Articles | Volume 12, issue 6
Solid Earth, 12, 1309–1334, 2021
https://doi.org/10.5194/se-12-1309-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: New insights into the tectonic evolution of the Alps and the...
Research article 15 Jun 2021
Research article | 15 Jun 2021
Neogene kinematics of the Giudicarie Belt and eastern Southern Alpine orogenic front (northern Italy)
Vincent F. Verwater et al.
Related authors
No articles found.
Marcel Paffrath, Wolfgang Friederich, Stefan M. Schmid, Mark R. Handy, and the AlpArray and AlpArray-Swath D Working Group
Solid Earth, 12, 2671–2702, https://doi.org/10.5194/se-12-2671-2021, https://doi.org/10.5194/se-12-2671-2021, 2021
Short summary
Short summary
The Alpine mountain belt was formed by the collision of the Eurasian and African plates in the geological past, during which parts of the colliding plates sank into the earth's mantle. Using seismological data from distant earthquakes recorded by the AlpArray Seismic Network, we have derived an image of the current location of these subducted parts in the earth's mantle. Their quantity and spatial distribution is key information needed to understand how the Alpine orogen was formed.
Mark R. Handy, Stefan M. Schmid, Marcel Paffrath, Wolfgang Friederich, and the AlpArray Working Group
Solid Earth, 12, 2633–2669, https://doi.org/10.5194/se-12-2633-2021, https://doi.org/10.5194/se-12-2633-2021, 2021
Short summary
Short summary
New images from the multi-national AlpArray experiment illuminate the Alps from below. They indicate thick European mantle descending beneath the Alps and forming blobs that are mostly detached from the Alps above. In contrast, the Adriatic mantle in the Alps is much thinner. This difference helps explain the rugged mountains and the abundance of subducted and exhumed units at the core of the Alps. The blobs are stretched remnants of old ocean and its margins that reach down to at least 410 km.
Elena T. Bruni, Richard F. Ott, Vincenzo Picotti, Negar Haghipour, Karl W. Wegmann, and Sean F. Gallen
Earth Surf. Dynam., 9, 771–793, https://doi.org/10.5194/esurf-9-771-2021, https://doi.org/10.5194/esurf-9-771-2021, 2021
Short summary
Short summary
The Klados River catchment contains seemingly overlarge, well-preserved alluvial terraces and fans. Unlike previous studies, we argue that the deposits formed in the Holocene based on their position relative to a paleoshoreline uplifted in 365 CE and seven radiocarbon dates. We also find that constant sediment supply from high-lying landslide deposits disconnected the valley from regional tectonics and climate controls, which resulted in fan and terrace formation guided by stochastic events.
Azam Jozi Najafabadi, Christian Haberland, Trond Ryberg, Vincent F. Verwater, Eline Le Breton, Mark R. Handy, Michael Weber, and the AlpArray and AlpArray SWATH-D working groups
Solid Earth, 12, 1087–1109, https://doi.org/10.5194/se-12-1087-2021, https://doi.org/10.5194/se-12-1087-2021, 2021
Short summary
Short summary
This study achieved high-precision hypocenters of 335 earthquakes (1–4.2 ML) and 1D velocity models of the Southern and Eastern Alps. The general pattern of seismicity reflects head-on convergence of the Adriatic Indenter with the Alpine orogenic crust. The relatively deeper seismicity in the eastern Southern Alps and Giudicarie Belt indicates southward propagation of the Southern Alpine deformation front. The derived hypocenters form excellent data for further seismological studies, e.g., LET.
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Short summary
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic, opened as an arm of the central Atlantic. Using plate reconstructions and geodynamic modeling, we show that the ocean reached only 250 km width between Europe and Adria. Moreover, at least 65 % of the lithosphere subducted into the mantle and/or incorporated into the Alps during convergence in Cretaceous and Cenozoic times comprised highly thinned continental crust, while only 35 % was truly oceanic.
Ángela María Gómez-García, Eline Le Breton, Magdalena Scheck-Wenderoth, Gaspar Monsalve, and Denis Anikiev
Solid Earth, 12, 275–298, https://doi.org/10.5194/se-12-275-2021, https://doi.org/10.5194/se-12-275-2021, 2021
Short summary
Short summary
The Earth’s crust beneath the Caribbean Sea formed at about 90 Ma due to large magmatic activity of a mantle plume, which brought molten material up from the deep Earth. By integrating diverse geophysical datasets, we image for the first time two fossil magmatic conduits beneath the Caribbean. The location of these conduits at 90 Ma does not correspond with the present-day Galápagos plume. Either this mantle plume migrated in time or these conduits were formed above another unknown plume.
Lydia R. Bailey, Filippo L. Schenker, Maria Giuditta Fellin, Miriam Cobianchi, Thierry Adatte, and Vincenzo Picotti
Solid Earth, 11, 2463–2485, https://doi.org/10.5194/se-11-2463-2020, https://doi.org/10.5194/se-11-2463-2020, 2020
Short summary
Short summary
The Kallipetra Basin, formed in the Late Cretaceous on the reworked Pelagonian–Axios–Vardar contact in the Hellenides, is described for the first time. We document how and when the basin evolved in response to tectonic forcings and basin inversion. Cenomanian extension and basin widening was followed by Turonian compression and basin inversion. Thrusting occurred earlier than previously reported in the literature, with a vergence to the NE, at odds with the regional SW vergence of the margin.
Ehsan Qorbani, Dimitri Zigone, Mark R. Handy, Götz Bokelmann, and AlpArray-EASI working group
Solid Earth, 11, 1947–1968, https://doi.org/10.5194/se-11-1947-2020, https://doi.org/10.5194/se-11-1947-2020, 2020
Short summary
Short summary
The crustal structure of the Eastern and Southern Alps is complex. Although several seismological studies have targeted the crust, the velocity structure under this area is still not fully understood. Here we study the crustal velocity structure using seismic ambient noise tomography. Our high-resolution models image several velocity anomalies and contrasts and reveal details of the crustal structure. We discuss our new models of the crust with respect to the geologic and tectonic features.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, rock physics, experimental deformation | Discipline: Structural geology
Biotite supports long-range diffusive transport in dissolution–precipitation creep in halite through small porosity fluctuations
De-risking the energy transition by quantifying the uncertainties in fault stability
Virtual field trip to the Esla Nappe (Cantabrian Zone, NW Spain): delivering traditional geological mapping skills remotely using real data
Marine forearc structure of eastern Java and its role in the 1994 Java tsunami earthquake
Roughness of fracture surfaces in numerical models and laboratory experiments
Impact of basement thrust faults on low-angle normal faults and rift basin evolution: a case study in the Enping sag, Pearl River Basin
Evidence for and significance of the Late Cretaceous Asteroussia event in the Gondwanan Ios basement terranes
Investigating spatial heterogeneity within fracture networks using hierarchical clustering and graph distance metrics
Dating folding beyond folding, from layer-parallel shortening to fold tightening, using mesostructures: lessons from the Apennines, Pyrenees, and Rocky Mountains
Deformation-enhanced diagenesis and bacterial proliferation in the Nankai accretionary prism
Rheological stratification in impure rock salt during long-term creep: morphology, microstructure, and numerical models of multilayer folds in the Ocnele Mari salt mine, Romania
Multi-disciplinary characterizations of the Bedretto Lab – a unique underground geoscience research facility
Geodynamic and seismotectonic model of a long-lived transverse structure: The Schio-Vicenza Fault System (NE Italy)
Variscan structures and their control on latest to post-Variscan basin architecture; insights from the westernmost Bohemian Massif and SE Germany
Fault interpretation uncertainties using seismic data, and the effects on fault seal analysis: a case study from the Horda Platform, with implications for CO2 storage
Reply to Norini and Groppelli's comment on “Estimating the depth and evolution of intrusions at resurgent calderas: Los Humeros (Mexico)” by Urbani et al. (2020)
Emplacement of “exotic” Zechstein slivers along the inverted Sontra Graben (northern Hessen, Germany): clues from balanced cross sections and geometrical forward modeling
Kinematics of subduction in the Ibero-Armorican arc constrained by 3D microstructural analysis of garnet and pseudomorphed lawsonite porphyroblasts from Île de Groix (Variscan belt)
Frictional properties and microstructural evolution of dry and wet calcite–dolomite gouges
Experimental evidence that viscous shear zones generate periodic pore sheets
Influence of inherited structural domains and their particular strain distributions on the Roer Valley graben evolution from inversion to extension
The Piuquencillo fault system: a long-lived, Andean-transverse fault system and its relationship with magmatic and hydrothermal activity
Extensional reactivation of the Penninic frontal thrust 3 Myr ago as evidenced by U–Pb dating on calcite in fault zone cataclasite
Distribution, microphysical properties, and tectonic controls of deformation bands in the Miocene subduction wedge (Whakataki Formation) of the Hikurangi subduction zone
Analysis of deformation bands associated with the Trachyte Mesa intrusion, Henry Mountains, Utah: implications for reservoir connectivity and fluid flow around sill intrusions
Characterization of discontinuities in potential reservoir rocks for geothermal applications in the Rhine-Ruhr metropolitan area (Germany)
On a new robust workflow for the statistical and spatial analysis of fracture data collected with scanlines (or the importance of stationarity)
Micro- and nano-porosity of the active Alpine Fault zone, New Zealand
Unraveling the origins and P-T-t evolution of the allochthonous Sobrado unit (Órdenes Complex, NW Spain) using combined U–Pb titanite, monazite and zircon geochronology and rare-earth element (REE) geochemistry
Fracture attribute scaling and connectivity in the Devonian Orcadian Basin with implications for geologically equivalent sub-surface fractured reservoirs
Structural control on fluid flow and shallow diagenesis: insights from calcite cementation along deformation bands in porous sandstones
The growth of faults and fracture networks in a mechanically evolving, mechanically stratified rock mass: a case study from Spireslack Surface Coal Mine, Scotland
Relationship between microstructures and resistance in mafic assemblages that deform and transform
Multiphase, decoupled faulting in the southern German Molasse Basin – evidence from 3-D seismic data
Near-surface Palaeocene fluid flow, mineralisation and faulting at Flamborough Head, UK: new field observations and U–Pb calcite dating constraints
Geologic characterization of nonconformities using outcrop and core analogs: hydrologic implications for injection-induced seismicity
Mapping the fracture network in the Lilstock pavement, Bristol Channel, UK: manual versus automatic
Precambrian faulting episodes and insights into the tectonothermal history of north Australia: microstructural evidence and K–Ar, 40Ar–39Ar, and Rb–Sr dating of syntectonic illite from the intracratonic Millungera Basin
Transverse jointing in foreland fold-and-thrust belts: a remote sensing analysis in the eastern Pyrenees
Pre-inversion normal fault geometry controls inversion style and magnitude, Farsund Basin, offshore southern Norway
Uncertainty assessment for 3D geologic modeling of fault zones based on geologic inputs and prior knowledge
Control of pre-existing fabric in fracture formation, reactivation and vein emplacement under variable fluid pressure conditions: an example from Archean greenstone belt, India
Extension and inversion of salt-bearing rift systems
Structure and kinematics of an extensional growth fold, Hadahid Fault System, Suez Rift, Egypt
Throw variations and strain partitioning associated with fault-bend folding along normal faults
Resolved stress analysis, failure mode, and fault-controlled fluid conduits
An active tectonic field for CO2 storage management: the Hontomín onshore case study (Spain)
Evolution of structures and hydrothermal alteration in a Palaeoproterozoic supracrustal belt: Constraining paired deformation–fluid flow events in an Fe and Cu–Au prospective terrain in northern Sweden
Estimating the depth and evolution of intrusions at resurgent calderas: Los Humeros (Mexico)
Abutting faults: a case study of the evolution of strain at Courthouse branch point, Moab Fault, Utah
Berit Schwichtenberg, Florian Fusseis, Ian B. Butler, and Edward Andò
Solid Earth, 13, 41–64, https://doi.org/10.5194/se-13-41-2022, https://doi.org/10.5194/se-13-41-2022, 2022
Short summary
Short summary
Hydraulic rock properties such as porosity and permeability are relevant factors that have an impact on groundwater resources, geological repositories and fossil fuel reservoirs. We investigate the influence of chemical compaction upon the porosity evolution in salt–biotite mixtures and related transport length scales by conducting laboratory experiments in combination with 4-D analysis. Our observations invite a renewed discussion of the effect of sheet silicates on chemical compaction.
