth’s crust. It is questionable whether this influence is still present far away from a fault. Simple numerical models were used to investigate the extent of the influence of faults on the stress state. Several models with different fault representations were investigated. The stress fluctuations further away from the fault (> 1 km) are very small.
Yukinojo Koyama, Simon R. Wallis, and Takayoshi Nagaya
Solid Earth, 15, 143–166, https://doi.org/10.5194/se-15-143-2024, https://doi.org/10.5194/se-15-143-2024, 2024
Short summary
Short summary
Stress along a subduction plate boundary is important for understanding subduction phenomena such as earthquakes. We estimated paleo-stress using quartz recrystallized grain size combined with deformation temperature and P–T paths of exhumed rocks. The obtained results show differential stresses of 30.8–82.7 MPa consistent over depths of 17–27 km in the paleo-subduction boundary. The obtained stress may represent the initial conditions under which slow earthquakes nucleated in the same domain.
Annelotte Weert, Kei Ogata, Francesco Vinci, Coen Leo, Giovanni Bertotti, Jerome Amory, and Stefano Tavani
Solid Earth, 15, 121–141, https://doi.org/10.5194/se-15-121-2024, https://doi.org/10.5194/se-15-121-2024, 2024
Short summary
Short summary
On the road to a sustainable planet, geothermal energy is considered one of the main substitutes when it comes to heating. The geological history of an area can have a major influence on the application of these geothermal systems, as demonstrated in the West Netherlands Basin. Here, multiple episodes of rifting and subsequent basin inversion have controlled the distribution of the reservoir rocks, thus influencing the locations where geothermal energy can be exploited.
Pâmela C. Richetti, Frank Zwaan, Guido Schreurs, Renata S. Schmitt, and Timothy C. Schmid
Solid Earth, 14, 1245–1266, https://doi.org/10.5194/se-14-1245-2023, https://doi.org/10.5194/se-14-1245-2023, 2023
Short summary
Short summary
The Araripe Basin in NE Brazil was originally formed during Cretaceous times, as South America and Africa broke up. The basin is an important analogue to offshore South Atlantic break-up basins; its sediments were uplifted and are now found at 1000 m height, allowing for studies thereof, but the cause of the uplift remains debated. Here we ran a series of tectonic laboratory experiments that show how a specific plate tectonic configuration can explain the evolution of the Araripe Basin.
Adam J. Cawood, Hannah Watkins, Clare E. Bond, Marian J. Warren, and Mark A. Cooper
Solid Earth, 14, 1005–1030, https://doi.org/10.5194/se-14-1005-2023, https://doi.org/10.5194/se-14-1005-2023, 2023
Short summary
Short summary
Here we test conceptual models of fracture development by investigating fractures across multiple scales. We find that most fractures increase in abundance towards the fold hinge, and we interpret these as being fold related. Other fractures at the site show inconsistent orientations and are unrelated to fold formation. Our results show that predicting fracture patterns requires the consideration of multiple geologic variables.
Johanna Heeb, David Healy, Nicholas E. Timms, and Enrique Gomez-Rivas
Solid Earth, 14, 985–1003, https://doi.org/10.5194/se-14-985-2023, https://doi.org/10.5194/se-14-985-2023, 2023
Short summary
Short summary
Hydration of rocks is a key process in the Earth’s crust and mantle that is accompanied by changes in physical traits and mechanical behaviour of rocks. This study assesses the influence of stress on hydration reaction kinetics and mechanics in experiments on anhydrite. We show that hydration occurs readily under stress and results in localized hydration along fractures and mechanic weakening. New gypsum growth is selective and depends on the stress field and host anhydrite crystal orientation.
Roy Helge Gabrielsen, Panagiotis Athanasios Giannenas, Dimitrios Sokoutis, Ernst Willingshofer, Muhammad Hassaan, and Jan Inge Faleide
Solid Earth, 14, 961–983, https://doi.org/10.5194/se-14-961-2023, https://doi.org/10.5194/se-14-961-2023, 2023
Short summary
Short summary
The Barents Shear Margin defines the border between the relatively shallow Barents Sea that is situated on a continental plate and the deep ocean. This margin's evolution history was probably influenced by plate tectonic reorganizations. From scaled experiments, we deduced several types of structures (faults, folds, and sedimentary basins) that help us to improve the understanding of the history of the opening of the North Atlantic.
Leslie Logan, Ervin Veress, Joel B. H. Andersson, Olof Martinsson, and Tobias E. Bauer
Solid Earth, 14, 763–784, https://doi.org/10.5194/se-14-763-2023, https://doi.org/10.5194/se-14-763-2023, 2023
Short summary
Short summary
The Pahtohavare Cu ± Au deposits in the Kiruna mining district have a dubious timing of formation and have not been contextualized within an up-to-date tectonic framework. Structural mapping was carried out to reveal that the deposits are hosted in brittle structures that cut a noncylindrical, SE-plunging anticline constrained to have formed during the late-Svecokarelian orogeny. These results show that Cu ± Au mineralization formed more than ca. 80 Myr after iron oxide–apatite mineralization.
Alexandra Tamas, Dan M. Tamas, Gabor Tari, Csaba Krezsek, Alexandru Lapadat, and Zsolt Schleder
Solid Earth, 14, 741–761, https://doi.org/10.5194/se-14-741-2023, https://doi.org/10.5194/se-14-741-2023, 2023
Short summary
Short summary
Tectonic processes are complex and often difficult to understand due to the limitations of surface or subsurface data. One such process is inversion tectonics, which means that an area initially developed in an extension (such as the opening of an ocean) is reversed to compression (the process leading to mountain building). In this research, we use a laboratory method (analogue modelling), and with the help of a sandbox, we try to better understand structures (folds/faults) related to inversion.
