Articles | Volume 13, issue 11
https://doi.org/10.5194/se-13-1731-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-1731-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Luangwa Rift Active Fault Database and fault reactivation along the southwestern branch of the East African Rift
Luke N. J. Wedmore
CORRESPONDING AUTHOR
School of Earth Sciences, University of Bristol, Bristol, UK
Tess Turner
School of Earth Sciences, University of Bristol, Bristol, UK
Juliet Biggs
School of Earth Sciences, University of Bristol, Bristol, UK
Jack N. Williams
School of Earth Sciences, University of Bristol, Bristol, UK
School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK
Department of Geology, University of Otago, Dunedin, New Zealand
Henry M. Sichingabula
Department of Geography and Environmental Studies, University of Zambia, Lusaka, Zambia
Christine Kabumbu
Department of Geography and Environmental Studies, University of Zambia, Lusaka, Zambia
Kawawa Banda
Department of Geology, School of Mines, University of Zambia, Lusaka, Zambia
Related authors
Jack N. Williams, Luke N. J. Wedmore, Åke Fagereng, Maximilian J. Werner, Hassan Mdala, Donna J. Shillington, Christopher A. Scholz, Folarin Kolawole, Lachlan J. M. Wright, Juliet Biggs, Zuze Dulanya, Felix Mphepo, and Patrick Chindandali
Nat. Hazards Earth Syst. Sci., 22, 3607–3639, https://doi.org/10.5194/nhess-22-3607-2022, https://doi.org/10.5194/nhess-22-3607-2022, 2022
Short summary
Short summary
We use geologic and GPS data to constrain the magnitude and frequency of earthquakes that occur along active faults in Malawi. These faults slip in earthquakes as the tectonic plates on either side of the East African Rift in Malawi diverge. Low divergence rates (0.5–1.5 mm yr) and long faults (5–200 km) imply that earthquakes along these faults are rare (once every 1000–10 000 years) but could have high magnitudes (M 7–8). These data can be used to assess seismic risk in Malawi.
Jack N. Williams, Hassan Mdala, Åke Fagereng, Luke N. J. Wedmore, Juliet Biggs, Zuze Dulanya, Patrick Chindandali, and Felix Mphepo
Solid Earth, 12, 187–217, https://doi.org/10.5194/se-12-187-2021, https://doi.org/10.5194/se-12-187-2021, 2021
Short summary
Short summary
Earthquake hazard is often specified using instrumental records. However, this record may not accurately forecast the location and magnitude of future earthquakes as it is short (100s of years) relative to their frequency along geologic faults (1000s of years). Here, we describe an approach to assess this hazard using fault maps and GPS data. By applying this to southern Malawi, we find that its faults may host rare (1 in 10 000 years) M 7 earthquakes that pose a risk to its growing population.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Hubert T. Samboko, Sten Schurer, Hubert H. G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst., 12, 155–169, https://doi.org/10.5194/gi-12-155-2023, https://doi.org/10.5194/gi-12-155-2023, 2023
Short summary
Short summary
The study investigates how low-cost technology can be applied in data-scarce catchments to improve water resource management. More specifically, we investigate how drone technology can be combined with low-cost real-time kinematic positioning (RTK) global navigation satellite system (GNSS) equipment and subsequently applied to a 3D hydraulic model so as to generate more physically based rating curves.
C. Scott Watson, John R. Elliott, Susanna K. Ebmeier, Juliet Biggs, Fabien Albino, Sarah K. Brown, Helen Burns, Andrew Hooper, Milan Lazecky, Yasser Maghsoudi, Richard Rigby, and Tim J. Wright
Geosci. Commun., 6, 75–96, https://doi.org/10.5194/gc-6-75-2023, https://doi.org/10.5194/gc-6-75-2023, 2023
Short summary
Short summary
We evaluate the communication and open data processing of satellite Interferometric Synthetic Aperture Radar (InSAR) data, which measures ground deformation. We discuss the unique interpretation challenges and the use of automatic data processing and web tools to broaden accessibility. We link these tools with an analysis of InSAR communication through Twitter in which applications to earthquakes and volcanoes prevailed. We discuss future integration with disaster risk-reduction strategies.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Bart Schilperoort, Nick van de Giesen, Imasiku Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 1695–1722, https://doi.org/10.5194/hess-27-1695-2023, https://doi.org/10.5194/hess-27-1695-2023, 2023
Short summary
Short summary
Miombo woodland plants continue to lose water even during the driest part of the year. This appears to be facilitated by the adapted features such as deep rooting (beyond 5 m) with access to deep soil moisture, potentially even ground water. It appears the trend and amount of water that the plants lose is correlated more to the available energy. This loss of water in the dry season by miombo woodland plants appears to be incorrectly captured by satellite-based evaporation estimates.
