Articles | Volume 13, issue 2
https://doi.org/10.5194/se-13-301-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-301-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-disciplinary characterizations of the BedrettoLab – a new underground geoscience research facility
Xiaodong Ma
CORRESPONDING AUTHOR
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Marian Hertrich
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Florian Amann
Engineering Geology and Hydrogeology, RWTH Aachen, 52062 Aachen,
Germany
Kai Bröker
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Nima Gholizadeh Doonechaly
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Valentin Gischig
CSD Ingenieure AG, 3097 Liebefeld, Switzerland
Rebecca Hochreutener
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Philipp Kästli
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Hannes Krietsch
Engineering Geology and Hydrogeology, RWTH Aachen, 52062 Aachen,
Germany
Michèle Marti
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Barbara Nägeli
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Morteza Nejati
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Anne Obermann
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Katrin Plenkers
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Antonio P. Rinaldi
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Alexis Shakas
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Linus Villiger
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Quinn Wenning
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Alba Zappone
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Falko Bethmann
Geo-Energie Suisse AG, 8004 Zürich, Switzerland
Raymi Castilla
Geo-Energie Suisse AG, 8004 Zürich, Switzerland
Francisco Seberto
Geo-Energie Suisse AG, 8004 Zürich, Switzerland
Peter Meier
Geo-Energie Suisse AG, 8004 Zürich, Switzerland
Thomas Driesner
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Simon Loew
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Hansruedi Maurer
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Martin O. Saar
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Stefan Wiemer
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Domenico Giardini
Department of Earth Sciences, ETH Zürich, 8092 Zürich,
Switzerland
Related authors
Chengjun Feng, Guangliang Gao, Shihuai Zhang, Dongsheng Sun, Siyu Zhu, Chengxuan Tan, and Xiaodong Ma
Nat. Hazards Earth Syst. Sci., 22, 2257–2287, https://doi.org/10.5194/nhess-22-2257-2022, https://doi.org/10.5194/nhess-22-2257-2022, 2022
Short summary
Short summary
We show how FSP (Fault Slip Potential) software can be used in quantitative screening to estimate the fault slip potential in a region with some uncertainties in the ambient stress field and to assess the reactivation potential on these faults of presumably higher criticality in response to fluid injection. The case study of the Matouying enhanced geothermal system (EGS) field has important implications for deep geothermal exploitation in China, especially for the Gonghe EGS in Qinghai Province.
Po-Wei Huang, Bernd Flemisch, Chao-Zhong Qin, Martin O. Saar, and Anozie Ebigbo
EGUsphere, https://doi.org/10.5194/egusphere-2022-1205, https://doi.org/10.5194/egusphere-2022-1205, 2022
Short summary
Short summary
Water in natural environments consists of many ions. Ions are electrically charged and exert electric forces on each other. We discuss whether the electric forces are relevant in describing mixing and reaction processes in natural environments. By comparing our computer simulations to lab experiments in literature, we show that the electric interactions between ions can play an essential role in mixing and reaction processes, in which case they should not be neglected in numerical modeling.
Sebastian Hellmann, Melchior Grab, Cedric Patzer, Andreas Bauder, and Hansruedi Maurer
EGUsphere, https://doi.org/10.5194/egusphere-2022-1069, https://doi.org/10.5194/egusphere-2022-1069, 2022
Short summary
Short summary
Acoustic waves are suitable to analyse the physical properties of the subsurface. For this purpose, boreholes are quite useful to deploy a source and receivers in the target area to get a comprehensive high-resolution dataset. However, when conducting such experiments in a subsurface such as glacier that continuously move, the boreholes get deformed. In our study, we therefore developed a method that allow an analysis of the ice while considering deformations.