Elizabeth Parker Wilson, Pablo Granado, Pablo Santolaria, Oriol Ferrer, and Josep Anton Muñoz
Solid Earth, 14, 709–739, https://doi.org/10.5194/se-14-709-2023, https://doi.org/10.5194/se-14-709-2023, 2023
Short summary
Short summary
This work focuses on the control of accommodation zones on extensional and subsequent inversion in salt-detached domains using sandbox analogue models. During extension, the transfer zone acts as a pathway for the movement of salt, changing the expected geometries. When inverted, the salt layer and syn-inversion sedimentation control the deformation style in the salt-detached cover system. Three natural cases are compared to the model results and show similar inversion geometries.
Oriol Ferrer, Eloi Carola, and Ken McClay
Solid Earth, 14, 571–589, https://doi.org/10.5194/se-14-571-2023, https://doi.org/10.5194/se-14-571-2023, 2023
Short summary
Short summary
Using an experimental approach based on scaled sandbox models, this work aims to understand how salt above different rotational fault blocks influences the cover geometry and evolution, first during extension and then during inversion. The results show that inherited salt structures constrain contractional deformation. We show for the first time how welds and fault welds are reopened during contractional deformation, having direct implications for the subsurface exploration of natural resources.
Chiara Montemagni, Stefano Zanchetta, Martina Rocca, Igor M. Villa, Corrado Morelli, Volkmar Mair, and Andrea Zanchi
Solid Earth, 14, 551–570, https://doi.org/10.5194/se-14-551-2023, https://doi.org/10.5194/se-14-551-2023, 2023
Short summary
Short summary
The Vinschgau Shear Zone (VSZ) is one of the largest and most significant shear zones developed within the Late Cretaceous thrust stack in the Austroalpine domain of the eastern Alps. 40Ar / 39Ar geochronology constrains the activity of the VSZ between 97 and 80 Ma. The decreasing vorticity towards the core of the shear zone, coupled with the younging of mylonites, points to a shear thinning behavior. The deepest units of the Eo-Alpine orogenic wedge were exhumed along the VSZ.
Jordi Miró, Oriol Ferrer, Josep Anton Muñoz, and Gianreto Manastchal
Solid Earth, 14, 425–445, https://doi.org/10.5194/se-14-425-2023, https://doi.org/10.5194/se-14-425-2023, 2023
Short summary
Short summary
Using the Asturian–Basque–Cantabrian system and analogue (sandbox) models, this work focuses on the linkage between basement-controlled and salt-decoupled domains and how deformation is accommodated between the two during extension and subsequent inversion. Analogue models show significant structural variability in the transitional domain, with oblique structures that can be strongly modified by syn-contractional sedimentation. Experimental results are consistent with the case study.
Junichi Fukuda, Takamoto Okudaira, and Yukiko Ohtomo
Solid Earth, 14, 409–424, https://doi.org/10.5194/se-14-409-2023, https://doi.org/10.5194/se-14-409-2023, 2023
Short summary
Short summary
We measured water distributions in deformed quartz by infrared spectroscopy mapping and used the results to discuss changes in water distribution resulting from textural development. Because of the grain size reduction process (dynamic recrystallization), water contents decrease from 40–1750 wt ppm in host grains of ~2 mm to 100–510 wt ppm in recrystallized regions composed of fine grains of ~10 µm. Our results indicate that water is released and homogenized by dynamic recrystallization.
Bastien Walter, Yves Géraud, Alexiane Favier, Nadjib Chibati, and Marc Diraison
EGUsphere, https://doi.org/10.5194/egusphere-2023-397, https://doi.org/10.5194/egusphere-2023-397, 2023
Preprint archived
Short summary
Short summary
Lake Abhe in southwestern Djibouti is known for its exposures of massive hydrothermal chimneys and hot springs on the lake’s eastern shore. This study highlights the control of the main structural faults of the area on the development of these hydrothermal features. This work contributes to better understand hydrothermal fluid pathways in this area and may help further exploration for the geothermal development of this remarkable site.
Michael Rudolf, Matthias Rosenau, and Onno Oncken
Solid Earth, 14, 311–331, https://doi.org/10.5194/se-14-311-2023, https://doi.org/10.5194/se-14-311-2023, 2023
Short summary
Short summary
Analogue models of tectonic processes rely on the reproduction of their geometry, kinematics and dynamics. An important property is fault behaviour, which is linked to the frictional characteristics of the fault gouge. This is represented by granular materials, such as quartz sand. In our study we investigate the time-dependent frictional properties of various analogue materials and highlight their impact on the suitability of these materials for analogue models focusing on fault reactivation.
Jessica Barabasch, Joyce Schmatz, Jop Klaver, Alexander Schwedt, and Janos L. Urai
Solid Earth, 14, 271–291, https://doi.org/10.5194/se-14-271-2023, https://doi.org/10.5194/se-14-271-2023, 2023
Short summary
Short summary
We analysed Zechstein salt with microscopes and observed specific microstructures that indicate much faster deformation in rock salt with fine halite grains when compared to salt with larger grains. This is important because people build large cavities in the subsurface salt for energy storage or want to deposit radioactive waste inside it. When engineers and scientists use grain-size data and equations that include this mechanism, it will help to make better predictions in geological models.
Nicolás Molnar and Susanne Buiter
Solid Earth, 14, 213–235, https://doi.org/10.5194/se-14-213-2023, https://doi.org/10.5194/se-14-213-2023, 2023
Short summary
Short summary
Progression of orogenic wedges over pre-existing extensional structures is common in nature, but deciphering the spatio-temporal evolution of deformation from the geological record remains challenging. Our laboratory experiments provide insights on how horizontal stresses are transferred across a heterogeneous crust, constrain which pre-shortening conditions can either favour or hinder the reactivatation of extensional structures, and explain what implications they have on critical taper theory.