Jack N. Williams, Luke N. J. Wedmore, Åke Fagereng, Maximilian J. Werner, Hassan Mdala, Donna J. Shillington, Christopher A. Scholz, Folarin Kolawole, Lachlan J. M. Wright, Juliet Biggs, Zuze Dulanya, Felix Mphepo, and Patrick Chindandali
Nat. Hazards Earth Syst. Sci., 22, 3607–3639, https://doi.org/10.5194/nhess-22-3607-2022, https://doi.org/10.5194/nhess-22-3607-2022, 2022
Short summary
Short summary
We use geologic and GPS data to constrain the magnitude and frequency of earthquakes that occur along active faults in Malawi. These faults slip in earthquakes as the tectonic plates on either side of the East African Rift in Malawi diverge. Low divergence rates (0.5–1.5 mm yr) and long faults (5–200 km) imply that earthquakes along these faults are rare (once every 1000–10 000 years) but could have high magnitudes (M 7–8). These data can be used to assess seismic risk in Malawi.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Petra Hulsman, Nick van de Giesen, Imasiku Nyambe, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-114, https://doi.org/10.5194/hess-2022-114, 2022
Manuscript not accepted for further review
Short summary
Short summary
We compare performance of evaporation models in the Luangwa Basin located in a semi-arid and complex Miombo ecosystem in Africa. Miombo plants changes colour, drop off leaves and acquire new leaves during the dry season. In addition, the plant roots go deep in the soil and appear to access groundwater. Results show that evaporation models with structure and process that do not capture this unique plant structure and behaviour appears to have difficulties to correctly estimating evaporation.
Hubert T. Samboko, Sten Schurer, Hubert H. G. Savenije, Hodson Makurira, Kawawa Banda, and Hessel Winsemius
Geosci. Instrum. Method. Data Syst., 11, 1–23, https://doi.org/10.5194/gi-11-1-2022, https://doi.org/10.5194/gi-11-1-2022, 2022
Short summary
Short summary
The study was conducted along the Luangwa River in Zambia. It combines low-cost instruments such as UAVs and GPS kits to collect data for the purposes of water management. A novel technique which seamlessly merges the dry and wet bathymetry before application in a hydraulic model was applied. Successful implementation resulted in water authorities with small budgets being able to monitor flows safely and efficiently without significant compromise on accuracy.
Jack N. Williams, Hassan Mdala, Åke Fagereng, Luke N. J. Wedmore, Juliet Biggs, Zuze Dulanya, Patrick Chindandali, and Felix Mphepo
Solid Earth, 12, 187–217, https://doi.org/10.5194/se-12-187-2021, https://doi.org/10.5194/se-12-187-2021, 2021
Short summary
Short summary
Earthquake hazard is often specified using instrumental records. However, this record may not accurately forecast the location and magnitude of future earthquakes as it is short (100s of years) relative to their frequency along geologic faults (1000s of years). Here, we describe an approach to assess this hazard using fault maps and GPS data. By applying this to southern Malawi, we find that its faults may host rare (1 in 10 000 years) M 7 earthquakes that pose a risk to its growing population.
Cited articles
Abrahamson, N., Atkinson, G., Boore, D., Bozorgnia, Y., Campbell, K., Chiou,
B., Idriss, I. M., Silva, W., and Youngs, R.: Comparisons of the NGA
Ground-Motion Relations, Earthq. Spectra, 24, 45–66,
https://doi.org/10.1193/1.2924363, 2008. a
Aki, K.: Asperities, barriers, characteristic earthquakes and strong motion
prediction (Japan), J. Geophys. Res., 89, 5867–5872,
https://doi.org/10.1029/JB089iB07p05867, 1984. a
Alessio, B. L., Collins, A. S., Siegfried, P., Glorie, S., De Waele, B.,
Payne, J., and Archibald, D. B.: Neoproterozoic tectonic geography of the
south-east Congo Craton in Zambia as deduced from the age and composition of
detrital zircons, Geosci. Front., 10, 2045–2061,
https://doi.org/10.1016/j.gsf.2018.07.005, 2019. a, b
Ambraseys, N. N.: The Rukwa earthquake of 13 December 1910 in East Africa, Terra
Nova, 3, 202–211, https://doi.org/10.1111/j.1365-3121.1991.tb00873.x,
1991a. a
Ambraseys, N. N.: Earthquake hazard in the Kenya Rift: the Subukia earthquake
1928, Geophys. J. Int., 105, 253–269,
https://doi.org/10.1111/j.1365-246X.1991.tb03460.x, 1991b. a
Ambraseys, N. N. and Adams, R. D.: Reappraisal of major African earthquakes,
south of 20∘ N, 1900–1930, Nat. Hazards, 4, 389–419,
https://doi.org/10.1007/BF00126646, 1991. a, b
Bailey, G., King, G., and Manighetti, I.: Tectonics, volcanism, landscape
structure and human evolution in the African Rift, in: Human Ecodynamics:
Proceedings of the Association for Environmental Archaeology Conference 1998
held at the University of Newcastle upon Tyne, edited by: Bailey, G. N.,
Charles, R., and Winder, N., 31–46, Symposia of the Association for
Environmental Archaeology, Oxbow Books,
ISBN: 1842170015, 2000. a
Barham, L., Phillips, W. M., Maher, B. A., Karloukovski, V., Duller, G. A.,
Jain, M., and Wintle, A. G.: The dating and interpretation of a Mode 1 site
in the Luangwa Valley, Zambia, J. Hum. Evol., 60, 549–570,
https://doi.org/10.1016/j.jhevol.2010.12.003, 2011. a
Biggs, J., Nissen, E., Craig, T., Jackson, J., and Robinson, D. P.: Breaking
up the hanging wall of a rift-border fault: The 2009 Karonga earthquakes,
Malawi, Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2010GL043179,
2010. a
Bishop, L. C., Barham, L., Ditchfield, P. W., Elton, S., Harcourt‐Smith, W.