David Healy and Stephen Paul Hicks
Solid Earth, 13, 15–39, https://doi.org/10.5194/se-13-15-2022, https://doi.org/10.5194/se-13-15-2022, 2022
Short summary
Short summary
The energy transition requires operations in faulted rocks. To manage the technical challenges and public concern over possible induced earthquakes, we need to quantify the risks. We calculate the probability of fault slip based on uncertain inputs, stresses, fluid pressures, and the mechanical properties of rocks in fault zones. Our examples highlight the specific gaps in our knowledge. Citizen science projects could produce useful data and include the public in the discussions about hazards.
Manuel I. de Paz-Álvarez, Thomas G. Blenkinsop, David M. Buchs, George E. Gibbons, and Lesley Cherns
Solid Earth, 13, 1–14, https://doi.org/10.5194/se-13-1-2022, https://doi.org/10.5194/se-13-1-2022, 2022
Short summary
Short summary
We describe a virtual geological mapping course implemented in response to travelling and social restrictions derived from the ongoing COVID-19 pandemic. The course was designed to replicate a physical mapping exercise as closely as possible with the aid of real field data and photographs collected by the authors during previous years in the Cantabrian Zone (NW Spain). The course is delivered through Google Earth via a KMZ file with outcrop descriptions and links to GitHub-hosted photographs.
Yueyang Xia, Jacob Geersen, Dirk Klaeschen, Bo Ma, Dietrich Lange, Michael Riedel, Michael Schnabel, and Heidrun Kopp
Solid Earth, 12, 2467–2477, https://doi.org/10.5194/se-12-2467-2021, https://doi.org/10.5194/se-12-2467-2021, 2021
Short summary
Short summary
The 2 June 1994 Java tsunami earthquake ruptured in a seismically quiet subduction zone and generated a larger-than-expected tsunami. Here, we re-process a seismic line across the rupture area. We show that a subducting seamount is located up-dip of the mainshock in a region that did not rupture during the earthquake. Seamount subduction modulates the topography of the marine forearc and acts as a seismic barrier in the 1994 earthquake rupture.
Steffen Abe and Hagen Deckert
Solid Earth, 12, 2407–2424, https://doi.org/10.5194/se-12-2407-2021, https://doi.org/10.5194/se-12-2407-2021, 2021
Short summary
Short summary
We use numerical simulations and laboratory experiments on rock samples to investigate how stress conditions influence the geometry and roughness of fracture surfaces. The roughness of the surfaces was analyzed in terms of absolute roughness and scaling properties. The results show that the surfaces are self-affine but with different scaling properties between the numerical models and the real rock samples. Results suggest that stress conditions have little influence on the surface roughness.
Chao Deng, Rixiang Zhu, Jianhui Han, Yu Shu, Yuxiang Wu, Kefeng Hou, and Wei Long
Solid Earth, 12, 2327–2350, https://doi.org/10.5194/se-12-2327-2021, https://doi.org/10.5194/se-12-2327-2021, 2021
Short summary
Short summary
This study uses seismic reflection data to interpret the geometric relationship and evolution of intra-basement and rift-related structures in the Enping sag in the northern South China Sea. Our observations suggest the primary control of pre-existing thrust faults is the formation of low-angle normal faults, with possible help from low-friction materials, and the significant role of pre-existing basement thrust faults in fault geometry, paleotopography, and syn-rift stratigraphy of rift basins.
Sonia Yeung, Marnie Forster, Emmanuel Skourtsos, and Gordon Lister
Solid Earth, 12, 2255–2275, https://doi.org/10.5194/se-12-2255-2021, https://doi.org/10.5194/se-12-2255-2021, 2021
Short summary
Short summary
We do not know when the ancient Tethys Ocean lithosphere began to founder, but one clue can be found in subduction accreted tectonic slices, including Gondwanan basement terranes on the island of Ios, Cyclades, Greece. We propose a 250–300 km southwards jump of the subduction megathrust with a period of flat-slab subduction followed by slab break-off. The initiation and its subsequent rollback of a new subduction zone would explain the onset of Oligo–Miocene extension and accompanying magmatism.
Rahul Prabhakaran, Giovanni Bertotti, Janos Urai, and David Smeulders
Solid Earth, 12, 2159–2209, https://doi.org/10.5194/se-12-2159-2021, https://doi.org/10.5194/se-12-2159-2021, 2021
Short summary
Short summary
Rock fractures are organized as networks with spatially varying arrangements. Due to networks' influence on bulk rock behaviour, it is important to quantify network spatial variation. We utilize an approach where fracture networks are treated as spatial graphs. By combining graph similarity measures with clustering techniques, spatial clusters within large-scale fracture networks are identified and organized hierarchically. The method is validated on a dataset with nearly 300 000 fractures.
Olivier Lacombe, Nicolas E. Beaudoin, Guilhem Hoareau, Aurélie Labeur, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 12, 2145–2157, https://doi.org/10.5194/se-12-2145-2021, https://doi.org/10.5194/se-12-2145-2021, 2021
Short summary
Short summary
This paper aims to illustrate how the timing and duration of contractional deformation associated with folding in orogenic forelands can be constrained by the dating of brittle mesostructures observed in folded strata. The study combines new and already published absolute ages of fractures to provide, for the first time, an educated discussion about the factors controlling the duration of the sequence of deformation encompassing layer-parallel shortening, fold growth, and late fold tightening.
Vincent Famin, Hugues Raimbourg, Muriel Andreani, and Anne-Marie Boullier
Solid Earth, 12, 2067–2085, https://doi.org/10.5194/se-12-2067-2021, https://doi.org/10.5194/se-12-2067-2021, 2021
Short summary
Short summary
Sediments accumulated in accretionary prisms are deformed by the compression imposed by plate subduction. Here we show that deformation of the sediments transforms some minerals in them. We suggest that these mineral transformations are due to the proliferation of microorganisms boosted by deformation. Deformation-enhanced microbial proliferation may change our view of sedimentary and tectonic processes in subduction zones.
Marta Adamuszek, Dan M. Tămaş, Jessica Barabasch, and Janos L. Urai
Solid Earth, 12, 2041–2065, https://doi.org/10.5194/se-12-2041-2021, https://doi.org/10.5194/se-12-2041-2021, 2021
Short summary
Short summary
We analyse folded multilayer sequences in the Ocnele Mari salt mine (Romania) to gain insight into the long-term rheological behaviour of rock salt. Our results indicate the large role of even a small number of impurities in the rock salt for its effective mechanical behaviour. We demonstrate how the development of folds that occur at various scales can be used to constrain the viscosity ratio in the deformed multilayer sequence.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Löw, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth Discuss., https://doi.org/10.5194/se-2021-109, https://doi.org/10.5194/se-2021-109, 2021
Revised manuscript accepted for SE
Short summary
Short summary
Questions such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with closer, controlled observation can shed some light. To this end, the Bedretto Underground Laboratory for Geosciences and Geoenergies was recently established in a tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Dario Zampieri, Paola Vannoli, and Pierfrancesco Burrato
Solid Earth, 12, 1967–1986, https://doi.org/10.5194/se-12-1967-2021, https://doi.org/10.5194/se-12-1967-2021, 2021
Short summary
Short summary
The long-lived Schio-Vicenza Fault System is a major shear zone cross-cutting the foreland and the thrust belt of the eastern southern Alps. We review 150 years of scientific works and explain its activity and kinematics, characterized by sinistral and dextral transcurrent motion along its southern and northern sections, respectively, by a geodynamic model that has the Adria indenter as the main actor and coherently reconciles the available geological and geophysical evidence collected so far.
