Articles | Volume 9, issue 2
Solid Earth, 9, 385–402, 2018
https://doi.org/10.5194/se-9-385-2018
Solid Earth, 9, 385–402, 2018
https://doi.org/10.5194/se-9-385-2018
Method article
06 Apr 2018
Method article | 06 Apr 2018

Monte Carlo simulation for uncertainty estimation on structural data in implicit 3-D geological modeling, a guide for disturbance distribution selection and parameterization

Evren Pakyuz-Charrier et al.

Related authors

Topological analysis in Monte Carlo simulation for uncertainty propagation
Evren Pakyuz-Charrier, Mark Jessell, Jérémie Giraud, Mark Lindsay, and Vitaliy Ogarko
Solid Earth, 10, 1663–1684, https://doi.org/10.5194/se-10-1663-2019,https://doi.org/10.5194/se-10-1663-2019, 2019
Short summary
Integration of geoscientific uncertainty into geophysical inversion by means of local gradient regularization
Jeremie Giraud, Mark Lindsay, Vitaliy Ogarko, Mark Jessell, Roland Martin, and Evren Pakyuz-Charrier
Solid Earth, 10, 193–210, https://doi.org/10.5194/se-10-193-2019,https://doi.org/10.5194/se-10-193-2019, 2019
Short summary

Related subject area

Structural geology
Variscan structures and their control on latest to post-Variscan basin architecture: insights from the westernmost Bohemian Massif and southeastern Germany
Hamed Fazlikhani, Wolfgang Bauer, and Harald Stollhofen
Solid Earth, 13, 393–416, https://doi.org/10.5194/se-13-393-2022,https://doi.org/10.5194/se-13-393-2022, 2022
Short summary
Multi-disciplinary characterizations of the BedrettoLab – a new underground geoscience research facility
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022,https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Biotite supports long-range diffusive transport in dissolution–precipitation creep in halite through small porosity fluctuations
Berit Schwichtenberg, Florian Fusseis, Ian B. Butler, and Edward Andò
Solid Earth, 13, 41–64, https://doi.org/10.5194/se-13-41-2022,https://doi.org/10.5194/se-13-41-2022, 2022
Short summary
De-risking the energy transition by quantifying the uncertainties in fault stability
David Healy and Stephen Paul Hicks
Solid Earth, 13, 15–39, https://doi.org/10.5194/se-13-15-2022,https://doi.org/10.5194/se-13-15-2022, 2022
Short summary
Virtual field trip to the Esla Nappe (Cantabrian Zone, NW Spain): delivering traditional geological mapping skills remotely using real data
Manuel I. de Paz-Álvarez, Thomas G. Blenkinsop, David M. Buchs, George E. Gibbons, and Lesley Cherns
Solid Earth, 13, 1–14, https://doi.org/10.5194/se-13-1-2022,https://doi.org/10.5194/se-13-1-2022, 2022
Short summary

Cited articles

Aldiss, D. T., Black, M. G., Entwisle, D. C., Page, D. P., and Terrington, R. L.: Benefits of a 3-D geological model for major tunnelling works: an example from Farringdon, east-central London, UK, Q. J. Eng. Geol. Hydroge., 45, 405–414, https://doi.org/10.1144/qjegh2011-066, 2012.
Allmendinger, R. W., Siron, C. R., and Scott, C. P.: Structural data collection with mobile devices: Accuracy, redundancy, and best practices, J. Struct. Geol., 102, 98–112, 2017.
Aug, C.: Modelisation geologique 3-D et caracterisation des incertitudes par la methode du champ de potentiel, PhD, Ecole des Mines de Paris, Paris, 220 pp., 2004.
Aug, C., Chilès, J.-P., Courrioux, G., and Lajaunie, C.: 3-D geological modelling and uncertainty: The potential-field method, in: Geostatistics Banff 2004, Springer, 145–154, 2005.
Bagchi, P.: Bayesian analysis of directional data, University of Toronto, Ottawa, Ont: National Library of Canada, 1987.
Download
Short summary
MCUE is a method that produces probabilistic 3-D geological models by sampling from distributions that represent the uncertainty of the initial input dataset. This process generates numerous plausible datasets used to produce a range of statistically plausible 3-D models which are combined into a single probabilistic model. In this paper, improvements to distribution selection and parameterization for input uncertainty are proposed.