E. H., and Dawkins, P.: Quaternary fossil fauna from the Luangwa Valley,
Zambia, J. Quaternary Sci., 31, 178–190, https://doi.org/10.1002/jqs.2855,
2016. a, b
Brun, J.: Narrow rifts versus wide rifts: inferences for the mechanics of
rifting from laboratory experiments, Philos. T. R.
Soc. Lond. Ser. A,
357, 695–712, https://doi.org/10.1098/rsta.1999.0349, 1999. a
Bubeck, A., Wilkinson, M., Roberts, G., Cowie, P., McCaffrey, K., Phillips, R.,
and Sammonds, P.: The tectonic geomorphology of bedrock scarps on active
normal faults in the Italian Apennines mapped using combined ground
penetrating radar and terrestrial laser scanning, Geomorphology, 237, 38–51,
2015. a
Buck, W. R.: Modes of continental lithospheric extension, J.
Geophys. Res.-Sol. Ea., 96, 20161–20178,
https://doi.org/10.1029/91JB01485, 1991. a
Chorowicz, J.: The East African rift system, J. Afr. Earth
Sci., 43, 379–410, https://doi.org/10.1016/j.jafrearsci.2005.07.019, 2005. a
Christophersen, A., Litchfield, N., Berryman, K., Thomas, R., Basili, R.,
Wallace, L., Ries, W., Hayes, G. P., Haller, K. M., Yoshioka, T., Koehler,
R. D., Clark, D., Wolfson-Schwehr, M., Boettcher, M. S., Villamor, P.,
Horspool, N., Ornthammarath, T., Zuñiga, R., Langridge, R. M.,
Stirling, M. W., Goded, T., Costa, C., and Yeats, R.: Development of the
Global Earthquake Model's neotectonic fault database, Nat. Hazards, 79,
111–135, https://doi.org/10.1007/s11069-015-1831-6, 2015. a, b, c, d
Cohen, A. S., Van Bocxlaer, B., Todd, J. A., McGlue, M., Michel, E., Nkotagu,
H. H., Grove, A., and Delvaux, D.: Quaternary ostracodes and molluscs from
the Rukwa Basin (Tanzania) and their evolutionary and paleobiogeographic
implications, Palaeogeogr. Palaeocl., 392,
79–97, https://doi.org/10.1016/j.palaeo.2013.09.007, 2013. a
Copley, A., Hollingsworth, J., and Bergman, E.: Constraints on fault and
lithosphere rheology from the coseismic slip and postseismic afterslip of the
2006 Mw 7.0 Mozambique earthquake, J. Geophys. Res.-Sol.
Ea., 117, 1–16, https://doi.org/10.1029/2011JB008580, 2012. a, b
Craig, T. and Jackson, J.: Variations in the seismogenic thickness of East
Africa, J. Geophys. Res.-Sol. Ea., 126, e2020JB020754,
https://doi.org/10.1029/2020JB020754, 2021. a, b, c, d
Craig, T. J., Jackson, J. A., Priestley, K., and Mckenzie, D.: Earthquake
distribution patterns in Africa: Their relationship to variations in
lithospheric and geological structure, and their rheological implications,
Geophys. J. Int., 185, 403–434,
https://doi.org/10.1111/j.1365-246X.2011.04950.x, 2011. a, b, c
Daly, M. C., Chorowicz, J., and Fairhead, J. D.: Rift basin evolution in
Africa: The influence of reactivated steep basement shear zones, Geol.
Soc. Sp. Publ., 44, 309–334,
https://doi.org/10.1144/GSL.SP.1989.044.01.17, 1989. a, b, c, d
Daly, M. C., Green, P., Watts, A. B., Davies, O., Chibesakunda, F., and Walker,
R.: Tectonics and Landscape of the Central African Plateau and their
Implications for a Propagating Southwestern Rift in Africa, Geochem.
Geophy. Geosy., 21, e2019GC008746, https://doi.org/10.1029/2019GC008746,
2020. a, b, c, d, e, f, g, h, i, j, k
Delvaux, D. and Barth, A.: African stress pattern from formal inversion of
focal mechanism data, Tectonophysics, 482, 105–128,
https://doi.org/10.1016/j.tecto.2009.05.009, 2010. a, b, c
Delvaux, D., Kervyn, F., Macheyeki, A., and Temu, E.: Geodynamic significance
of the TRM segment in the East African Rift (W-Tanzania): Active tectonics
and paleostress in the Ufipa plateau and Rukwa basin, J. Struct.