Hamed Fazlikhani, Wolfgang Bauer, and Harald Stollhofen
Solid Earth Discuss., https://doi.org/10.5194/se-2021-95, https://doi.org/10.5194/se-2021-95, 2021
Preprint under review for SE
Short summary
Short summary
Interpretation of recently acquired FRANKEN 2D seismic survey in SE Germany show that Upper Paleozoic low-grade metasedimentary rocks are transported by Variscan shear zones to ca. 65 km west of the Franconian Fault System. We show that the location of post-Variscan Upper Carboniferous-Permian normal faults and associated graben and half-graben basins are controlled by the geometry of underlying Variscan shear zones.
Emma A. H. Michie, Mark J. Mulrooney, and Alvar Braathen
Solid Earth, 12, 1259–1286, https://doi.org/10.5194/se-12-1259-2021, https://doi.org/10.5194/se-12-1259-2021, 2021
Short summary
Short summary
Generating an accurate model of the subsurface is crucial when assessing a site for CO2 storage, particularly for a fault-bound storage site that may act as a seal or could reactivate upon CO2 injection. However, we have shown how picking strategy, i.e. line spacing, chosen to create the model significantly influences any subsequent fault analyses but is surprisingly rarely discussed. This analysis has been performed on the Vette Fault bounding the Smeaheia potential CO2 storage site.
Stefano Urbani, Guido Giordano, Federico Lucci, Federico Rossetti, and Gerardo Carrasco-Núñez
Solid Earth, 12, 1111–1124, https://doi.org/10.5194/se-12-1111-2021, https://doi.org/10.5194/se-12-1111-2021, 2021
Short summary
Short summary
Structural studies in active calderas have a key role in the exploration of geothermal systems. We reply in detail to the points raised by the comment of Norini and Groppelli (2020), strengthening the relevance of our structural fieldwork for geothermal exploration and exploitation in active caldera geothermal systems including the Los Humeros caldera.
Jakob Bolz and Jonas Kley
Solid Earth, 12, 1005–1024, https://doi.org/10.5194/se-12-1005-2021, https://doi.org/10.5194/se-12-1005-2021, 2021
Short summary
Short summary
To assess the role smaller graben structures near the southern edge of the Central European Basin System play in the basin’s overall deformational history, we take advantage of a feature found on some of these structures, where slivers from older rock units appear along the graben's main fault, surrounded on both sides by younger strata. The implications for the geometry of the fault provide a substantially improved estimate for the magnitude of normal and thrust motion along the fault system.
Domingo G. A. M. Aerden, Alejandro Ruiz-Fuentes, Mohammad Sayab, and Aidan Forde
Solid Earth, 12, 971–992, https://doi.org/10.5194/se-12-971-2021, https://doi.org/10.5194/se-12-971-2021, 2021
Short summary
Short summary
We studied the geometry of foliations and microfolds preserved within metamorphic garnet crystals using X-ray tomography. The studied rocks are blueschists from Ile de Groix formed during Late Devonian subduction of Gondwana under Armorica. Several sets of differently oriented microfabrics were found recording variations in the direction of subduction. Comparison with similar data for Iberia supports that Iberia rotated only 10–20° during the Cretaceous opening of the North Atlantic.
Matteo Demurtas, Steven A.F. Smith, Elena Spagnuolo, and Giulio Di Toro
Solid Earth, 12, 595–612, https://doi.org/10.5194/se-12-595-2021, https://doi.org/10.5194/se-12-595-2021, 2021
Short summary
Short summary
We performed shear experiments on calcite–dolomite gouge mixtures to better understand the behaviour of carbonates during sub-seismic to seismic deformation in the shallow crust. The development of a foliation in the gouge was only restricted to coseismic sliding, whereas fluidisation occurred over a wide range of slip velocities (sub-seismic to coseismic) in the presence of water. These observations will contribute to a better interpretation of the rock record.
James Gilgannon, Marius Waldvogel, Thomas Poulet, Florian Fusseis, Alfons Berger, Auke Barnhoorn, and Marco Herwegh
Solid Earth, 12, 405–420, https://doi.org/10.5194/se-12-405-2021, https://doi.org/10.5194/se-12-405-2021, 2021
Short summary
Short summary
Using experiments that simulate deep tectonic interfaces, known as viscous shear zones, we found that these zones spontaneously develop periodic sheets of small pores. The presence of porous layers in deep rocks undergoing tectonic deformation is significant because it requires a change to the current model of how the Earth deforms. Emergent porous layers in viscous rocks will focus mineralising fluids and could lead to the seismic failure of rocks that are never supposed to have this occur.
Jef Deckers, Bernd Rombaut, Koen Van Noten, and Kris Vanneste
Solid Earth, 12, 345–361, https://doi.org/10.5194/se-12-345-2021, https://doi.org/10.5194/se-12-345-2021, 2021
Short summary
Short summary
This study shows the presence of two structural domains in the western border fault system of the Roer Valley graben. These domains, dominated by NW–SE-striking faults, displayed distinctly different strain distributions during both Late Cretaceous compression and Cenozoic extension. The southern domain is characterized by narrow, localized faulting, while the northern domain is characterized by wide, distributed faulting. The non-colinear WNW–ESE Grote Brogel fault links both domains.
José Piquer, Orlando Rivera, Gonzalo Yáñez, and Nicolás Oyarzún
Solid Earth, 12, 253–273, https://doi.org/10.5194/se-12-253-2021, https://doi.org/10.5194/se-12-253-2021, 2021
Short summary
Short summary
A proper recognition of deep, long-lived fault systems is very important for society. They can produce potentially dangerous earthquakes. They can also act as pathways for magmas and hydrothermal fluids, leading to the formation of volcanoes, geothermal systems and mineral deposits. However, the manifestations of these very old faults in the present-day surface can be very subtle. Here, we present a detailed, multi-disciplinary study of a fault system of this type in the Andes of central Chile.
Antonin Bilau, Yann Rolland, Stéphane Schwartz, Nicolas Godeau, Abel Guihou, Pierre Deschamps, Benjamin Brigaud, Aurélie Noret, Thierry Dumont, and Cécile Gautheron
Solid Earth, 12, 237–251, https://doi.org/10.5194/se-12-237-2021, https://doi.org/10.5194/se-12-237-2021, 2021
Short summary
Short summary
As a result of the collision between the European and Apulian plates, the Alps have experienced several evolutionary stages. The Penninic frontal thrust (PFT) (major thrust) was associated with compression, and now seismic studies show ongoing extensional activity. Calcite mineralization associated with shortening and extensional structures was sampled. The last deformation stages are dated by U–Pb on calcite at ~ 3.5 and ~ 2.5 Ma. Isotope analysis evidences deep crustal fluid mobilization.
Kathryn E. Elphick, Craig R. Sloss, Klaus Regenauer-Lieb, and Christoph E. Schrank
Solid Earth, 12, 141–170, https://doi.org/10.5194/se-12-141-2021, https://doi.org/10.5194/se-12-141-2021, 2021
Short summary
Short summary
We analysed a sedimentary rock package located in Castlepoint, New Zealand, to test the control of the tectonic setting on the observed deformation structures. In extension and contraction, we observed faults and small fault-like structures characterised by complex spatial patterns and a reduction in porosity and grain size compared with the host rock. With these properties, the structures are likely to act as barriers to fluid flow and cause compartmentalisation of the sedimentary sequence.
Penelope I. R. Wilson, Robert W. Wilson, David J. Sanderson, Ian Jarvis, and Kenneth J. W. McCaffrey
Solid Earth, 12, 95–117, https://doi.org/10.5194/se-12-95-2021, https://doi.org/10.5194/se-12-95-2021, 2021
Short summary
Short summary
Magma accommodation in the shallow crust leads to deformation of the surrounding host rock through the creation of faults, fractures and folds. This deformation will impact fluid flow around intrusive magma bodies (including sills and laccoliths) by changing the porosity and permeability network of the host rock. The results may have important implications for industries where fluid flow within the subsurface adds value (e.g. oil and gas, hydrology, geothermal and carbon sequestration).
Martin Balcewicz, Benedikt Ahrens, Kevin Lippert, and Erik H. Saenger
Solid Earth, 12, 35–58, https://doi.org/10.5194/se-12-35-2021, https://doi.org/10.5194/se-12-35-2021, 2021
Short summary
Short summary
The geothermal potential of a carbonate reservoir in the Rhine-Ruhr area, Germany, was investigated by field and laboratory investigations. The carbonate layer of interest is approx. 150 m thick; located at 4 to 6 km depth; and might extend below Essen, Bochum, and Dortmund. We proposed focusing on discontinuities striking NNW–SSE for geothermal applications, as these are the most common, strike in the direction of the main horizontal stress, and dominate reservoir fluid flow.
Andrea Bistacchi, Silvia Mittempergher, Mattia Martinelli, and Fabrizio Storti
Solid Earth, 11, 2535–2547, https://doi.org/10.5194/se-11-2535-2020, https://doi.org/10.5194/se-11-2535-2020, 2020
Short summary
Short summary
We present an innovative workflow for the statistical analysis of fracture data collected along scanlines. Our methodology is based on performing non-parametric statistical tests, which allow detection of important features of the spatial distribution of fractures, and on the analysis of the cumulative spacing function (CSF) and cumulative spacing derivative (CSD), which allows the boundaries of stationary domains to be defined in an objective way.