Tania Habel, Martine Simoes, Robin Lacassin, Daniel Carrizo, and German Aguilar
Solid Earth, 14, 17–42, https://doi.org/10.5194/se-14-17-2023, https://doi.org/10.5194/se-14-17-2023, 2023
Short summary
Short summary
The Central Andes are one of the most emblematic reliefs on Earth, but their western flank remains understudied. Here we explore two rare key sites in the hostile conditions of the Atacama desert to build cross-sections, quantify crustal shortening, and discuss the timing of this deformation at ∼20–22°S. We propose that the structures of the Western Andes accommodated significant crustal shortening here, but only during the earliest stages of mountain building.
Naïm Célini, Frédéric Mouthereau, Abdeltif Lahfid, Claude Gout, and Jean-Paul Callot
Solid Earth, 14, 1–16, https://doi.org/10.5194/se-14-1-2023, https://doi.org/10.5194/se-14-1-2023, 2023
Short summary
Short summary
We investigate the peak temperature of sedimentary rocks of the SW Alps (France), using Raman spectroscopy on carbonaceous material. This method provides an estimate of the peak temperature achieved by organic-rich rocks. To determine the timing and the tectonic context of the origin of these temperatures we use 1D thermal modelling. We find that the high temperatures up to 300 °C were achieved during precollisional extensional events, not during tectonic burial in the Western Alps.
Luke N. J. Wedmore, Tess Turner, Juliet Biggs, Jack N. Williams, Henry M. Sichingabula, Christine Kabumbu, and Kawawa Banda
Solid Earth, 13, 1731–1753, https://doi.org/10.5194/se-13-1731-2022, https://doi.org/10.5194/se-13-1731-2022, 2022
Short summary
Short summary
Mapping and compiling the attributes of faults capable of hosting earthquakes are important for the next generation of seismic hazard assessment. We document 18 active faults in the Luangwa Rift, Zambia, in an active fault database. These faults are between 9 and 207 km long offset Quaternary sediments, have scarps up to ~30 m high, and are capable of hosting earthquakes from Mw 5.8 to 8.1. We associate the Molaza Fault with surface ruptures from two unattributed M 6+ 20th century earthquakes.
Michał P. Michalak, Lesław Teper, Florian Wellmann, Jerzy Żaba, Krzysztof Gaidzik, Marcin Kostur, Yuriy P. Maystrenko, and Paulina Leonowicz
Solid Earth, 13, 1697–1720, https://doi.org/10.5194/se-13-1697-2022, https://doi.org/10.5194/se-13-1697-2022, 2022
Short summary
Short summary
When characterizing geological/geophysical surfaces, various geometric attributes are calculated, such as dip angle (1D) or dip direction (2D). However, the boundaries between specific values may be subjective and without optimization significance, resulting from using default color palletes. This study proposes minimizing cosine distance among within-cluster observations to detect 3D anomalies. Our results suggest that the method holds promise for identification of megacylinders or megacones.
Erik M. Young, Christie D. Rowe, and James D. Kirkpatrick
Solid Earth, 13, 1607–1629, https://doi.org/10.5194/se-13-1607-2022, https://doi.org/10.5194/se-13-1607-2022, 2022
Short summary
Short summary
Studying how earthquakes spread deep within the faults they originate from is crucial to improving our understanding of the earthquake process. We mapped preserved ancient earthquake surfaces that are now exposed in South Africa and studied their relationship with the shape and type of rocks surrounding them. We determined that these surfaces are not random and are instead associated with specific kinds of rocks and that their shape is linked to the evolution of the faults in which they occur.
Sivaji Lahiri, Kitty L. Milliken, Peter Vrolijk, Guillaume Desbois, and Janos L. Urai
Solid Earth, 13, 1513–1539, https://doi.org/10.5194/se-13-1513-2022, https://doi.org/10.5194/se-13-1513-2022, 2022
Short summary
Short summary
Understanding the mechanism of mechanical compaction is important. Previous studies on mechanical compaction were mostly done by performing experiments. Studies on natural rocks are rare due to compositional heterogeneity of the sedimentary succession with depth. Due to remarkable similarity in composition and grain size, the Sumatra subduction complex provides a unique opportunity to study the micromechanism of mechanical compaction on natural samples.
Dongwon Lee, Nikolaos Karadimitriou, Matthias Ruf, and Holger Steeb
Solid Earth, 13, 1475–1494, https://doi.org/10.5194/se-13-1475-2022, https://doi.org/10.5194/se-13-1475-2022, 2022
Short summary
Short summary
This research article focuses on filtering and segmentation methods employed in high-resolution µXRCT studies for crystalline rocks, bearing fractures, or fracture networks, of very small aperture. Specifically, we focus on the identification of artificially induced (via quenching) fractures in Carrara marble samples. Results from the same dataset from all five different methods adopted were produced and compared with each other in terms of their output quality and time efficiency.
Alberto Ceccato, Giulia Tartaglia, Marco Antonellini, and Giulio Viola
Solid Earth, 13, 1431–1453, https://doi.org/10.5194/se-13-1431-2022, https://doi.org/10.5194/se-13-1431-2022, 2022
Short summary
Short summary
The Earth's surface is commonly characterized by the occurrence of fractures, which can be mapped, and their can be geometry quantified on digital representations of the surface at different scales of observation. Here we present a series of analytical and statistical tools, which can aid the quantification of fracture spatial distribution at different scales. In doing so, we can improve our understanding of how fracture geometry and geology affect fluid flow within the fractured Earth crust.
Giulio Viola, Giovanni Musumeci, Francesco Mazzarini, Lorenzo Tavazzani, Manuel Curzi, Espen Torgersen, Roelant van der Lelij, and Luca Aldega
Solid Earth, 13, 1327–1351, https://doi.org/10.5194/se-13-1327-2022, https://doi.org/10.5194/se-13-1327-2022, 2022
Short summary
Short summary
A structural-geochronological approach helps to unravel the Zuccale Fault's architecture. By mapping its internal structure and dating some of its fault rocks, we constrained a deformation history lasting 20 Myr starting at ca. 22 Ma. Such long activity is recorded by now tightly juxtaposed brittle structural facies, i.e. different types of fault rocks. Our results also have implications on the regional evolution of the northern Apennines, of which the Zuccale Fault is an important structure.