Geol., 37, 161–180, https://doi.org/10.1016/j.jsg.2012.01.008, 2012. a, b
de Swardt, A. M. J., Garrard, P., and Simpson, J. C.: Major Zones of
Transcurrent Dislocation and Superposition of Orogenic Belts in Part of
Central Africa, GSA Bull., 76, 89–102,
https://doi.org/10.1130/0016-7606(1965)76[89:MZOTDA]2.0.CO;2, 1965. a
DISS Working Group: Database of Individual Seismogenic Sources (DISS),
Version 3.3.0: A compilation of potential sources for earthquakes larger than
M 5.5 in Italy and surrounding areas., Istituto Nazional di Geofisica e
Vulcanologia (INGV), https://doi.org/10.13127/diss3.3.0, 2021. a
Dixey, F.: The Geology of Part of the Upper Luangwa Valley, North-Eastern
Rhodesia, Q. J. Geol. Soc., 93, 52–76,
https://doi.org/10.1144/GSL.JGS.1937.093.01-04.05, 1937. a
DuRoss, C. B., Personius, S. F., Crone, A. J., Olig, S. S., Hylland, M. D.,
Lund, W. R., and Schwartz, D. P.: Fault segmentation: New concepts from the
Wasatch Fault Zone, Utah, USA, J. Geophys. Res.-Sol. Ea.,
121, 1131–1157, https://doi.org/10.1002/2015JB012519, 2016. a
Fairhead, J. D. and Girdler, R. W.: How far does the rift system extend
through Africa?, Nature, 221, 1018–1020, https://doi.org/10.1038/2211018a0, 1969. a
Fairhead, J. D. and Henderson, N. B.: The seismicity of southern Africa and
incipient rifting, Tectonophysics, 41, 19–26,
https://doi.org/10.1016/0040-1951(77)90133-0, 1977. a
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.:
The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007. a, b, c
Faure Walker, J., Boncio, P., Pace, B., Roberts, G., Benedetti, L., Scotti,
O., Visini, F., and Peruzza, L.: Fault2SHA Central Apennines database and
structuring active fault data for seismic hazard assessment, Sci.
Data, 8, 87, https://doi.org/10.1038/s41597-021-00868-0, 2021. a, b
Fenton, C. H. and Bommer, J. J.: The Mw 7 Machaze, Mozambique, Earthquake of 23
February 2006, Seismol. Res. Lett., 77, 426–439,
https://doi.org/10.1785/gssrl.77.4.426, 2006. a
Gerland, P., Raftery, A. E., Ševčíková, H., Li, N., Gu,
D., Spoorenberg, T., Alkema, L., Fosdick, B. K., Chunn, J., Lalic, N., Bay,
G., Buettner, T., Heilig, G. K., and Wilmoth, J.: World population
stabilization unlikely this century, Science, 346, 234–237,
https://doi.org/10.1126/science.1257469, 2014. a
Giordano, N., De Risi, R., Voyagaki, E., Kloukinas, P., Novelli, V., Kafodya,
I., Ngoma, I., Goda, K., and Macdonald, J.: Seismic fragility models for
typical non-engineered URM residential buildings in Malawi, Structures, 32,
2266–2278, https://doi.org/10.1016/j.istruc.2021.03.118, 2021. a
Girdler, R. W. and McConnell, D. A.: The 1990 to 1991 Sudan Earthquake
Sequence and the Extent of the East African Rift System, Science, 264,
67–70, https://doi.org/10.1126/science.264.5155.67, 1994. a
Goda, K., Gibson, E. D., Smith, H. R., Biggs, J., and Hodge, M.: Seismic risk
assessment of urban and rural settlements around lake malawi, Front.
Built Environ., 2, 16, https://doi.org/10.3389/fbuil.2016.00030, 2016. a
Hamling, I. J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C.,
Fielding, E., Litchfield, N., Villamor, P., Wallace, L., Wright, T. J.,
D'Anastasio, E., Bannister, S., Burbidge, D., Denys, P., Gentle, P., Howarth,
J., Mueller, C., Palmer, N., Pearson, C., Power, W., Barnes, P., Barrell,
D. J., Van Dissen, R., Langridge, R., Little, T., Nicol, A., Pettinga, J.,
Rowland, J., and Stirling, M.: Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand, Science, 356, eaam7194,
https://doi.org/10.1126/science.aam7194, 2017. a
Hellebrekers, N., Niemeijer, A. R., Fagereng, Å., Manda, B., and Mvula,
R. L.: Lower crustal earthquakes in the East African Rift System: Insights
from frictional properties of rock samples from the Malawi rift,
Tectonophysics, 767, 228167, https://doi.org/10.1016/j.tecto.2019.228167, 2019. a
Hodge, M., Biggs, J., Goda, K., and Aspinall, W.: Assessing infrequent large
earthquakes using geomorphology and geodesy: the Malawi Rift, Nat.