Martina Kirilova, Virginia Toy, Katrina Sauer, François Renard, Klaus Gessner, Richard Wirth, Xianghui Xiao, and Risa Matsumura
Solid Earth, 11, 2425–2438, https://doi.org/10.5194/se-11-2425-2020, https://doi.org/10.5194/se-11-2425-2020, 2020
Short summary
Short summary
Processes associated with open pores can change the physical properties of rocks and cause earthquakes. In borehole samples from the Alpine Fault zone, we show that many pores in these rocks were filled by weak materials that can slide easily. The amount of open spaces was thus reduced, and fluids circulating within them built up high pressures. Both weak materials and high pressures within pores reduce the rock strength; thus the state of pores here can trigger the next Alpine Fault earthquake.
José Manuel Benítez-Pérez, Pedro Castiñeiras, Juan Gómez-Barreiro, José R. Martínez Catalán, Andrew Kylander-Clark, and Robert Holdsworth
Solid Earth, 11, 2303–2325, https://doi.org/10.5194/se-11-2303-2020, https://doi.org/10.5194/se-11-2303-2020, 2020
Short summary
Short summary
The Sobrado unit represents an allochthonous tectonic slice of exhumed high-grade metamorphic rocks formed during a complex sequence of orogenic processes in the middle to lower crust. We have combined U–Pb geochronology and REE analyses (LASS-ICP-MS) of accessory minerals in migmatitic paragneiss (monazite, zircon) and mylonitic amphibolites (titanite) to constrain the evolution. A Middle Devonian minimum age for HP metamorphism has been obtained.
Anna M. Dichiarante, Ken J. W. McCaffrey, Robert E. Holdsworth, Tore I. Bjørnarå, and Edward D. Dempsey
Solid Earth, 11, 2221–2244, https://doi.org/10.5194/se-11-2221-2020, https://doi.org/10.5194/se-11-2221-2020, 2020
Short summary
Short summary
We studied the characteristics of fracture systems in the Devonian rocks of the Orcadian Basin in Caithness. These mineral-filled fractures have properties that may be used to predict the size and spatial arrangement of similar structures in offshore basins. This includes the Clair field in the Faroe–Shetland Basin.
Leonardo Del Sole, Marco Antonellini, Roger Soliva, Gregory Ballas, Fabrizio Balsamo, and Giulio Viola
Solid Earth, 11, 2169–2195, https://doi.org/10.5194/se-11-2169-2020, https://doi.org/10.5194/se-11-2169-2020, 2020
Short summary
Short summary
This study focuses on the impact of deformation bands on fluid flow and diagenesis in porous sandstones in two different case studies (northern Apennines, Italy; Provence, France) by combining a variety of multiscalar mapping techniques, detailed field and microstructural observations, and stable isotope analysis. We show that deformation bands buffer and compartmentalize fluid flow and foster and localize diagenesis, recorded by carbonate cement nodules spatially associated with the bands.
Billy James Andrews, Zoe Kai Shipton, Richard Lord, and Lucy McKay
Solid Earth, 11, 2119–2140, https://doi.org/10.5194/se-11-2119-2020, https://doi.org/10.5194/se-11-2119-2020, 2020
Short summary
Short summary
Through geological mapping we find that fault zone internal structure depends on whether or not the fault cuts multiple lithologies, the presence of shale layers, and the orientation of joints and coal cleats at the time of faulting. During faulting, cementation of fractures (i.e. vein formation) is highest where the fractures are most connected. This leads to the counter-intuitive result that the highest-fracture-density part of the network often has the lowest open-fracture connectivity.
Nicolas Mansard, Holger Stünitz, Hugues Raimbourg, Jacques Précigout, Alexis Plunder, and Lucille Nègre
Solid Earth, 11, 2141–2167, https://doi.org/10.5194/se-11-2141-2020, https://doi.org/10.5194/se-11-2141-2020, 2020
Short summary
Short summary
Our rock deformation experiments (solid-medium Griggs-type apparatus) on wet assemblages of mafic compositions show that the ability of minerals to react controls the portions of rocks that deform and that minor chemical and mineralogical variations can considerably modify the strength of deformed assemblages. Our study suggests that the rheology of mafic rocks, which constitute a large part of the oceanic crust, cannot be summarized as being rheologically controlled by monophase materials.
Vladimir Shipilin, David C. Tanner, Hartwig von Hartmann, and Inga Moeck
Solid Earth, 11, 2097–2117, https://doi.org/10.5194/se-11-2097-2020, https://doi.org/10.5194/se-11-2097-2020, 2020
Short summary
Short summary
In our work, we carry out an in-depth structural analysis of a geometrically decoupled fault system in the southern German Molasse Basin using a high-resolution 3-D seismic dataset. Based on this analysis, we reconstruct the tectonic history and changes in the stress regimes to explain the structure and evolution of faults. The results contribute in understanding the driving mechanisms behind formation, propagation, and reactivation of faults during foreland basin formation.
Nick M. W. Roberts, Jack K. Lee, Robert E. Holdsworth, Christopher Jeans, Andrew R. Farrant, and Richard Haslam
Solid Earth, 11, 1931–1945, https://doi.org/10.5194/se-11-1931-2020, https://doi.org/10.5194/se-11-1931-2020, 2020
Short summary
Short summary
We characterise a well-known fractured and faulted exposure of Cretaceous chalk in NE England, combining field observations with novel U–Pb calcite dating. We show that the faulting and associated fluid flow occurred during the interval of ca. 64–56 Ma, predating earlier estimates of Alpine-related tectonic inversion. We demonstrate that the main extensional fault zone acted as a conduit linking voluminous fluid flow and linking deeper sedimentary layers with the shallow subsurface.
Elizabeth S. Petrie, Kelly K. Bradbury, Laura Cuccio, Kayla Smith, James P. Evans, John P. Ortiz, Kellie Kerner, Mark Person, and Peter Mozley
Solid Earth, 11, 1803–1821, https://doi.org/10.5194/se-11-1803-2020, https://doi.org/10.5194/se-11-1803-2020, 2020
Short summary
Short summary
A summary of observed rock properties across the contact between crystalline basement rock and the overlying younger sedimentary rocks from outcrop and core samples is presented. The data span a range of tectonic settings and describe the rock types immediately adjacent to the contact. The range of features observed at these contacts can influence the migration of fluids. The observations presented here are critical for the safe implementation of fluid injection and geothermal production.
Christopher Weismüller, Rahul Prabhakaran, Martijn Passchier, Janos L. Urai, Giovanni Bertotti, and Klaus Reicherter
Solid Earth, 11, 1773–1802, https://doi.org/10.5194/se-11-1773-2020, https://doi.org/10.5194/se-11-1773-2020, 2020
Short summary
Short summary
We photographed a fractured limestone pavement with a drone to compare manual and automatic fracture tracing and analyze the evolution and spatial variation of the fracture network in high resolution. We show that automated tools can produce results comparable to manual tracing in shorter time but do not yet allow the interpretation of fracture generations. This work pioneers the automatic fracture mapping of a complete outcrop in detail, and the results can be used as fracture benchmark.
I. Tonguç Uysal, Claudio Delle Piane, Andrew James Todd, and Horst Zwingmann
Solid Earth, 11, 1653–1679, https://doi.org/10.5194/se-11-1653-2020, https://doi.org/10.5194/se-11-1653-2020, 2020
Short summary
Short summary
This study represents an integrated approach to radiometric age dating using potassium-bearing clay minerals formed during faulting and provides insights into the enigmatic time–space distribution of Precambrian tectonic zones in north-central Australia. Specifically, our work firmly indicates a late Mesoproterzoic minimum age for the Millungera Basin in north Australia and a previously unrecorded concealed late Mesoproterozoic–early Neoproterozoic tectonic event in north-central Australia.
Stefano Tavani, Pablo Granado, Amerigo Corradetti, Thomas Seers, Josep Maria Casas, and Josep Anton Muñoz
Solid Earth, 11, 1643–1651, https://doi.org/10.5194/se-11-1643-2020, https://doi.org/10.5194/se-11-1643-2020, 2020
Short summary
Short summary
Using orthophotos, we manually digitized 30 000 joints in the eastern Ebro Basin of the Pyrenees. Joints are perpendicular to the belt in the frontal portion of the belt and in the inner and central portion of the foredeep basin. Joint orientations in the external portion of the foredeep become less clustered. Joints in the studied area formed in the foredeep in response to foredeep-parallel stretching, which becomes progressively less intense within the external portion of the foredeep basin.
Thomas B. Phillips, Christopher A.-L. Jackson, and James R. Norcliffe
Solid Earth, 11, 1489–1510, https://doi.org/10.5194/se-11-1489-2020, https://doi.org/10.5194/se-11-1489-2020, 2020
Short summary
Short summary
Normal faults often reactivate under compression, in a process called inversion. The 3D geometry of these structures (and the effect on resultant inversion structural style) is often not considered. Using seismic reflection data, we examine how stresses form different inversion styles that are controlled by the geometry of the pre-existing structure. Geometrically simple faults are preferentially reactivated; more complex areas are typically not reactivated and instead experience bulk uplift.
Ashton Krajnovich, Wendy Zhou, and Marte Gutierrez
Solid Earth, 11, 1457–1474, https://doi.org/10.5194/se-11-1457-2020, https://doi.org/10.5194/se-11-1457-2020, 2020
Short summary
Short summary
In this paper, a novel methodology of 3D geologic model uncertainty assessment that considers both input data and prior knowledge is developed and applied to characterize fault zones – areas of damaged rock surrounding a fault surface that are important to subsurface engineering projects. The results of the study demonstrate how existing frameworks can be expanded to incorporate new types of information to arrive at a realistic and straightforward model of fault zone geometry in the subsurface.