Wan-Lin Hu
Solid Earth, 13, 1281–1290, https://doi.org/10.5194/se-13-1281-2022, https://doi.org/10.5194/se-13-1281-2022, 2022
Short summary
Short summary
Having a seismic image is generally expected to enable us to better determine fault geometry and thus estimate geological slip rates accurately. However, the process of interpreting seismic images may introduce unintended uncertainties, which have not yet been widely discussed. Here, a case of a shear fault-bend fold in the frontal Himalaya is used to demonstrate how differences in interpretations can affect the following estimates of slip rates and dependent conclusions.
Manuel D. Menzel, Janos L. Urai, Estibalitz Ukar, Thierry Decrausaz, and Marguerite Godard
Solid Earth, 13, 1191–1218, https://doi.org/10.5194/se-13-1191-2022, https://doi.org/10.5194/se-13-1191-2022, 2022
Short summary
Short summary
Mantle rocks can bind large quantities of carbon by reaction with CO2, but this capacity requires fluid pathways not to be clogged by carbonate. We studied mantle rocks from Oman to understand the mechanisms allowing their transformation into carbonate and quartz. Using advanced imaging techniques, we show that abundant veins were essential fluid pathways driving the reaction. Our results show that tectonic stress was important for fracture opening and a key ingredient for carbon fixation.
Jean-Baptiste P. Koehl, Steffen G. Bergh, and Arthur G. Sylvester
Solid Earth, 13, 1169–1190, https://doi.org/10.5194/se-13-1169-2022, https://doi.org/10.5194/se-13-1169-2022, 2022
Short summary
Short summary
The San Andreas fault is a major active fault associated with ongoing earthquake sequences in southern California. The present study investigates the development of the Indio Hills area in the Coachella Valley along the main San Andreas fault and the Indio Hills fault. The Indio Hills area is located near an area with high ongoing earthquake activity (Brawley seismic zone), and, therefore, its recent tectonic evolution has implications for earthquake prediction.
Jin Lai, Dong Li, Yong Ai, Hongkun Liu, Deyang Cai, Kangjun Chen, Yuqiang Xie, and Guiwen Wang
Solid Earth, 13, 975–1002, https://doi.org/10.5194/se-13-975-2022, https://doi.org/10.5194/se-13-975-2022, 2022
Short summary
Short summary
(1) Structural diagenesis analysis is performed on the ultra-deep tight sandstone. (2) Fracture and intergranular pores are related to the low in situ stress magnitudes. (3) Dissolution is associated with the presence of fracture.
Hamed Fazlikhani, Wolfgang Bauer, and Harald Stollhofen
Solid Earth, 13, 393–416, https://doi.org/10.5194/se-13-393-2022, https://doi.org/10.5194/se-13-393-2022, 2022
Short summary
Short summary
Interpretation of newly acquired FRANKEN 2D seismic survey data in southeeastern Germany shows that upper Paleozoic low-grade metasedimentary rocks and possible nappe units are transported by Variscan shear zones to ca. 65 km west of the Franconian Fault System (FFS). We show that the locations of post-Variscan upper Carboniferous–Permian normal faults and associated graben and half-graben basins are controlled by the geometry of underlying Variscan shear zones.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Berit Schwichtenberg, Florian Fusseis, Ian B. Butler, and Edward Andò
Solid Earth, 13, 41–64, https://doi.org/10.5194/se-13-41-2022, https://doi.org/10.5194/se-13-41-2022, 2022
Short summary
Short summary
Hydraulic rock properties such as porosity and permeability are relevant factors that have an impact on groundwater resources, geological repositories and fossil fuel reservoirs. We investigate the influence of chemical compaction upon the porosity evolution in salt–biotite mixtures and related transport length scales by conducting laboratory experiments in combination with 4-D analysis. Our observations invite a renewed discussion of the effect of sheet silicates on chemical compaction.
David Healy and Stephen Paul Hicks
Solid Earth, 13, 15–39, https://doi.org/10.5194/se-13-15-2022, https://doi.org/10.5194/se-13-15-2022, 2022
Short summary
Short summary
The energy transition requires operations in faulted rocks. To manage the technical challenges and public concern over possible induced earthquakes, we need to quantify the risks. We calculate the probability of fault slip based on uncertain inputs, stresses, fluid pressures, and the mechanical properties of rocks in fault zones. Our examples highlight the specific gaps in our knowledge. Citizen science projects could produce useful data and include the public in the discussions about hazards.
Manuel I. de Paz-Álvarez, Thomas G. Blenkinsop, David M. Buchs, George E. Gibbons, and Lesley Cherns
Solid Earth, 13, 1–14, https://doi.org/10.5194/se-13-1-2022, https://doi.org/10.5194/se-13-1-2022, 2022
Short summary
Short summary
We describe a virtual geological mapping course implemented in response to travelling and social restrictions derived from the ongoing COVID-19 pandemic. The course was designed to replicate a physical mapping exercise as closely as possible with the aid of real field data and photographs collected by the authors during previous years in the Cantabrian Zone (NW Spain). The course is delivered through Google Earth via a KMZ file with outcrop descriptions and links to GitHub-hosted photographs.