Hazards, 76, 1781–1806, https://doi.org/10.1007/s11069-014-1572-y, 2015. a
Hodge, M., Biggs, J., Fagereng, Å., Elliott, A., Mdala, H., and Mphepo, F.:
A semi-automated algorithm to quantify scarp morphology (SPARTA):
Application to normal faults in southern Malawi, Solid Earth, 10, 27–57,
https://doi.org/10.5194/se-10-27-2019, 2019. a
Hodge, M., Biggs, J., Fagereng, Mdala, H., Wedmore, L. N. J., Williams, J. N.,
Fagereng, Å., Mdala, H., Wedmore, L. N. J., and Williams, J. N.:
Evidence From High‐Resolution Topography for Multiple Earthquakes on High
Slip‐to‐Length Fault Scarps: The Bilila‐Mtakataka Fault, Malawi,
Tectonics, 39, 1–24, https://doi.org/10.1029/2019TC005933, 2020. a, b, c
Huismans, R. and Beaumont, C.: Depth-dependent extension, two-stage breakup
and cratonic underplating at rifted margins, Nature, 473, 74–78,
https://doi.org/10.1038/nature09988, 2011. a
International Seismological Centre, ISC-GEM Earthquake Catalogue,
https://doi.org/10.31905/d808b825, 2021. a, b
Jackson, J. and Blenkinsop, T.: THE Malaŵi Earthquake of March 10, 1989: DEep
faulting within the East African Rift System, Tectonics, 12, 1131–1139,
https://doi.org/10.1029/93TC01064, 1993. a
Jackson, J. and Blenkinsop, T.: The Bilila-Mtakataka fault in Malaŵi: An
active, 100-km long, normal fault segment in thick seismogenic crust,
Tectonics, 16, 137–150, https://doi.org/10.1029/96TC02494, 1997. a, b
Johnson, S. P., De Waele, B., and Liyungu, K. A.: U-Pb sensitive
high-resolution ion microprobe (SHRIMP) zircon geochronology of granitoid
rocks in eastern Zambia: Terrane subdivision of the Mesoproterozoic Southern
Irumide Belt, Tectonics, 25, TC6004, https://doi.org/10.1029/2006TC001977, 2006. a, b
Kendall, J.-M. and Lithgow-Bertelloni, C.: Why is Africa rifting?, Geol.
Soc. Lond. Sp. Publ., 420, 11–30, https://doi.org/10.1144/SP420.17,
2016. a
Kervyn, F., Ayub, S., Kajara, R., Kanza, E., and Temu, B.: Evidence of recent
faulting in the Rukwa rift (West Tanzania) based on radar interferometric
DEMs, J. Afr. Earth Sci., 44, 151–168,
https://doi.org/10.1016/j.jafrearsci.2005.10.008, 2006. a
Kinabo, B. D., Atekwana, E. A., Hogan, J. P., Modisi, M. P., Wheaton, D. D.,
and Kampunzu, A. B.: Early structural development of the Okavango rift zone,
NW Botswana, J. Afr. Earth Sci., 48, 125–136,
https://doi.org/10.1016/j.jafrearsci.2007.02.005, 2007. a
Kolawole, F., Atekwana, E. A., Malloy, S., Stamps, D. S., Grandin, R.,
Abdelsalam, M. G., Leseane, K., and Shemang, E. M.: Aeromagnetic, gravity,
and Differential Interferometric Synthetic Aperture Radar analyses reveal the
causative fault of the 3 April 2017 Mw 6.5 Moiyabana, Botswana, earthquake,
Geophys. Res. Lett., 44, 8837–8846, https://doi.org/10.1002/2017GL074620,
2017. a
Kolawole, F., Phillips, T. B., Atekwana, E. A., and Jackson, C. A.-L.:
Structural Inheritance Controls Strain Distribution During Early Continental
Rifting, Rukwa Rift, Front. Earth Sci., 9, 707869,
https://doi.org/10.3389/feart.2021.707869, 2021. a
Laõ-Dávila, D. A., Al-Salmi, H. S., Abdelsalam, M. G., and
Atekwana, E. A.: Hierarchical segmentation of the Malawi Rift: The influence
of inherited lithospheric heterogeneity and kinematics in the evolution of
continental rifts, Tectonics, 34, 2399–2417, https://doi.org/10.1002/2015TC003953,
2015. a
Loupekine, I. S., Wohlenberg, J., and Janssen, T.: The Toro earthquake of 20
March 1966 and preliminary interpretation of seismograms: Uganda – (mission)
5–19 April 1966, Tech. Rep., UNESCO,
https://unesdoc.unesco.org/ark:/48223/pf0000007799_eng (last access: April 2022), 1966. a
Macheyeki, A. S., Mdala, H., Chapola, L. S., Manhiça, V. J., Chisambi,
J., Feitio, P., Ayele, A., Barongo, J., Ferdinand, R. W., Ogubazghi, G.,
Goitom, B., Hlatywayo, J. D., Kianji, G. K., Marobhe, I., Mulowezi, A.,
Mutamina, D., Mwano, J. M., Shumba, B., and Tumwikirize, I.: Active fault