Sreyashi Bhowmick and Tridib Kumar Mondal
Solid Earth, 11, 1227–1246, https://doi.org/10.5194/se-11-1227-2020, https://doi.org/10.5194/se-11-1227-2020, 2020
Short summary
Short summary
We explore pre-existing fabric in metabasalts replete with a wide range of crisscross fractures/faults, hosting quartz veins of variable orientations and thicknesses in the Chitradurga region, India. The fractures are identified as components of a riedel shear system. We evaluate reactivation potential of fractures and conclude that episodic changes in fluid pressure conditions triggered fault-valve action, thereby reactivating fabric and fractures, leading to vein emplacement in the region.
Tim P. Dooley and Michael R. Hudec
Solid Earth, 11, 1187–1204, https://doi.org/10.5194/se-11-1187-2020, https://doi.org/10.5194/se-11-1187-2020, 2020
Short summary
Short summary
Sandbox models investigated extension and inversion of salt-bearing rifts such as those found in the Moroccan High Atlas, North Africa. Sand packs were stretched and the structural lows were filled with a salt analog. Models were then subjected to additional extension and loading that remobilized the salt into diapirs. During shortening the distribution of the salt in the overburden governed the structural styles and trends in the supra-salt strata, strongly decoupled from subsalt deformation.
Christopher A.-L. Jackson, Paul S. Whipp, Robert L. Gawthorpe, and Matthew M. Lewis
Solid Earth, 11, 1027–1051, https://doi.org/10.5194/se-11-1027-2020, https://doi.org/10.5194/se-11-1027-2020, 2020
Short summary
Short summary
Plate tectonics describes the creation, motion, and ultimate destruction of the Earth's continents and oceans. A key plate tectonic process is continental extension; this occurs when the Earth's plates are pulled apart to ultimately form a new ocean. Giant fractures (faults) accommodate plate stretching, although buckling (folding) is thought to be locally important. We use field data to understand how fracturing and buckling relate to each other, demonstrating they are spatially complex.
Efstratios Delogkos, Muhammad Mudasar Saqab, John J. Walsh, Vincent Roche, and Conrad Childs
Solid Earth, 11, 935–945, https://doi.org/10.5194/se-11-935-2020, https://doi.org/10.5194/se-11-935-2020, 2020
Short summary
Short summary
Normal faults have irregular geometries on a range of scales. A quantitative model has been presented which illustrates the range of deformation arising from movement on fault surface irregularities, with fault-bend folding generating geometries reminiscent of normal drag and reverse drag. We show that fault throw can be subject to errors of up to ca. 50 % for realistic fault bend geometries (up to ca. 40°), even on otherwise sub-planar faults with constant displacement.
David A. Ferrill, Kevin J. Smart, and Alan P. Morris
Solid Earth, 11, 899–908, https://doi.org/10.5194/se-11-899-2020, https://doi.org/10.5194/se-11-899-2020, 2020
Short summary
Short summary
This paper explores failure modes and deformation behavior of faults in the mechanically layered Eagle Ford Formation, an ultra-low permeability self-sourced oil and gas reservoir and aquitard in southwest Texas, USA. The role of dilation versus slip relates in predictable ways to mechanical stratigraphy, stress field, and dilation and slip tendency. We conclude that dilation tendency vs. slip tendency can be used to infer fault and fracture deformation modes and conduit versus seal behaviour.
Raúl Pérez-López, José F. Mediato, Miguel A. Rodríguez-Pascua, Jorge L. Giner-Robles, Adrià Ramos, Silvia Martín-Velázquez, Roberto Martínez-Orío, and Paula Fernández-Canteli
Solid Earth, 11, 719–739, https://doi.org/10.5194/se-11-719-2020, https://doi.org/10.5194/se-11-719-2020, 2020
Short summary
Short summary
Long-term monitoring of CO2 of onshore storage has to consider thousands of years as a medium lifetime of the storage. In this wide time interval, the stress and strain properties of the reservoir change and earthquakes could occur. Therefore, we have to identify those fault sets which can be reactivated by changing the stress conditions. We need to know the role of active fault sets and model the changing conditions to prevent induced seismicity.
Joel B. H. Andersson, Tobias E. Bauer, and Edward P. Lynch
Solid Earth, 11, 547–578, https://doi.org/10.5194/se-11-547-2020, https://doi.org/10.5194/se-11-547-2020, 2020
Short summary
Short summary
In this field-based study, geological structures and hydrothermal alterations in one of the least known geological terrains in Sweden are investigated. The area is located above the polar circle in northwestern Sweden that produces a significant portion of the iron and copper in the EU. A new tectonic model based on field evidence and microstructures is presented and it is shown that minerals typical for iron and copper–gold deposits can be linked to different phases of the structural evolution.
Stefano Urbani, Guido Giordano, Federico Lucci, Federico Rossetti, Valerio Acocella, and Gerardo Carrasco-Núñez
Solid Earth, 11, 527–545, https://doi.org/10.5194/se-11-527-2020, https://doi.org/10.5194/se-11-527-2020, 2020
Short summary
Short summary
In Los Humeros, through field structural–geological mapping and analogue experiments, we show a discontinuous and small-scale (areal size
~ 1 km2) uplift of the caldera floor due to the emplacement of multiple shallow (< 1 km) magmatic bodies. These results allow for a better assessment of the subsurface structure of Los Humeros, with crucial implications for planning future geothermal exploration, which should account for the local geothermal gradient affected by such a shallow heat source.
Heijn van Gent and Janos L. Urai
Solid Earth, 11, 513–526, https://doi.org/10.5194/se-11-513-2020, https://doi.org/10.5194/se-11-513-2020, 2020
Short summary
Short summary
Faults form due to stresses caused by crustal processes. As faults influence the stress field locally, fault interaction leads to local variations in the stress field, but this is difficult to observe directly.
We describe an outcrop of one fault abuting into another one. By careful measurement of structures in the overlapping deformation zones and separating them using published relative age data, we show a rotation in the local stress field resulting from the faults growing to each other
Cited articles
Anderlini, L., Serpelloni, E., Tolomei, C., De Martini, P. M., Pezzo, G., Gualandi, A., and Spada, G.: New insights into active tectonics and seismogenic potential of the Italian Southern Alps from vertical geodetic velocities, Solid Earth, 11, 1681–1698, https://doi.org/10.5194/se-11-1681-2020, 2020.
Anselmi, M., Govoni, A., De Gori, P., and Chiarabba, C.: Seismicity and
velocity structures along the south-Alpine thrust front of the Venetian Alps
(NE-Italy), Tectonophysics, 513, 37–48, https://doi.org/10.1016/j.tecto.2011.09.023,
2011.
Avanzini, M., Bargossi, G., Borsato, A., and Selli, L.: Note illustrative
della Carta Geologico d'Italia alla scala 1:50000, Foglio 060, Trento,
Provincia Autonoma di Trento, Provincia Autonoma di Bolzano, Roma, 2010.
Bartolomei, G., Corsi, M., Dal Cin, R., D'Amico, C., Gatto, G., Gatto, P.,
Nardin, M., Rossi, D., Sacerdotti, M., and Semenza, E.: Note illustrative
della Carta Geologico d'Italia, Foglio 21, Trento, Serv. Geol. d'Italia,
Roma, 1969.
Bernoulli, D. and Jenkyns, H.: Alpine, Mediterranean and Central Atlantic
Mesozoic Facies in Relation to the Early Evolution of the Tethys, SEPM Special Publication, 19, https://doi.org/10.2110/pec.74.19.0129, 1974.
Bernoulli, D. and Winkler, W.: Heavy mineral assemblages from Upper
Cretaceous South- and Austroalpine flysch sequences (northern Italy and
southern Switzerland): source terranes and palaeotectonic implications,
Eclogae Geol. Helv., 83, 287–310, 1990.
Bertotti, G., Picotti, V., Bernoulli, D., and Castellarin, A.: From rifting
to drifting: tectonic evolution of the South-Alpine upper crust from the
Triassic to the Early Cretaceous, Sediment. Geol., 86, 53–76, https://doi.org/10.1016/0037-0738(93)90133-P, 1993.
Bosellini, A., Carraro, F., Corsi, M., De Vechi, G., Gatto, G., Malaroda,
R., Sturani, C., Ungaro, S., and Zanettin, B.: Note illustrative della Carta
Geologico d'Italia, Foglio 49, Verona, Serv. Geol. d'Italia, Roma, 1969.
Boyer, S.: Styles of folding within thrust sheets: examples from the
Appalachian and Rocky Mountains of the U.S.A. and Canada, J.
Struct. Geol., 8, 325–339, https://doi.org/10.1016/0191-8141(86)90053-2, 1986.
Brack, P.: Structures in the Southwestern Border of the Adamello Intrusion
(Alpi Bresciane, Italy), Schweiz. Miner. Petrog., 61, 37–50, 1981.
Braga, G., Gatto, G., Gatto, P., Gregnanin, A., Massari, F., Medizza, F., and
Semenza, E.: Note illustrative della Carta Geologico d'Italia, Foglio 22,
Feltre, Serv. Geol. d'Italia, Roma, 1971.
Bressan, G., Ponton, M., Rossi, G., and Urban, S.: Spatial organization of
seismicity and fracture pattern in NE Italy and W Slovenia, J.
Seismol., 20, 511–534, 2016.
Burrato, P., Poli, M., Vannoli, P., Zanferrari, A., Basili, R., and
Galadini, F.: Sources of Mw 5+ earthquakes in northeastern Italy and
western Slovenia: An updated view based on geological and seismological
evidence, Tectonophysics, 453, 157–176, https://doi.org/10.1016/j.tecto.2007.07.009,
2008.