Christophe Lienert, Franziska Angly Bieri, Irina Dallo, and Michèle Marti
Abstr. Int. Cartogr. Assoc., 5, 154, https://doi.org/10.5194/ica-abs-5-154-2022, https://doi.org/10.5194/ica-abs-5-154-2022, 2022
Chengjun Feng, Guangliang Gao, Shihuai Zhang, Dongsheng Sun, Siyu Zhu, Chengxuan Tan, and Xiaodong Ma
Nat. Hazards Earth Syst. Sci., 22, 2257–2287, https://doi.org/10.5194/nhess-22-2257-2022, https://doi.org/10.5194/nhess-22-2257-2022, 2022
Short summary
Short summary
We show how FSP (Fault Slip Potential) software can be used in quantitative screening to estimate the fault slip potential in a region with some uncertainties in the ambient stress field and to assess the reactivation potential on these faults of presumably higher criticality in response to fluid injection. The case study of the Matouying enhanced geothermal system (EGS) field has important implications for deep geothermal exploitation in China, especially for the Gonghe EGS in Qinghai Province.
Lisa Winhausen, Kavan Khaledi, Mohammadreza Jalali, Janos L. Urai, and Florian Amann
Solid Earth, 13, 901–915, https://doi.org/10.5194/se-13-901-2022, https://doi.org/10.5194/se-13-901-2022, 2022
Short summary
Short summary
Triaxial compression tests at different effective stresses allow for analysing the deformation behaviour of Opalinus Clay, the potential host rock for nuclear waste in Switzerland. We conducted microstructural investigations of the deformed samples to relate the bulk hydro-mechanical behaviour to the processes on the microscale. Results show a transition from brittle- to more ductile-dominated deformation. We propose a non-linear failure envelop associated with the failure mode transition.
Lisa Winhausen, Mohammadreza Jalali, and Florian Amann
Saf. Nucl. Waste Disposal, 1, 301–301, https://doi.org/10.5194/sand-1-301-2021, https://doi.org/10.5194/sand-1-301-2021, 2021
Lisa Winhausen, Jop Klaver, Joyce Schmatz, Guillaume Desbois, Janos L. Urai, Florian Amann, and Christophe Nussbaum
Solid Earth, 12, 2109–2126, https://doi.org/10.5194/se-12-2109-2021, https://doi.org/10.5194/se-12-2109-2021, 2021
Short summary
Short summary
An experimentally deformed sample of Opalinus Clay (OPA), which is being considered as host rock for nuclear waste in Switzerland, was studied by electron microscopy to image deformation microstructures. Deformation localised by forming micrometre-thick fractures. Deformation zones show dilatant micro-cracking, granular flow and bending grains, and pore collapse. Our model, with three different stages of damage accumulation, illustrates microstructural deformation in a compressed OPA sample.
Viktor J. Bruckman, Gregor Giebel, Christopher Juhlin, Sonja Martens, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 56, 13–18, https://doi.org/10.5194/adgeo-56-13-2021, https://doi.org/10.5194/adgeo-56-13-2021, 2021
Gregory Church, Andreas Bauder, Melchior Grab, and Hansruedi Maurer
The Cryosphere, 15, 3975–3988, https://doi.org/10.5194/tc-15-3975-2021, https://doi.org/10.5194/tc-15-3975-2021, 2021
Short summary
Short summary
In this field study, we acquired a 3D radar survey over an active drainage network that transported meltwater through a Swiss glacier. We successfully imaged both englacial and subglacial pathways and were able to confirm long-standing glacier hydrology theory regarding meltwater pathways. The direction of these meltwater pathways directly impacts the glacier's velocity, and therefore more insightful field observations are needed in order to improve our understanding of this complex system.
Sebastian Hellmann, Melchior Grab, Johanna Kerch, Henning Löwe, Andreas Bauder, Ilka Weikusat, and Hansruedi Maurer
The Cryosphere, 15, 3507–3521, https://doi.org/10.5194/tc-15-3507-2021, https://doi.org/10.5194/tc-15-3507-2021, 2021
Short summary
Short summary
In this study, we analyse whether ultrasonic measurements on ice core samples could be employed to derive information about the particular ice crystal orientation in these samples. We discuss if such ultrasonic scans of ice core samples could provide similarly detailed results as the established methods, which usually destroy the ice samples. Our geophysical approach is minimally invasive and could support the existing methods with additional and (semi-)continuous data points along the ice core.