mapping in Karonga-Malawi after the December 19, 2009 Ms 6.2 seismic event,
J. Afr. Earth Sci., 102, 233–246,
https://doi.org/10.1016/j.jafrearsci.2014.10.010, 2015. a
Mackintosh, V., Kohn, B., Gleadow, A., and Gallagher, K.: Long-term
reactivation and morphotectonic history of the Zambezi Belt, northern
Zimbabwe, revealed by multi-method thermochronometry, Tectonophysics, 750,
117–136, https://doi.org/10.1016/j.tecto.2018.11.009, 2019. a
Matende, K. N., Atekwana, E., Mickus, K., Abdelsalam, M. G., Atekwana, E. A.,
Evans, R., Nyalugwe, V. N., and Emishaw, L.: Crustal and thermal structure
of the Permian – Jurassic Luangwa – Lukusashi – Luano Rift, Zambia:
Implications for strain localization in magma – Poor continental rifts,
J. Afr. Earth Sci., 175, 104090,
https://doi.org/10.1016/j.jafrearsci.2020.104090, 2021. a, b, c
McCarthy, T. S.: The Okavango Delta and its place in the Geomorphological
Evolution of Southern Africa, South Afr. J. Geol., 116, 1–54,
https://doi.org/10.2113/gssajg.116.1.1, 2013. a
Meghraoui, M.: The Seismotectonic Map of Africa, Episodes, 39, 9–18,
https://doi.org/10.18814/epiiugs/2016/v39i1/89232, 2016. a
Morell, K. D., Styron, R., Stirling, M., Griffin, J., Archuleta, R., and Onur,
T.: Seismic Hazard Analyses From Geologic and Geomorphic Data: Current and
Future Challenges, Tectonics, 39, TC005365, https://doi.org/10.1029/2018TC005365, 2020. a
Mortimer, E., Kirstein, L. A., Stuart, F. M., and Strecker, M. R.:
Spatio-temporal trends in normal-fault segmentation recorded by
low-temperature thermochronology: Livingstone fault scarp, Malawi Rift, East
African Rift System, Earth Planet. Sc. Lett., 455, 62–72,
https://doi.org/10.1016/j.epsl.2016.08.040, 2016. a
Muirhead, J. D., Wright, L. J., and Scholz, C. A.: Rift evolution in regions
of low magma input in East Africa, Earth Planet. Sc. Lett., 506,
332–346, https://doi.org/10.1016/j.epsl.2018.11.004, 2019. a
Neely, J. S. and Stein, S.: Why do continental normal fault earthquakes have
smaller maximum magnitudes?, Tectonophysics, 809, 228854,
https://doi.org/10.1016/j.tecto.2021.228854, 2021. a
Ngwenya, N. S. and Tappe, S.: Diamondiferous lamproites of the Luangwa Rift in
central Africa and links to remobilized cratonic lithosphere, Chem.
Geol., 568, 120019, https://doi.org/10.1016/j.chemgeo.2020.120019, 2021. a
Novelli, V. I., De Risi, R., Ngoma, I., Kafodya, I., Kloukinas, P.,
Macdonald, J., and Goda, K.: Fragility curves for non-engineered masonry
buildings in developing countries derived from real data based on structural
surveys and laboratory tests, Soft Comput., 25, 6113–6138,
https://doi.org/10.1007/s00500-021-05603-w, 2021. a
Nyblade, A. A. and Langston, C. A.: East African earthquakes below 20 km depth
and their implications for crustal structure, Geophys. J.
Int., 121, 49–62, https://doi.org/10.1111/j.1365-246X.1995.tb03510.x, 1995. a, b
Philippon, M., Willingshofer, E., Sokoutis, D., Corti, G., Sani, F., Bonini,
M., and Cloetingh, S.: Slip re-orientation in oblique rifts, Geology, 43,
147–150, https://doi.org/10.1130/G36208.1, 2015. a
Priestley, K., McKenzie, D., and Ho, T.: A Lithosphere–Asthenosphere
Boundary – a Global Model Derived from Multimode Surface‐Wave Tomography
and Petrology, in: Lithospheric Discontinuities, edited by: Yuan, H. and Romanowicz, B., American Geophysical Union Geophysical monograph series, 111–123, https://doi.org/10.1002/9781119249740.ch6, 2018. a, b
Rajaonarison, T. A., Stamps, D. S., and Naliboff, J.: Role of Lithospheric
Buoyancy Forces in Driving Deformation in East Africa From 3D Geodynamic
Modeling, Geophys. Res. Lett., 48, 1–10,
https://doi.org/10.1029/2020GL090483, 2021. a
Reeves, C. V.: Rifting in the Kalahari?, Nature, 237, 95–96,
https://doi.org/10.1038/237095a0, 1972. a
Rodriguez, E., Morris, C. S., Belz, J. E., Chapin, E. C., Martin, J. M.,
Daffer, W., and Hensley, S.: An assessment of the SRTM topographic