Caputo, R., Poli, M., and Zanferrari, A.: Neogene–Quaternary tectonic
stratigraphy of the eastern Southern Alps, NE Italy, J. Struct.
Geol., 32, 1009–1027, https://doi.org/10.1016/j.jsg.2010.06.004, 2010.
Castellarin, A. and Cantelli, L.: Neo-Alpine evolution of the Southern
Eastern Alps, J. Geodyn., 30, 251–274, https://doi.org/10.1016/S0264-3707(99)00036-8, 2000.
Castellarin, A. and Vai, G.: Importance of Hercynian tectonics within the
framework of the Southern Alps, J. Struct. Geol., 3, 477–486,
https://doi.org/10.1016/0191-8141(81)90047-X, 1981.
Castellarin, A., Cantelli, L., Fesce, A., Mercier, J., Picotti, V., Pini,
G., Prosser, G., and Selli, L.: Alpine compressional tectonics in the
southern Alps: relationships with the N-Apennines, Annales Tectonicae, 6,
62–94, 1992.
Castellarin, A., Picotti, V., Cantelli, L., Claps, M., Trombetta, L., Selli,
L., Carton, A., Borsato, A., Daminato, F., Nardin, M., Santuliana, E.,
Veronese, L., and Bollettinari, G.: Note illustrative della Carta Geologico
d'Italia alla scala 1:50000, Foglio 080, Riva Del Garda, Provincia Autonoma
di Trento, L.A.C., Firenze, 2005.
Castellarin, A., Nicolich, R., Fantoni, R., Cantelli, L., Sella, M., and
Selli, L.: Structure of the lithosphere beneath the Eastern Alps (southern
sector of the TRANSALP transect), Tectonophysics, 414, 259–282, https://doi.org/10.1016/j.tecto.2005.10.013, 2006a.
Castellarin, A., Vai, G., and Cantelli, L.: The Alpine evolution of the
Southern Alps around the Giudicarie faults: A Late Cretaceous to Early
Eocene transfer zone, Tectonophysics, 414, 203–223, https://doi.org/10.1016/j.tecto.2005.10.019, 2006b.
Dal Piaz, G.: Sull'esistenza del Pliocene marino nel Veneto, Accademia
Scientifica Veneto Istriana, Atti, Vol. 5, 1912.
Dal Piaz, G., Castellarin, A., Martin, S., Selli, L., Carton, A.,
Pellegrini, G., Casolari, E., Daminato, F., Montresor, L., Picotti, V.,
Prosser, G., Santuliana, E., and Cantelli, L.: Note illustrative della Carta
Geologica d'Italia alla scala 1 : 50.000, Foglio 042 Malè, 2007.
Delvaux, D. and Sperner, B.: Stress tensor inversion from fault kinematic
indicators and focal mechanism data: the TENSOR program, Geol. Soc.
Lond. Spec. Publ., 212, 75–100, 2003.
Dewey, J., Helman, M., Knott, S., Turco, E., and Hutton, D.: Kinematics of
the western Mediterranean, Geol. Soc. Lond. Spec. Publ.,
45, 265–283, https://doi.org/10.1144/GSL.SP.1989.045.01.15, 1989.
Doglioni, C.: Thrust tectonics examples from the Venetian Alps, Studi Geol.
Camerti, 117–129, 1990.
Doglioni, C.: The Venetian Alps thrust belt, in: Thrust Tectonics, edited by: McClay, K. R., Springer, Dordrecht, https://doi.org/10.1007/978-94-011-3066-0_29, 1992.
Doglioni, C. and Bosellini, A.: Eoalpine and Mesoalpine tectonics in the
Southern Alps, Geol. Rundsch., 76, 735–754, https://doi.org/10.1007/BF01821061, 1987.
Fantoni, R. and Franciosi, R.: Tectono-sedimentary setting of the Po Plain
and Adriatic Foreland, Rendiconti Lincei-scienze Fisiche E Naturali, 21,
197–209, https://doi.org/10.1007/s12210-010-0102-4, 2010.
Favaro, S., Schuster, R., Handy, M., Scharf, A., and Pestal, G.: Transition
from orogen-perpendicular to orogen-parallel exhumation and cooling during
crustal indentation – Key constraints from 147Sm/144Nd and 87Rb/87Sr
geochronology (Tauern Window, Alps), Tectonophysics, 665, 1–16, https://doi.org/10.1016/j.tecto.2015.08.037, 2015.
Favaro, S., Handy, M., Scharf, A., and Schuster, R.: Changing patterns of
exhumation and denudation in front of an advancing crustal indenter, Tauern
Window (Eastern Alps), Tectonics, 36, 1053–1071, https://doi.org/10.1002/2016TC004448, 2017.
Franceschi, M., Massironi, M., Franceschi, P., and Picotti, V.: Spatial
analysis of thickness variability applied to an Early Jurassic carbonate
platform in the central Southern Alps (Italy): a tool to unravel
syn-sedimentary faulting, Terra Nova, 26, 239–246, https://doi.org/10.1111/ter.12092, 2014.
Frisch, W., Kuhlemann, J., Dunkl, I., and Brügel, A.: Palinspastic
reconstruction and topographic evolution of the Eastern Alps during Late
Tertiary tectonic extrusion, Tectonophysics, 297, 1–15, https://doi.org/10.1016/S0040-1951(98)00160-7, 1998.
Frisch, W., Dunkl, I., and Kuhlemann, J.: Post-collisional orogen-parallel
large-scale extension in the Eastern Alps, Tectonophysics, 327, 239–265,
https://doi.org/10.1016/S0040-1951(00)00204-3, 2000.
Fügenschuh, B., Seward, D., and Mancktelow, N.: Exhumation in a
convergent orogen: The western Tauern window, Terra Nova, 9, 213–217,
https://doi.org/10.1111/j.1365-3121.1997.tb00015.x, 1997.
Fügenschuh, B., Mancktelow, N., and Schmid, S.: Comment on Rosenberg and
Garcia: Estimating displacement along the Brenner Fault and orogen-parallel
extension in the Eastern Alps, Int. J. Earth Sci. (Geol. Rundsch.) (2011),
100, 1129–1145, Int. J. Earth Sci., 101, https://doi.org/10.1007/s00531-011-0725-4, 2012.
Galadini, F., Poli, M., and Zanferrari, A.: Seismogenic sources potentially
responsible for earthquakes with in the eastern
Southern Alps (Thiene-Udine sector, NE Italy), Geophys. J.
Int., 161, 739–762, https://doi.org/10.1111/j.1365-246X.2005.02571.x, 2005.
Gebrande, H., Luschen, E., Bopp, M., Bleibinhaus, F., Lammerer, B., Oncken,
O., Stiller, M., Kummerow, J., Kind, R., Millahn, K., Grassl, H., Neubauer,
F., Bertelli, L., Borrini, D., Fantoni, R., Pessina, C., Sella, M.,
Castellarin, A., Nicolich, R., and Bernabini, M.: First deep seismic images
of the Eastern Alps reveal giant crustal wedges and transcrustal ramps,
Geophys. Res. Lett., 29, 92.1–92.4, https://doi.org/10.1029/2002GL014911,
2002.
Handy, M.: The structure, age and kinematics of the Pogallo fault zone,
southern Alps, northwestern Italy, Eclogae Geol. Helv., 80, 593–632, 1987.
Handy, M. and Zingg, A.: The tectonic and rheological evolution of an
attenuated cross section of the continental crust: Ivrea crustal section,
southern Alps, northwestern Italy and southern Switzerland, Geol.
Soc. Am. Bull., 103, 236–253, https://doi.org/10.1130/0016-7606(1991)103<0236:TTAREO>2.3.CO;2, 1991.
Handy, M., Babist, J., Wagner, R., Rosenberg, C., and Konrad-Schmolke, M.:
Decoupling and its relation to strain partitioning in continental
lithosphere: Insight from the Periadriatic fault system (European Alps),
Geol. Soc. Lond. Spec. Publ., 243, 249–276, https://doi.org/10.1144/GSL.SP.2005.243.01.17, 2005.
Handy, M., Ustaszewski, K., and Kissling, E.: Reconstructing the
Alps–Carpathians–Dinarides as a key to understanding switches in
subduction polarity, slab gaps and surface motion, Int. J.
Earth Sci., 104, 1–26, https://doi.org/10.1007/s00531-014-1060-3, 2015.
Handy, M., Schmid, S., Paffrath, M., Friederich, W., and the AlpArray Working Group: European tectosphere and slabs beneath the greater Alpine area – Interpretation of mantle structure in the Alps-Apennines-Pannonian region from teleseismic Vp studies, Solid Earth Discuss. [preprint], https://doi.org/10.5194/se-2021-49, in review, 2021.
Heberer, B., Reverman, R., Fellin, M., Neubauer, F., Dunkl, I., Zattin, M.,
Seward, D., Genser, J., and Brack, P.: Postcollisional cooling history of the
Eastern and Southern Alps and its linkage to Adria indentation,
Int. J. Earth Sci., 106, 1557–1580, https://doi.org/10.1007/s00531-016-1367-3, 2016.
Heit, B., Cristiano, L., Haberland, C., Tilmann, F., Pesaresi, D., Jia, Y.,
Hausmann, H., Hemmleb, S., Haxter, M., Zieke, T., Jaeckl, K.-H., Schloemer,
A., and Weber, M.: The Swath-D network in the Eastern Alps, Seismol.
Res. Lett., 92, 1592–1609, https://doi.org/10.1785/0220200377, 2021.
Hülscher, J., Sobel, E., Verwater, V., Groß, P., Chew, D., and
Bernhardt, A.: Detrital apatite geochemistry and thermochronology from the
Oligocene/Miocene Alpine foreland record the early exhumation of the Tauern
Window, Basin Res., in review, 2021.