Yueyang Xia, Jacob Geersen, Dirk Klaeschen, Bo Ma, Dietrich Lange, Michael Riedel, Michael Schnabel, and Heidrun Kopp
Solid Earth, 12, 2467–2477, https://doi.org/10.5194/se-12-2467-2021, https://doi.org/10.5194/se-12-2467-2021, 2021
Short summary
Short summary
The 2 June 1994 Java tsunami earthquake ruptured in a seismically quiet subduction zone and generated a larger-than-expected tsunami. Here, we re-process a seismic line across the rupture area. We show that a subducting seamount is located up-dip of the mainshock in a region that did not rupture during the earthquake. Seamount subduction modulates the topography of the marine forearc and acts as a seismic barrier in the 1994 earthquake rupture.
Steffen Abe and Hagen Deckert
Solid Earth, 12, 2407–2424, https://doi.org/10.5194/se-12-2407-2021, https://doi.org/10.5194/se-12-2407-2021, 2021
Short summary
Short summary
We use numerical simulations and laboratory experiments on rock samples to investigate how stress conditions influence the geometry and roughness of fracture surfaces. The roughness of the surfaces was analyzed in terms of absolute roughness and scaling properties. The results show that the surfaces are self-affine but with different scaling properties between the numerical models and the real rock samples. Results suggest that stress conditions have little influence on the surface roughness.
Chao Deng, Rixiang Zhu, Jianhui Han, Yu Shu, Yuxiang Wu, Kefeng Hou, and Wei Long
Solid Earth, 12, 2327–2350, https://doi.org/10.5194/se-12-2327-2021, https://doi.org/10.5194/se-12-2327-2021, 2021
Short summary
Short summary
This study uses seismic reflection data to interpret the geometric relationship and evolution of intra-basement and rift-related structures in the Enping sag in the northern South China Sea. Our observations suggest the primary control of pre-existing thrust faults is the formation of low-angle normal faults, with possible help from low-friction materials, and the significant role of pre-existing basement thrust faults in fault geometry, paleotopography, and syn-rift stratigraphy of rift basins.
Sonia Yeung, Marnie Forster, Emmanuel Skourtsos, and Gordon Lister
Solid Earth, 12, 2255–2275, https://doi.org/10.5194/se-12-2255-2021, https://doi.org/10.5194/se-12-2255-2021, 2021
Short summary
Short summary
We do not know when the ancient Tethys Ocean lithosphere began to founder, but one clue can be found in subduction accreted tectonic slices, including Gondwanan basement terranes on the island of Ios, Cyclades, Greece. We propose a 250–300 km southwards jump of the subduction megathrust with a period of flat-slab subduction followed by slab break-off. The initiation and its subsequent rollback of a new subduction zone would explain the onset of Oligo–Miocene extension and accompanying magmatism.
Cited articles
Aldiss, D. T., Black, M. G., Entwisle, D. C., Page, D. P., and Terrington, R. L.: Benefits of a 3-D geological model for major tunnelling works: an example from Farringdon, east-central London, UK, Q. J. Eng. Geol. Hydroge., 45, 405–414, https://doi.org/10.1144/qjegh2011-066, 2012.
Allmendinger, R. W., Siron, C. R., and Scott, C. P.: Structural data collection with mobile devices: Accuracy, redundancy, and best practices, J. Struct. Geol., 102, 98–112, 2017.
Aug, C.: Modelisation geologique 3-D et caracterisation des incertitudes par la methode du champ de potentiel, PhD, Ecole des Mines de Paris, Paris, 220 pp., 2004.
Aug, C., Chilès, J.-P., Courrioux, G., and Lajaunie, C.: 3-D geological modelling and uncertainty: The potential-field method, in: Geostatistics Banff 2004, Springer, 145–154, 2005.
Bagchi, P.: Bayesian analysis of directional data, University of Toronto, Ottawa, Ont: National Library of Canada, 1987.
Bagchi, P. and Guttman, I.: Theoretical considerations of the multivariate von Mises-Fisher distribution, J. Appl. Stat., 15, 149–169, 1988.
Banerjee, A., Dhillon, I. S., Ghosh, J., and Sra, S.: Clustering on the Unit Hypersphere using von Mises-Fisher Distributions, J. Mach. Learn. Res., 6, 1345–1382, 2005.
Bardossy, G. and Fodor, J.: Traditional and NewWays to Handle Uncertainty in Geology, Nat. Ressour. Res., 10, 179–187, 2001.
Beven, K. and Binley, A.: The future of distributed models: model calibration and uncertainty prediction, Hydrol. Process., 6, 279–298, 1992.
Bewoor, A. K. and Kulkarni, V. A.: Metrology and measurement, McGraw-Hill Education, New Delhi, 2009.
Bucher, J. L.: The metrology handbook, edited by: Bucher, J. L., ASQ Quality Press, United States of America, 2012.
Calcagno, P., Chilès, J. P., Courrioux, G., and Guillen, A.: Geological modelling from field data and geological knowledge, Phys. Earth Planet. Int., 171, 147–157, https://doi.org/10.1016/j.pepi.2008.06.013, 2008.
Camacho, R. A., Martin, J. L., McAnally, W., Díaz-Ramirez, J., Rodriguez, H., Sucsy, P., and Zhang, S.: A comparison of Bayesian methods for uncertainty analysis in hydraulic and hydrodynamic modeling, J. Am. Water Ressour. Assoc., 51, 1372–1393, 2015.
Cammack, R.: Developing an engineering geological model in the fractured and brecciated rocks of a copper porphyry deposit, Geol. Soc. Lond. Eng. Geol. Spec. Publ., 27, 93–100, https://doi.org/10.1144/egsp27.8, 2016.
Carmichael, T. and Ailleres, L.: Method and analysis for the upscaling of structural data, J. Struct. Geol., 83, 121–133, 2016.
Cawood, A. J., Bond, C. E., Howell, J. A., Butler, R. W., and Totake, Y.: LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models, J. Struct. Geol., 98, 67–82, 2017.
Cayley, R. A., Osborne, C. R., and Vanderberg, A. H. M.: Mansfield 1:50 000 geological map, Geological Survey of Victoria, GeoScience Victoria, Department of Primary Industries, Melbourne, 2006.