products, Tech. Rep., Jet Propulsion Laboratory, Jet Propulsion Laboratory,
https://www2.jpl.nasa.gov/srtm/SRTM_D31639.pdf (last access: April 2022), 2005. a
Roberts, E. M., Stevens, N. J., O'Connor, P. M., Dirks, P. H., Gottfried,
M. D., Clyde, W. C., Armstrong, R. A., Kemp, A. I., and Hemming, S.:
Initiation of the western branch of the East African Rift coeval with the
eastern branch, Nat. Geosci., 5, 289–294, https://doi.org/10.1038/ngeo1432,
2012. a
Salomon, G. W., New, T., Muir, R. A., Whitehead, B., Scheiber-Enslin, S., Smit,
J., Stevens, V., Kahle, B., Kahle, R., Eckardt, F. D., and Alastair Sloan,
R.: Geomorphological and geophysical analyses of the Hebron Fault, SW
Namibia: implications for stable continental region seismic hazard,
Geophys. J. Int., 229, 235–254, https://doi.org/10.1093/gji/ggab466,
2021. a
Sarafian, E., Evans, R. L., Abdelsalam, M. G., Atekwana, E., Elsenbeck, J.,
Jones, A. G., and Chikambwe, E.: Imaging Precambrian lithospheric structure
in Zambia using electromagnetic methods, Gondwana Res., 54, 38–49,
https://doi.org/10.1016/j.gr.2017.09.007, 2018. a, b
Scholz, C. A., Shillington, D. J., Wright, L. J., Accardo, N., Gaherty, J. B.,
and Chindandali, P.: Intrarift fault fabric, segmentation, and basin
evolution of the Lake Malawi (Nyasa) Rift, East Africa, Geosphere, 16,
1293–1311, https://doi.org/10.1130/GES02228.1, 2020. a, b
Scholz, C. H., Koczynski, T. A., and Hutchins, D. G.: Evidence for Incipient
Rifting in Southern Africa, Geophys. J. Roy. Astron.l
Soc., 44, 135–144, https://doi.org/10.1111/j.1365-246X.1976.tb00278.x, 1976. a
Schwartz, D. P. and Coppersmith, K. J.: Fault behavior and characteristic
earthquakes: examples from the Wasatch and San Andreas fault zones (USA),
J. Geophys. Res., 89, 5681–5698,
https://doi.org/10.1029/JB089iB07p05681, 1984. a
Shillington, D. J., Scholz, C. A., Chindandali, P. R. N., Gaherty, J. B.,
Accardo, N. J., Onyango, E., Ebinger, C. J., and Nyblade, A. A.: Controls on
Rift Faulting in the North Basin of the Malawi (Nyasa) Rift, East Africa,
Tectonics, 39, 1–3, https://doi.org/10.1029/2019TC005633, 2020. a
Skobelev, S., Hanon, M., Klerkx, J., Govorova, N., Lukina, N., and Kazmin, V.:
Active faults in Africa: a review, Tectonophysics, 380, 131–137,
https://doi.org/10.1016/j.tecto.2003.10.016, 2004. a
Stevens, V. L., Sloan, R. A., Chindandali, P. R., Wedmore, L. N. J., Salomon,
G. W., and Muir, R. A.: The Entire Crust can be Seismogenic: Evidence from
Southern Malawi, Tectonics, 40, TC006654, https://doi.org/10.1029/2020TC006654, 2021. a
Styron, R., García-Pelaez, J., and Pagani, M.: CCAF-DB: the Caribbean and Central American active fault database, Nat. Hazards Earth Syst. Sci., 20, 831–857, https://doi.org/10.5194/nhess-20-831-2020, 2020. a, b
Turner, T., Wedmore, L., and Biggs, J.: Luangwa Rift Fault Scarp Measurements (v1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.6513545, 2022a. a, b
Turner, T., Wedmore, L., Biggs, J., Williams, J., Sichingabula, H., Kabumbu, C., and Banda, K.: Luangwa Rift Seismogenic Source Properties (v1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.6513778, 2022b. a, b
USGS: U.S. Geological Survey, Earthquake Hazards Program, Advanced National Seismic System (ANSS) Comprehensive Catalog of Earthquake Events and Products: Various, https://doi.org/10.5066/F7MS3QZH, 2017. a, b
Valentini, A., DuRoss, C. B., Field, E. H., Gold, R. D., Briggs, R. W., Visini,
F., and Pace, B.: Relaxing Segmentation on the Wasatch Fault Zone: Impact on
Seismic Hazard, Bull. Seismol. Soc. Am., 110,
83–109, https://doi.org/10.1785/0120190088, 2020. a
Vittori, E., Delvaux, D., and Kervyn, F.: Kanda fault: A major seismogenic
element west of the Rukwa Rift (Tanzania, East Africa), J.
Geodyn., 24, 139–153, 1997. a
Vrána, S., Prasad, R., and Fediuková, E.: Metamorphic kyanite
eclogites in the lufilian arc of Zambia, Contrib. Mineral.