Jozi Najafabadi, A., Haberland, C., Ryberg, T., Verwater, V. F., Le Breton, E., Handy, M. R., Weber, M., and the AlpArray and AlpArray SWATH-D working groups: Relocation of earthquakes in the southern and eastern Alps (Austria, Italy) recorded by the dense, temporary SWATH-D network using a Markov chain Monte Carlo inversion, Solid Earth, 12, 1087–1109, https://doi.org/10.5194/se-12-1087-2021, 2021.
Karousová, H., Plomerova, J., and Vecsey, L.: Seismic tomography of the
upper mantle beneath the north-eastern Bohemian Massif (central Europe),
Tectonophysics, 564–565, 1–11, https://doi.org/10.1016/j.tecto.2012.06.031, 2012.
Kästle, E., Rosenberg, C., Boschi, L., Bellahsen, N., Meier, T., and
El-Sharkawy, A.: Slab break-offs in the Alpine subduction zone (Open
Access), Int. J. Earth Sci., 109, 587–603, https://doi.org/10.1007/s00531-020-01821-z, 2020.
Keim, L. and Stingl, V.: Lithostratigraphy and facies architecture of the
Oligocene conglomerates at Monte Parei (Fanes, Dolomites, Italy), Riv.
Ital. Paleontol. S., 106, 123–132, https://doi.org/10.13130/2039-4942/5393, 2000.
Laubscher, H.: The problem of the deep structure of the Southern Alps: 3-D
material balance considerations and regional consequences, Tectonophysics,
176, 103–121, https://doi.org/10.1016/0040-1951(90)90261-6, 1990.
Laubscher, H.: The arc of the Western Alps today, Eclogae Geol.
Helv., 84, 631–659, 1991.
Le Breton, E., Handy, M., Molli, G., And Ustaszewski, K.: Post-20 Ma motion
of the Adriatic plate – new constraints from surrounding orogens and
implications for crust-mantle decoupling: Post-20 Ma motion of the Adriatic
plate, Tectonics, 36, 3135–3154, https://doi.org/10.1002/2016TC004443, 2017.
Le Breton, E., Brune, S., Ustaszewski, K., Zahirovic, S., Seton, M., and Müller, R. D.: Kinematics and extent of the Piemont–Liguria Basin – implications for subduction processes in the Alps, Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, 2021.
Linzer, H., Decker, K., Peresson, H., Dellmour, R., and Frisch, W.: Balancing
lateral orogenic float of the Eastern Alps, Tectonophysics, 354, 211–237,
https://doi.org/10.1016/S0040-1951(02)00337-2, 2002.
Lippitsch, R., Kissling, E., and Ansorge, J.: Upper mantle structure beneath
the Alpine orogen from high-resolution teleseismic tomography, J.
Geophys. Res., 108, 2376, https://doi.org/10.1029/2002JB002016, 2003.
Luciani, V. and Silvestrini, A.: Planktonic foraminiferal biostratigraphy
and paleoclimatology of the Oligocene/Miocene transition from the Monte
Brione Formation (Northern Italy, Lake Garda), Mem. Sci. Geol., 48, 155–169,
1996.
Marrett, R. and Allmendinger, R.: Kinematic analysis of fault-slip data,
J. Struct. Geol., 12, 973–986, https://doi.org/10.1016/0191-8141(90)90093-E, 1990.
Martin, S., Bigazzi, G., Zattin, M., Viola, G., and Balestrieri, M.: Neogene
kinematics of the Giudicarie fault (Central-Eastern Alps, Italy): New
apatite fission-track data, Terra Nova, 10, 217–221, https://doi.org/10.1046/j.1365-3121.1998.00119.x, 1998.
Massari, F., Grandesso, P., Stefani, C., and Jobstraibizer, P.: A Small
Polyhistory Foreland Basin Evolving in a Context of Oblique Convergence: The
Venetian Basin (Chattian to Recent, Southern Alps, Italy), Spec. Publs. Int.
Ass. Sedim., 8, 141–168, 1986.
Mazzoli, S. and Helman, M.: Neogene patterns of relative plate motion for
Africa-Europe: some implications for recent central Mediterranean tectonics,
Geol. Rundsch., 83, 464–468, 1994.
Mitterbauer, U., Behm, M., Brückl, E., Lippitsch, R., Guterch, A.,
Keller, R., Koslovskaya, E., Rumpfhuber, E., and Šumanovac, F.: Shape and
origin of the East-Alpine slab constrained by the ALPASS teleseismic model,
Tectonophysics, 510, 195–206, https://doi.org/10.1016/j.tecto.2011.07.001, 2011.
Moratto, L., Romano, M., Laurenzano, G., Colombelli, S., Priolo, E., Zollo,
A., Saraò, A., and Picozzi, M.: Source parameter analysis of
microearthquakes recorded around the underground gas storage in the
Montello-Collalto Area (Southeastern Alps, Italy), Tectonophysics, 762,
159–168, https://doi.org/10.1016/j.tecto.2019.04.030, 2019.
Müller, W., Prosser, G., Mancktelow, N., Villa, I., Kelley, S., Viola,
G., and Oberli, F.: Geochronological constraints on the evolution of the
Periadriatic Fault System (Alps), Int. J. Earth Sci.,
90, 623–653, https://doi.org/10.1007/s005310000187, 2001.
Nussbaum, C.: Neogene tectonics and thermal maturity of sediments of the
easternmost Southern Alps (Friuli area, Italy), PhD thesis, Université
de Neuchâtel, Switzerland, 172 pp., 2000.
Oldow, J., Bally, A., and Lallemant, H.: Transpression, orogenic float, and
lithospheric balance, Geology, 18, 991–994, https://doi.org/10.1130/0091-7613(1990)018<0991:TOFALB>2.3.CO;2, 1990.
Petersen, G. M., Cesca, S., Heimann, S., Niemz, P., Dahm, T., Kühn, D., Kummerow, J., Plenefisch, T., and the AlpArray Working Group: Regional centroid MT inversion of small to moderate earthquakes in the Alps using the dense AlpArray seismic network: challenges and seismotectonic insights, Solid Earth Discuss. [preprint], https://doi.org/10.5194/se-2021-13, in review, 2021.
Picotti, V. and Cobianchi, M.: Jurassic stratigraphy of the Belluno Basin
and Friuli Platform: a perspective on far-field compression in the Adria
passive margin, Swiss J. Geosci., 110, 833–850, https://doi.org/10.1007/s00015-017-0280-5, 2017.
Picotti, V., Prosser, G., and Castellarin, A.: Structures and kinematics of
the Giudicarie-Val Trompia fold and thrust belt (Central Southern Alps,
Northern Italy), Mem. Sci. Geol., 47, 95–109, 1995.
Picotti, V., Casolari, E., Castellarin, A., Mosconi, A., Cairo, E., Pessina,
C., and Sella, M.: Alpine inversion of Mesozoic rift basin: the case of the
Eastern Lombardian Prealps, AGIP-Universita di Bologna, 1–102, 1997.
Pilli, A., Sapigni, M., and Zuppi, G.: Karstic and alluvial aquifers: A
conceptual model for the plain – Prealps system (northeastern Italy),
Journal of Hydrology, 464–465, 94–106, https://doi.org/10.1016/j.jhydrol.2012.06.049, 2012.
Pomella, H., Urs, K., Scholger, R., Stipp, M., and Fügenschuh, B.: The
Northern Giudicarie and the Meran-Mauls fault (Alps, Northern Italy) in the
light of new paleomagnetic and geochronological data from boudinaged
Eo-/Oligocene tonalites, Int. J. Earth Sci., 100,
1827–1850, https://doi.org/10.1007/s00531-010-0612-4, 2011.
Pomella, H., Stipp, M., and Fügenschuh, B.: Thermochronological record of
thrusting and strike-slip faulting along the Giudicarie Fault System (Alps,
Northern Italy), Tectonophysics, 579, 118–130, https://doi.org/10.1016/j.tecto.2012.04.015, 2012.
Pola, M., Ricciato, A., Fantoni, R., Fabbri, P., and Zampieri, D.:
Architecture of the western margin of the North Adriatic foreland: The
Schio-Vicenza fault system, Ital. J. Geosci., 133, 223–234,
https://doi.org/10.3301/IJG.2014.04, 2014.
Pola, M., Fabbri, P., Piccinini, L., and Zampieri, D.: Conceptual and numerical
models of a tectonically-controlled geothermal system: A case study of the
Euganean Geothermal System, Northern Italy, Central European Geology, 58,
129–150, https://doi.org/10.1556/24.58.2015.1-2.9, 2015.
Prosser, G.: Strike-slip movements and thrusting along a transpressive fault
zone: The North Giudicarie line (Insubric line, Northern Italy), Tectonics,
17, 921–937, https://doi.org/10.1029/1998TC900010, 1998.
Prosser, G.: The development of the North Giudicarie fault zone (Insubric
Line, Northern Italy), J. Geodyn., 30, 229–250, https://doi.org/10.1016/S0264-3707(99)00035-6, 2000.
Qorbani, E., Bianchi, I., and Bokelmann, G.: Slab detachment under the
Eastern Alps seen by seismic anisotropy, Earth Planet. Sc.
Lett., 409, 96–108, https://doi.org/10.1016/j.epsl.2014.10.049, 2015.
Ratschbacher, L., Frisch, W., Neubauer, F., Schmid, S., and Neugebauer, J.:
Extension in compressional orogenic belts: The Eastern Alps, Geology, 17, 404–407 https://doi.org/10.1130/0091-7613(1989)017<0404:EICOBT>2.3.CO;2, 1989.
Ratschbacher, L., Frisch, W., Linzer, H., and Merle, O.: Lateral extrusion in
the eastern Alps, Part 2: Structural analysis, Tectonics, 10, 257–271, https://doi.org/10.1029/90TC02623, 1991.
