Articles | Volume 9, issue 2
https://doi.org/10.5194/se-9-385-2018
https://doi.org/10.5194/se-9-385-2018
Method article
 | 
06 Apr 2018
Method article |  | 06 Apr 2018

Monte Carlo simulation for uncertainty estimation on structural data in implicit 3-D geological modeling, a guide for disturbance distribution selection and parameterization

Evren Pakyuz-Charrier, Mark Lindsay, Vitaliy Ogarko, Jeremie Giraud, and Mark Jessell

Related authors

Topological analysis in Monte Carlo simulation for uncertainty propagation
Evren Pakyuz-Charrier, Mark Jessell, Jérémie Giraud, Mark Lindsay, and Vitaliy Ogarko
Solid Earth, 10, 1663–1684, https://doi.org/10.5194/se-10-1663-2019,https://doi.org/10.5194/se-10-1663-2019, 2019
Short summary
Integration of geoscientific uncertainty into geophysical inversion by means of local gradient regularization
Jeremie Giraud, Mark Lindsay, Vitaliy Ogarko, Mark Jessell, Roland Martin, and Evren Pakyuz-Charrier
Solid Earth, 10, 193–210, https://doi.org/10.5194/se-10-193-2019,https://doi.org/10.5194/se-10-193-2019, 2019
Short summary

Related subject area

Structural geology
Driven magmatism and crustal thinning of coastal southern China in response to subduction
Jinbao Su, Wenbin Zhu, and Guangwei Li
Solid Earth, 15, 1133–1141, https://doi.org/10.5194/se-15-1133-2024,https://doi.org/10.5194/se-15-1133-2024, 2024
Short summary
Selection and characterization of the target fault for fluid-induced activation and earthquake rupture experiments
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024,https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary
Naturally fractured reservoir characterisation in heterogeneous sandstones: insight for uranium in situ recovery (Imouraren, Niger)
Maxime Jamet, Gregory Ballas, Roger Soliva, Olivier Gerbeaud, Thierry Lefebvre, Christine Leredde, and Didier Loggia
Solid Earth, 15, 895–920, https://doi.org/10.5194/se-15-895-2024,https://doi.org/10.5194/se-15-895-2024, 2024
Short summary
Influence of water on crystallographic preferred orientation patterns in a naturally-deformed quartzite
Jeffrey M. Rahl, Brendan Moehringer, Kenneth S. Befus, and John S. Singleton
EGUsphere, https://doi.org/10.5194/egusphere-2024-1567,https://doi.org/10.5194/egusphere-2024-1567, 2024
Short summary
Multiscalar 3D temporal structural characterisation of Smøla island, mid-Norwegian passive margin: an analogue for unravelling the tectonic history of offshore basement highs
Matthew S. Hodge, Guri Venvik, Jochen Knies, Roelant van der Lelij, Jasmin Schönenberger, Øystein Nordgulen, Marco Brönner, Aziz Nasuti, and Giulio Viola
Solid Earth, 15, 589–615, https://doi.org/10.5194/se-15-589-2024,https://doi.org/10.5194/se-15-589-2024, 2024
Short summary

Cited articles

Aldiss, D. T., Black, M. G., Entwisle, D. C., Page, D. P., and Terrington, R. L.: Benefits of a 3-D geological model for major tunnelling works: an example from Farringdon, east-central London, UK, Q. J. Eng. Geol. Hydroge., 45, 405–414, https://doi.org/10.1144/qjegh2011-066, 2012.
Allmendinger, R. W., Siron, C. R., and Scott, C. P.: Structural data collection with mobile devices: Accuracy, redundancy, and best practices, J. Struct. Geol., 102, 98–112, 2017.
Aug, C.: Modelisation geologique 3-D et caracterisation des incertitudes par la methode du champ de potentiel, PhD, Ecole des Mines de Paris, Paris, 220 pp., 2004.
Aug, C., Chilès, J.-P., Courrioux, G., and Lajaunie, C.: 3-D geological modelling and uncertainty: The potential-field method, in: Geostatistics Banff 2004, Springer, 145–154, 2005.
Bagchi, P.: Bayesian analysis of directional data, University of Toronto, Ottawa, Ont: National Library of Canada, 1987.
Download
Short summary
MCUE is a method that produces probabilistic 3-D geological models by sampling from distributions that represent the uncertainty of the initial input dataset. This process generates numerous plausible datasets used to produce a range of statistically plausible 3-D models which are combined into a single probabilistic model. In this paper, improvements to distribution selection and parameterization for input uncertainty are proposed.