Chilès, J. P. and Delfiner, P.: Geostatistics: modeling spatial uncertainty, John Wiley & Sons, New Jersey, 2009.
Chilès, J. P., Aug, C., Guillen, A., and Lees, T.: Modelling the Geometry of Geological Units and its Uncertainty in 3-D From Structural Data: The Potential-Field Method, Orebody Modelling and Strategic Mine Planning, Perth, 22 November 2004, 2004.
Courrioux, G., Allanic, C., Bourgine, B., Guillen, A., Baudin, T., Lacquement, F., Gabalda, S., Cagnard, F., Le Bayon, B., and Besse, J.: Comparisons from multiple realizations of a geological model, Implication for uncertainty factors identification, IAMG 2015: The 17th annual conference of the International Association for Mathematical Geosciences, 2015.
Davis, J. C.: Statistics and Data Analysis in Geology, 3rd Edn., Wiley, New Jersey, 656 pp., 2003.
de la Varga, M. and Wellmann, J. F.: Structural geologic modeling as an inference problem: A Bayesian perspective, Interpretation, 4, SM1–SM16, 2016.
Delgado Marchal, J., Garrido Manrique, J., Lenti, L., López Casado, C., Martino, S., and Sierra, F. J.: Unconventional pseudostatic stability analysis of the Diezma landslide (Granada, Spain) based on a high-resolution engineering-geological model, Eng. Geol., 184, 81–95, https://doi.org/10.1016/j.enggeo.2014.11.002, 2015.
Dominy, S. C. N., Mark, A., and Annels, A. E.: Errors and Uncertainty in Mineral Resource and Ore Reserve Estimation: The Importance of Getting it Right, Explor. Min. Geol., 11, 77–98, 2002.
Dosne, A.-G., Bergstrand, M., and Karlsson, M. O.: A strategy for residual error modeling incorporating scedasticity of variance and distribution shape, J. Pharmacokinet. Phar., 43, 137–151, 2016.
Eiken, O., Haugen, G. U., Schonewille, M., and Duijndam, A.: D. A Proven Method for Acquiring Highly Repeatable Towed Streamer Seismic Data, in: Insights and Methods for 4D Reservoir Monitoring and Characterization, Society of Exploration Geophysicists and European Association of Geoscientists and Engineers, 209–216, 2005.
Ennis-King, J. and Paterson, L.: Engineering Aspects of Geological Sequestration of Carbon Dioxide, Asia Pacific Oil and Gas Conference and Exhibition Melbourne, Australia, 8 October 2002, 2002.
Eubank, R. and Thomas, W.: Detecting heteroscedasticity in nonparametric regression, J. Roy. Stat. Soc. B, 55, 145–155, 1993.
Fisher, N. I., Lewis, T., and Embleton, B. J.: Statistical analysis of spherical data, Cambridge university press, Cambridge, 1987.
FitzGerald, D., Chilès, J. P., and Guillen, A.: Delineate Three-Dimensional Iron Ore Geology and Resource Models Using the Potential Field Method, Iron Ore Conference, Perth, 27 July 2009, 2009.
Freni, G. and Mannina, G.: Bayesian approach for uncertainty quantification in water quality modelling: The influence of prior distribution, J. Hydrol., 392, 31–39, 2010.
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B.: Bayesian data analysis, Chapman & Hall/CRC Boca Raton, FL, USA, 2014.
Gnedenko, B. and Kolmogorov, A.: Limit distributions for sums of independent, Am. J. Math., 105, 28–35, 1954.
Guillen, A., Calcagno, P., Courrioux, G., Joly, A., and Ledru, P.: Geological modelling from field data and geological knowledge, Phys. Earth Planet. Int., 171, 158–169, https://doi.org/10.1016/j.pepi.2008.06.014, 2008.
Haydon, S. J., Skladzien, P. B., and Cayley, R. A.: Parts of Mansfield Alexandra and Euroa 1:100 000 maps: Geological interpretation of geophysical features map, Geological Survey of Victoria, Geoscience Victoria, Deparment of Primary Industries, Melbourne, 2006.
Hornik, K. and Grün, B.: On conjugate families and Jeffreys priors for von Mises–Fisher distributions, J. Stat. Plan. Infer., 143, 992–999, 2013.
Intrepid Geophysics: “GeoModeller API” Intrepid Geophysics|Home of GeoModeller, Intrepid, Jetstream and Sea-g|Gravity, Magnetics, Radiometrics, FTG, available at: www.intrepid-geophysics.com/ig/index.php?page=geomodeller-api, last access: 19 February 2018.
Isaaks, E. H. and Srivastava, R. M.: Applied Geostatistics, Oxford University Press, Inc., New York, 561 pp., 1989.
Jairo, N.: Estimation and propagation of parameter uncertainty in lumped hydrological models: A case study of HSPF model applied to luxapallila creek watershed in southeast USA, J. Hydrogeol. Hydrol. Eng., https://doi.org/10.4172/2325-9647.1000105, 2013.
Jennings, D., Cormack, S., Coutts, A. J., Boyd, L., and Aughey, R. J.: The validity and reliability of GPS units for measuring distance in team sport specific running patterns, Int. J. Sport. Physiol., 5, 328–341, 2010.
Jessell, M.: Noddy: an interactive map creation package, Unpublished MSc Thesis, University of London, 1981.
Jessell, M., Aillères, L., and de Kemp, E. A.: Towards an integrated inversion of geoscientific data: What price of geology?, Tectonophys, 490, 294–306, https://doi.org/10.1016/j.tecto.2010.05.020, 2010.
Jessell, M., Aillères, L., de Kemp, E. A., Lindsay, M. D., Wellmann, J. F., Hillier, M., Laurent, G., Carmichael, T., and Martin, R.: Next Generation Three-Dimensional Geologic Modeling and Inversion, in: Society of Economic Geologists Special Publication 18, Society of Economic Geologists, 12, 2014a.