Reverman, R., Fellin, M., Herman, F., Willett, S., and Fitoussi, C.:
Climatically versus tectonically forced erosion in the Alps
Thermochronometric constraints from the Adamello Complex, Southern Alps,
Italy, Earth Planet. Sc. Lett., 339–340, 127–138, https://doi.org/10.1016/j.epsl.2012.04.051, 2012.
Roeder, D.: Thrusting and wedge growth, Southern Alps of Lombardia
(Italy), Tectonophysics, 207, 199–243, https://doi.org/10.1016/0040-1951(92)90478-O,
1992.
Rosenberg, C. and Garcia, S.: Estimating displacement along the Brenner
Fault and orogen-parallel extension in the Eastern Alps, Int. J. Earth Sci.,
100, 1129–1145, https://doi.org/10.1007/s00531-011-0645-3, 2011.
Rosenberg, C. and Kissling, E.: Three-dimensional insight into Central-Alpine
collision: Lower-plate or upper-plate indentation?, Geology, 41, 1219–1222,
https://doi.org/10.1130/G34584.1, 2013.
Rosenberg, C., Brun, J., Cagnard, F., and Gapais, D.: Oblique indentation in
the Eastern Alps: Insights from laboratory experiments, Tectonics, 26, TC2003, https://doi.org/10.1029/2006TC001960, 2007.
Rosenberg, C., Schneider, S., Scharf, A., Bertrand, A., Hammerschmidt, K.,
Rabaute, A., and Brun, J.: Relating collisional kinematics to exhumation
processes in the Eastern Alps, Earth-Sci. Rev., 176, 311–344,
https://doi.org/10.1016/j.earscirev.2017.10.013, 2018.
Scharf, A., Handy, M., Favaro, S., Schmid, S., and Bertrand, A.: Modes of
orogen-parallel stretching and extensional exhumation in response to
microplate indentation and roll-back subduction (Tauern Window, Eastern
Alps), Int. J. Earth Sci., 102, 1627–1654, https://doi.org/10.1007/s00531-013-0894-4, 2013.
Schmid, S. and Kissling, E.: The arc of the Western Alps in the light of new
data on deep crustal structure, Tectonics, 19, 62–85,
https://doi.org/10.1029/1999TC900057, 2000.
Schmid, S., Pfiffner, O., Kissling, E., Froitzheim, N., and Schönborn,
G.: Geophysical-geological transect and tectonic evolution of the
Swiss-Italian Alps, Tectonics, 15, 1036–1064, https://doi.org/10.1029/96TC00433, 1996.
Schmid, S., Fügenschuh, B., Kissling, E., and Schuster, R.: Tectonic map
and overall architecture of the Alpine orogeny, Eclogae Geol.
Helv., 97, 93–117, https://doi.org/10.1007/s00015-004-1113-x, 2004.
Schmid, S., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S.,
Schuster, R., Tischler, M., and Ustaszewski, K.: The
Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution of
tectonic units, Swiss J. Geosci., 101, 139–183, https://doi.org/10.1007/s00015-008-1247-3, 2008.
Schmid, S., Scharf, A., Handy, M., and Rosenberg, C.: The Tauern Window
(Eastern Alps, Austria): A new tectonic map, with cross-sections and a
tectonometamorphic synthesis, Swiss J. Geosci., 106, 1–32, https://doi.org/10.1007/s00015-013-0123-y, 2013.
Schönborn, G.: Kinematics of a transverse zone in the Southern Alps, Italy, in: Thrust Tectonics, edited by: McClay, K. R.,
Springer, Dordrecht, https://doi.org/10.1007/978-94-011-3066-0_27, 1992.
Schönborn, G.: Balancing cross sections with kinematic constraints: The
Dolomites (northern Italy), Tectonics, 18, 527–545, https://doi.org/10.1029/1998TC900018, 1999.
Selli, L.: Il lineamento della Valsugana fra Trento e Cima d'Asta:
cinematica neogenica ed eredità strutturali permo-mesozoiche nel quadro
evolutivo del Sudalpino Orientale (NE-Italia), Mem. Soc. Geol. It, 53,
503–541, 1998.
Selli, L., Bargossi, G., Battistini, G., Mordenti, A., Tranne, C., and
Stefani, A.: Le vulcaniti permiane a N della Linea del Calisio: Evoluzione
strutturale del margine SW del distretto vulcanico atesino (Trento, Italia),
Mineralogica et Petrographica Acta, 39, 169–196, 1996.
Semenza, E.: La fase Giudicariense, nel quadro di una nuova ipotesi
sull'Orogenesi Alpina nell'area Italo-Dinarica, Mem. Soc. Geol. It., 13,
187–226, 1974.
Serpelloni, E., Vannucci, G., Anderlini, L., and Bennett, R.: Kinematics,
seismotectonics and seismic potential of the eastern sector of the European
Alps from GPS and seismic deformation data, Tectonophysics, 688, 157–181, https://doi.org/10.1016/j.tecto.2016.09.026, 2016.
Stipp, M., Fügenschuh, B., Gromet, L., Stünitz, H., and Schmid, S.:
Contemporaneous plutonism and strike-slip faulting: A case study from the
Tonale fault zone north of the Adamello pluton (Italian Alps), Tectonics,
23, TC3004, https://doi.org/10.1029/2003TC001515, 2004.
Suppe, J.: Geometry and Kinematics of Fault-bend Folding, Am. J.
Sci., 283, 684–721, 1983.
Tapponnier, P., Peltzer, G., and Armijo, R.: On the mechanics of the
collision between India and Asia, Geological Society, Lond. Spec.
Publ., 19, 113–157, https://doi.org/10.1144/GSL.SP.1986.019.01.07, 1986.
Thöny, W., Ortner, H., and Scholger, R.: Paleomagnetic evidence for large
en-bloc rotations in the Eastern Alps during Neogene orogeny,
Tectonophysics, 414, 169–189, https://doi.org/10.1016/j.tecto.2005.10.021, 2006.
Ustaszewski, K., Schmid, S., Fügenschuh, B., Tischler, M., Kissling, E.,
and Spakman, W.: A map-view restoration of the Alpine-Carpathian-Dinaridic
system for the Early Miocene, Swiss J. Geosci., 101, 273–294,
https://doi.org/10.1007/s00015-008-1288-7, 2008.
Van Hinsbergen, D., Torsvik, T., Schmid, S., Maţenco, L., Maffione, M.,
Vissers, R., Gürer, D., and Spakman, W.: Orogenic architecture of the
Mediterranean region and kinematic reconstruction of its tectonic evolution
since the Triassic, Gondwana Res., 81, 79–229, https://doi.org/10.1016/j.gr.2019.07.009, 2020.
Verwater, V. F., Le Breton, E., Handy, M. R., Picotti, V., Jozi
Najafabadi, A., and Haberland, C.: Balanced cross sections along the
Giudicarie Belt (Southern Alps, Northern Italy) in 3-D Move, GFZ Data
Services [data set], https://doi.org/10.5880/fidgeo.2021.006, 2021.
Viganò, A., Scafidi, D., Ranalli, G., Martin, S., Vedova, B. D., and
Spallarossa, D.: Earthquake relocations, crustal rheology, and active
deformation in the central–eastern Alps (N Italy), Tectonophysics, 661, 81–98, 2015.
Viganò, A., Zampieri, D., Rossato, S., Martin, S., Selli, L., Prosser,
G., Ivy-Ochs, S., Campedel, P., Fedrizzi, F., Franceschi, M., and Rigo, M.:
Past to present deformation of the central-eastern Southern Alps: from the
foreland to the Giudicarie belt, Geological Field Trips and Maps, 10, 1–78,
https://doi.org/10.3301/GFT.2018.01, 2018.
Viola, G., Mancktelow, N., and Seward, D.: Late Oligocene-Neogene evolution
of Europe-Adria collision: New structural and geochronological evidence from
the Giudicarie fault system (Italian Eastern Alps), Tectonics, 20, 999–1020,
https://doi.org/10.1029/2001TC900021, 2001.
Von Hagke, C., Cederbom, C., Oncken, O., Stockli, D., Rahn, M., and
Schlunegger, F.: Linking the Northern Alps with Their Foreland: the Latest
Exhumation History Resolved by Low-Temperature Thermochronology, Tectonics,
31, TC5010, https://doi.org/10.1029/2011TC003078, 2012.
Winterer, E. and Bosellini, A.: Subsidence and sedimentation on Jurassic
passive continental margin, Southern Alps, Italy, AAPG Bull., 65,
394–421, 1981.
Zampieri, D.: Tertiary extension in the Southern Trento Platform, Southern
Alps, Italy, Tectonics, 14, 645–657, https://doi.org/10.1029/94TC03093, 1995.
Zampieri, D., Massironi, M., Sedea, R., and Sparacino, V.: Strike-slip
contractional stepovers in the Southern Alps (Northeastern Italy), Eclogae
Geol. Helv., 96, 115–123, 2003.
Zampieri, D., Vannoli, P., and Burrato, P.: Geodynamic and seismotectonic model of a long-lived transverse structure: The Schio-Vicenza Fault System (NE Italy), Solid Earth Discuss. [preprint], https://doi.org/10.5194/se-2021-29, in review, 2021.
Short summary
Balancing along geological cross sections reveals that the Giudicarie Belt comprises two kinematic domains. The SW domain accommodated at least ~ 18 km Late Oligocene to Early Miocene shortening. Since the Middle Miocene, the SW domain experienced at least ~ 12–22 km shortening, whereas the NE domain underwent at least ~ 25–35 km. Together, these domains contributed to ~ 40–47 km of sinistral offset of the Periadriatic Fault along the Northern Giudicarie Fault since the Late Oligocene.
Balancing along geological cross sections reveals that the Giudicarie Belt comprises two...