Articles | Volume 9, issue 3
https://doi.org/10.5194/se-9-649-2018
https://doi.org/10.5194/se-9-649-2018
Research article
 | 
16 May 2018
Research article |  | 16 May 2018

Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography

Anthony Osei Tutu, Bernhard Steinberger, Stephan V. Sobolev, Irina Rogozhina, and Anton A. Popov

Related authors

Regional mantle viscosity constraints for North America reveal upper mantle strength differences across the continent
Anthony Osei Tutu and Christopher Harig
Solid Earth Discuss., https://doi.org/10.5194/se-2021-151,https://doi.org/10.5194/se-2021-151, 2022
Manuscript not accepted for further review
Short summary

Related subject area

Geodynamics
How a volcanic arc influences back-arc extension: insight from 2D numerical models
Duo Zhang and J. Huw Davies
Solid Earth, 15, 1113–1132, https://doi.org/10.5194/se-15-1113-2024,https://doi.org/10.5194/se-15-1113-2024, 2024
Short summary
Quantifying mantle mixing through configurational entropy
Erik van der Wiel, Cedric Thieulot, and Douwe J. J. van Hinsbergen
Solid Earth, 15, 861–875, https://doi.org/10.5194/se-15-861-2024,https://doi.org/10.5194/se-15-861-2024, 2024
Short summary
Various lithospheric deformation patterns derived from rheological contrasts between continental terranes: insights from 2-D numerical simulations
Renxian Xie, Lin Chen, Jason P. Morgan, and Yongshun John Chen
Solid Earth, 15, 789–806, https://doi.org/10.5194/se-15-789-2024,https://doi.org/10.5194/se-15-789-2024, 2024
Short summary
Magmatic underplating associated with Proterozoic basin formation: insights from gravity study over the southern margin of the Bundelkhand Craton, India
Ananya Parthapradip Mukherjee and Animesh Mandal
Solid Earth, 15, 711–729, https://doi.org/10.5194/se-15-711-2024,https://doi.org/10.5194/se-15-711-2024, 2024
Short summary
On the impact of true polar wander on heat flux patterns at the core–mantle boundary
Thomas Frasson, Stéphane Labrosse, Henri-Claude Nataf, Nicolas Coltice, and Nicolas Flament
Solid Earth, 15, 617–637, https://doi.org/10.5194/se-15-617-2024,https://doi.org/10.5194/se-15-617-2024, 2024
Short summary

Cited articles

Artemieva, I.: Global 1°  ×  1° thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution, Tectonophysics, 416, 245–277, 2006.
Becker, T. W.: On the effect of temperature and strain-rate dependent viscosity on global mantle flow, net rotation, and plate-driving forces, Geophys. J. Int., 167, 943–957, 2006.
Becker, T. W. and Boschi, L.: A comparison of tomographic and geodynamic mantle models, Geochem. Geophy. Geosy., 3, 1003, https://doi.org/10.1029/2001GC000168, 2002.
Becker, T. W., Faccenna, C., Humphreys, E. D., Lowry, A. R., and Miller, M. S.: Static and dynamic support of western United States topography, Earth Planet. Sc. Lett., 402, 234–246, 2014.
Bird, P.: An updated digital model of plate boundaries, Geochem. Geophy. Geosy., 4, 1027, https://doi.org/10.1029/2001GC000252, 2003.
Download
Short summary
The Earth's surface is characterized by numerous geological processes, formed throughout the Earth's history to present day. The interior (mantle), on which plates rest, undergoes convection motion, generating stresses in the lithosphere plate and also causing the plate motion. This study shows that shallow density heterogeneities in the upper 300 km have a limited influence on the modeled horizontal stress field as opposed to the resulting topography, giving the importance depth sampling.