Petr., 51, 139–160, https://doi.org/10.1007/BF00403755, 1975. a
Wang, T., Feng, J., Liu, K. H., and Gao, S. S.: Crustal structure beneath the
Malawi and Luangwa Rift Zones and adjacent areas from ambient noise
tomography, Gondwana Res., 67, 187–198, https://doi.org/10.1016/j.gr.2018.10.018,
2019. a, b, c
Wedmore, L., Turner, T., Biggs, J., Williams, J., Sichingabula, H., Kabumbu, C., and Banda, K.: Luangwa Rift Active Fault Database v1.0 (v1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.6513691, 2022. a, b
Wedmore, L. N., Williams, J. N., Biggs, J., Fagereng, Å., Mphepo, F.,
Dulanya, Z., Willoughby, J., Mdala, H., and Adams, B.: Structural
inheritance and border fault reactivation during active early-stage rifting
along the Thyolo fault, Malawi, J. Struct. Geol., 139, 104097,
https://doi.org/10.1016/j.jsg.2020.104097, 2020a. a, b, c, d, e, f
Wedmore, L. N. J., Biggs, J., Williams, J. N., Fagereng, Å., Dulanya, Z.,
Mphepo, F., and Mdala, H.: Active Fault Scarps in Southern Malawi and Their
Implications for the Distribution of Strain in Incipient Continental Rifts,
Tectonics, 39, TC005834, https://doi.org/10.1029/2019TC005834, 2020b. a, b, c, d, e, f, g, h, i
Wedmore, L. N. J., Biggs, J., Floyd, M., Fagereng, Å., Mdala, H.,
Chindandali, P., Williams, J. N., and Mphepo, F.: Geodetic Constraints on
Cratonic Microplates and Broad Strain During Rifting of Thick Southern
African Lithosphere, Geophys. Res. Lett., 48, GL093785,
https://doi.org/10.1029/2021GL093785, 2021. a, b, c, d, e, f, g, h, i
Wesnousky, S. G.: Predicting the endpoints of earthquake ruptures, Nature,
444, 358–360, https://doi.org/10.1038/nature05275, 2006. a
Wesnousky, S. G.: Displacement and geometrical characteristics of earthquake
surface ruptures: Issues and implications for seismic-hazard analysis and the
process of earthquake rupture, Bull. Seismol. Soc.
Am., 98, 1609–1632, https://doi.org/10.1785/0120070111, 2008. a
Williams, J. N., Wedmore, L. N. J., Fagereng, Å., Werner, M. J., Mdala, H., Shillington, D. J., Scholz, C. A., Kolawole, F., Wright, L. J. M., Biggs, J., Dulanya, Z., Mphepo, F., and Chindandali, P.: Geologic and geodetic constraints on the seismic hazard of Malawi’s active faults: The Malawi Seismogenic Source Database (MSSD), Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2021-306, in review, 2021.
Williams, J. N., Fagereng, Å., Wedmore, L. N. J., Biggs, J., Mphepo, F.,
Dulanya, Z., Mdala, H., and Blenkinsop, T.: How Do Variably Striking Faults
Reactivate During Rifting? Insights From Southern Malawi, Geochem.
Geophy. Geosy., 20, 3588–3607, https://doi.org/10.1029/2019gc008219, 2019. a, b
Williams, J. N., Mdala, H., Fagereng, Å., Wedmore, L. N. J., Biggs, J.,
Dulanya, Z., Chindandali, P., and Mphepo, F.: A systems-based approach to
parameterise seismic hazard in regions with little historical or instrumental
seismicity: active fault and seismogenic source databases for southern
Malawi, Solid Earth, 12, 187–217, https://doi.org/10.5194/se-12-187-2021, 2021. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Williams, J. N., Wedmore, L. N. J., Scholz, C. A., Kolawole, F., Wright, L.
J. M., Shillington, D. J., Fagereng, Å., Biggs, J., Mdala, H., Dulanya,
Z., Mphepo, F., Chindandali, P., and Werner, M. J.: The Malawi Active Fault
Database: an onshore‐offshore database for regional assessment of seismic
hazard and tectonic evolution, Geochem. Geophy. Geosy., 23, GC010425,
https://doi.org/10.1029/2022GC010425, 2022.
a, b, c, d, e, f, g, h, i, j
World Bank: Tectonic Shift Rift2018 Report, Tech. Rep., Washington DC, World Bank,
https://www.gfdrr.org/en/publication/tectonic-shift-rift2018-report (last access: April 2022),
2019. a
Yang, Z. and Chen, W. P.: Earthquakes along the East African Rift System: A
multiscale, system-wide perspective, J. Geophys. Res.-Sol.
Ea., 115, 1–31, https://doi.org/10.1029/2009JB006779, 2010. a
Youngs, R. R. and Coppersmith, K. J.: Implications of fault slip rates and
earthquake recurrence models to probabilistic seismic hazard estimates,
Bull. Seismol. Soc. Am., 75, 939–964,
1985. a
Zhang, P., Slemmons, D. B., and Mao, F.: Geometric pattern, rupture
termination and fault segmentation of the Dixie Valley-Pleasant Valley active
normal fault system, Nevada, USA, J. Struct. Geol., 13,
165–176, https://doi.org/10.1016/0191-8141(91)90064-P, 1991. a
Zielke, O. and Strecker, M. R.: Recurrence of large earthquakes in magmatic
continental rifts: Insights from a paleoseismic study along the
Laikipia-Marmanet fault, Subukia Valley, Kenya rift, Bull.
Seismol. Soc. Am., 99, 61–70, https://doi.org/10.1785/0120080015, 2009. a
Short summary
Mapping and compiling the attributes of faults capable of hosting earthquakes are important for the next generation of seismic hazard assessment. We document 18 active faults in the Luangwa Rift, Zambia, in an active fault database. These faults are between 9 and 207 km long offset Quaternary sediments, have scarps up to ~30 m high, and are capable of hosting earthquakes from Mw 5.8 to 8.1. We associate the Molaza Fault with surface ruptures from two unattributed M 6+ 20th century earthquakes.
Mapping and compiling the attributes of faults capable of hosting earthquakes are important for...