Kamm, J., Lundin, I. A., Bastani, M., Sadeghi, M., and Pedersen, L. B.: Joint inversion of gravity, magnetic, and petrophysical data – A case study from a gabbro intrusion in Boden, Sweden, Geophysics, 80, B131–B152, 2015.
Kent, J. T. and Hamelryck, T.: Using the Fisher-Bingham distribution in stochastic models for protein structure, Quantitative Biology, Shape Analysis, and Wavelets, 24, 57–60, 2005.
Kolmogorov, A. N.: Foundations of the Theory of Probability, Chelsea Publishing Company, 1950.
Kragh, E. and Christie, P.: Seismic repeatability, normalized rms, and predictability, Lead Edge, 21, 640–647, 2002.
Lajaunie, C.: Comparing Some Approximate Methods for Building Local Confidence Intervals for Predicting Regionalized Variables, Math. Geol., 22, 123–144, https://doi.org/10.1007/BF00890301, 1990.
Lajaunie, C., Courrioux, G., and Manuel, L.: Foliation fields and 3-D cartography in geology: principles of a method based on potential interpolation, Math. Geol., 29, 571–584, 1997.
Lark, R. M., Mathers, S. J., Thorpe, S., Arkley, S. L. B., Morgan, D. J., and Lawrence, D. J. D.: A statistical assessment of the uncertainty in a 3-D geological framework model, P. Geol. Assoc. Can., 124, 946–958, https://doi.org/10.1016/j.pgeola.2013.01.005, 2013.
Lark, R. M., Thorpe, S., Kessler, H., and Mathers, S. J.: Interpretative modelling of a geological cross section from boreholes: sources of uncertainty and their quantification, Solid Earth, 5, 1189–1203, https://doi.org/10.5194/se-5-1189-2014, 2014.
Levenbach, H.: The estimation of heteroscedasticity from a marginal likelihood function, J. Am. Stat. Assoc., 68, 436–439, 1973.
Lindsay, M. D., Aillères, L., Jessell, M., de Kemp, E. A., and Betts, P. G.: Locating and quantifying geological uncertainty in three-dimensional models: Analysis of the Gippsland Basin, southeastern Australia, Tectonophys, 546–547, 10–27, https://doi.org/10.1016/j.tecto.2012.04.007, 2012.
Lindsay, M. D., Perrouty, S., Jessell, M., and Aillères, L.: Making the link between geological and geophysical uncertainty: geodiversity in the Ashanti Greenstone Belt, Geophys. J. Int., 195, 903–922, https://doi.org/10.1093/gji/ggt311, 2013.
Lisle, R. J. and Leyshon, P. R.: Stereographic projection techniques for geologists and civil engineers, Cambridge University Press, Cambridge, 2004.
Mardia, K. V. and El-Atoum, S.: Bayesian inference for the von Mises-Fisher distribution, Biom, 63, 203–206, 1976.
Matheron, G.: La Theorie des Variables Regionalisees et ses Applications, Les Cahiers du Centre de Morphologie Mathematique de Fontainebleau, ENSMP, Paris, 220 pp., 1970.
Maxelon, M. and Mancktelow, N. S.: Three-dimensional geometry and tectonostratigraphy of the Pennine zone, Central Alps, Switzerland and Northern Italy, Earth-Sci. Rev., 71, 171–227, 2005.
Middlemiss, R., Samarelli, A., Paul, D., Hough, J., Rowan, S., and Hammond, G.: Measurement of the Earth tides with a MEMS gravimeter, Nature, 531, 614–617, 2016.
Moeck, I. S.: Catalog of geothermal play types based on geologic controls, Renew. Sust. Energ. Rev., 37, 867–882, https://doi.org/10.1016/j.rser.2014.05.032, 2014.
Moffat, R. J.: Contributions to the theory of single-sample uncertainty analysis, ASME Trans. J. Fluids Eng., 104, 250–258, 1982.
Moffat, R. J.: Describing the uncertainties in experimental results, Exp. Therm. Fluid Sci., 1, 3–17, 1988.
Morita, S., Thall, P. F., and Müller, P.: Evaluating the impact of prior assumptions in Bayesian biostatistics, Stat. Biosci., 2, 1–17, 2010.
Myer, D., Constable, S., and Key, K.: Broad-band waveforms and robust processing for marine CSEM surveys, Geophys. J. Int., 184, 689–698, 2011.
Nearing, G. S., Tian, Y., Gupta, H. V., Clark, M. P., Harrison, K. W., and Weijs, S. V.: A philosophical basis for hydrological uncertainty, Hydrol. Sci. J., 61, 1666–1678, https://doi.org/10.1080/02626667.2016.1183009, 2016.
Nelson, R., Lenox, L., and Ward Jr., B.: Oriented core: its use, error, and uncertainty, AAPG Bull., 71, 357–367, 1987.
Nordahl, K. and Ringrose, P. S.: Identifying the representative elementary volume for permeability in heterolithic deposits using numerical rock models, Math. Geosci., 40, 753–771, 2008.
Novakova, L. and Pavlis, T. L.: Assessment of the precision of smart phones and tablets for measurement of planar orientations: A case study, J. Struct. Geol., 97, 93–103, 2017.
Omre, H.: Bayesian kriging – merging observations and qualified guesses in kriging, Math. Geol., 19, 25–39, 1987.
Pakyuz-Charrier, E.: Basic graben GeoModeller model and relevant MCUE outputs, Zenodo, https://doi.org/10.5281/zenodo.854730, 2017.
Pakyuz-Charrier, E. and Intrepid Geophysics: Mansfield (Victoria, Australia) area original GeoModeller model and relevant MCUE outputs, Zenodo, https://doi.org/10.5281/zenodo.848225, 2017.
Patel, J. K. and Read, C. B.: Handbook of the normal distribution, CRC Press, New York, 1996.
Perrone, A., Lapenna, V., and Piscitelli, S.: Electrical resistivity tomography technique for landslide investigation: A review, Earth-Sci. Rev., 135, 65–82, 2014.
Phillips, F. C.: The use of stereographic projection in structural geology, Edward Arnold, London, 1960.
Pilz, J. and Spöck, G.: Why do we need and how should we implement Bayesian kriging methods, Stoch. Env. Res. Risk A., 22, 621–632, 2008.
Prada, S., Cruz, J. V., and Figueira, C.: Using stable isotopes to characterize groundwater recharge sources in the volcanic island of Madeira, Portugal, J. Hydrol., 536, 409–425, https://doi.org/10.1016/j.jhydrol.2016.03.009, 2016.
Quirein, J., Hampson, D., and Schuelke, J.: Use of Multi-Attribute Transforms to Predict Log Properties from Seismic Data, EAGE Conference on Exploring the Synergies between Surface and Borehole Geoscience-Petrophysics meets Geophysics, 2000.
Rawat, G., Arora, B., and Gupta, P.: Electrical resistivity cross-section across the Garhwal Himalaya: Proxy to fluid-seismicity linkage, Tectonophys, 637, 68–79, 2014.
Richardson, L. M.: Index of Airborne Geophysical Surveys, Seventh Edn., Geoscience Australia Record 2003/10., 171, 2003.
Rodrigues, J., Galvão Leite, J., and Milan, L. A.: Theory & Methods: An Empirical Bayes Inference for the von Mises Distribution, Aust. NZ. J. Stat., 42, 433–440, 2000.
Shannon, C. E.: A Mathematical Theory of Communication, Bell Syst. Tech. J., 27, 379–423, 1948.
Sivia, D. S. and Skilling, J.: Data Analysis A Bayesian Tutorial, 2nd Edn., Oxford Science Publications, Oxford University Press, Oxford, 246 pp., 2006.
Sra, S.: A short note on parameter approximation for von Mises-Fisher distributions: and a fast implementation of I s (x), Comput. Stat., 27, 177–190, https://doi.org/10.1007/s00180-011-0232-x, 2011.
Stigsson, M.: Orientation Uncertainty of Structures Measured in Cored Boreholes: Methodology and Case Study of Swedish Crystalline Rock, Rock Mech. Rock Eng., 49, 4273–4284, 2016.
Thiel, S., Heinson, G., Reid, A., and Robertson, K.: Insights into lithospheric architecture, fertilisation and fluid pathways from AusLAMP MT, ASEG Ext Abstr, 2016, 1–6, 2016.
Vos, P. C., Bunnik, F. P. M., Cohen, K. M., and Cremer, H.: A staged geogenetic approach to underwater archaeological prospection in the Port of Rotterdam (Yangtzehaven, Maasvlakte, The Netherlands): A geological and palaeoenvironmental case study for local mapping of Mesolithic lowland landscapes, Quatern. Int., 367, 4–31, https://doi.org/10.1016/j.quaint.2014.11.056, 2015.
Wallace, R. E.: Geometry of shearing stress and relation to faulting, J. Geol., 59, 118–130, 1951.
Wang, H., Wellmann, J. F., Li, Z., Wang, X., and Liang, R. Y.: A Segmentation Approach for Stochastic Geological Modeling Using Hidden Markov Random Fields, Math. Geosci., 49, 145–177, https://doi.org/10.1007/s11004-016-9663-9, 2016.
Wellmann, J. F.: Information Theory for Correlation Analysis and Estimation of Uncertainty Reduction in Maps and Models, Entropy, 15, 1464–1485, https://doi.org/10.3390/e15041464, 2013.
Wellmann, J. F. and Regenauer-Lieb, K.: Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models, Tectonophys, 526–529, 207–216, https://doi.org/10.1016/j.tecto.2011.05.001, 2012.
Wellmann, J. F., Horowitz, F. G., Schill, E., and Regenauer-Lieb, K.: Towards incorporating uncertainty of structural data in 3-D geological inversion, Tectonophys, 490, 141–151, https://doi.org/10.1016/j.tecto.2010.04.022, 2010.
Wellmann, J. F., Finsterle, S., and Croucher, A.: Integrating structural geological data into the inverse modelling framework of iTOUGH2, Comput. Geosci., 65, 95–109, https://doi.org/10.1016/j.cageo.2013.10.014, 2014a.
Wellmann, J. F., Lindsay, M. D., Poh, J., and Jessell, M. W.: Validating 3-D Structural Models with Geological Knowledge for Improved Uncertainty Evaluations, Energy Proced., 59, 374–381, https://doi.org/10.1016/j.egypro.2014.10.391, 2014b.
Wellmann, J. F., Thiele, S. T., Lindsay, M. D., and Jessell, M. W.: pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling, Geosci. Model Dev., 9, 1019–1035, https://doi.org/10.5194/gmd-9-1019-2016, 2016.
Wilson, E. B.: First and second laws of error, J. Am. Stat. Assoc., 18, 841–851, 1923.
Wood, A. T.: Simulation of the von Mises Fisher distribution, Commun. Stat. Simulat., 23, 157–164, 1994.
Zheng, H., Xie, J., and Jin, Z.: Heteroscedastic sparse representation based classification for face recognition, Neural Process. Lett., 35, 233–244, 2012.
Short summary
MCUE is a method that produces probabilistic 3-D geological models by sampling from distributions that represent the uncertainty of the initial input dataset. This process generates numerous plausible datasets used to produce a range of statistically plausible 3-D models which are combined into a single probabilistic model. In this paper, improvements to distribution selection and parameterization for input uncertainty are proposed.
MCUE is a method that produces probabilistic 3-D geological models by sampling from...