Peter-Lasse Giertzuch, Joseph Doetsch, Alexis Shakas, Mohammadreza Jalali, Bernard Brixel, and Hansruedi Maurer
Solid Earth, 12, 1497–1513, https://doi.org/10.5194/se-12-1497-2021, https://doi.org/10.5194/se-12-1497-2021, 2021
Short summary
Short summary
Two time-lapse borehole ground penetrating radar (GPR) surveys were conducted during saline tracer experiments in weakly fractured crystalline rock with sub-millimeter fractures apertures, targeting electrical conductivity changes. The combination of time-lapse reflection and transmission GPR surveys from different boreholes allowed monitoring the tracer flow and reconstructing the flow path and its temporal evolution in 3D and provided a realistic visualization of the hydrological processes.
Irene Bianchi, Elmer Ruigrok, Anne Obermann, and Edi Kissling
Solid Earth, 12, 1185–1196, https://doi.org/10.5194/se-12-1185-2021, https://doi.org/10.5194/se-12-1185-2021, 2021
Short summary
Short summary
The European Alps formed during collision between the European and Adriatic plates and are one of the most studied orogens for understanding the dynamics of mountain building. In the Eastern Alps, the contact between the colliding plates is still a matter of debate. We have used the records from distant earthquakes to highlight the geometries of the crust–mantle boundary in the Eastern Alpine area; our results suggest a complex and faulted internal crustal structure beneath the higher crests.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Alba Zappone, Antonio Pio Rinaldi, Melchior Grab, Quinn C. Wenning, Clément Roques, Claudio Madonna, Anne C. Obermann, Stefano M. Bernasconi, Matthias S. Brennwald, Rolf Kipfer, Florian Soom, Paul Cook, Yves Guglielmi, Christophe Nussbaum, Domenico Giardini, Marco Mazzotti, and Stefan Wiemer
Solid Earth, 12, 319–343, https://doi.org/10.5194/se-12-319-2021, https://doi.org/10.5194/se-12-319-2021, 2021
Short summary
Short summary
The success of the geological storage of carbon dioxide is linked to the availability at depth of a capable reservoir and an impermeable caprock. The sealing capacity of the caprock is a key parameter for long-term CO2 containment. Faults crosscutting the caprock might represent preferential pathways for CO2 to escape. A decameter-scale experiment on injection in a fault, monitored by an integrated network of multiparamerter sensors, sheds light on the mobility of fluids within the fault.
Larissa de Palézieux, Kerry Leith, and Simon Loew
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2020-85, https://doi.org/10.5194/esurf-2020-85, 2020
Revised manuscript not accepted
Short summary
Short summary
Large creeping landslides are persistent features in mountainous landscapes. In order to quantify the long-term evolution of landslides and their interaction with river channels, we use a new metric for landslide-induced channel offset, which allows us to identify locations associated with increased landslide activity and estimate landslide displacement rates over a period of 1 Myr.
Camilla Rossi, Francesco Grigoli, Simone Cesca, Sebastian Heimann, Paolo Gasperini, Vala Hjörleifsdóttir, Torsten Dahm, Christopher J. Bean, Stefan Wiemer, Luca Scarabello, Nima Nooshiri, John F. Clinton, Anne Obermann, Kristján Ágústsson, and Thorbjörg Ágústsdóttir
Adv. Geosci., 54, 129–136, https://doi.org/10.5194/adgeo-54-129-2020, https://doi.org/10.5194/adgeo-54-129-2020, 2020
Short summary
Short summary
We investigate the microseismicity occurred at Hengill area, a complex tectonic and geothermal site, where the origin of earthquakes may be either natural or anthropogenic. We use a very dense broadband seismic monitoring network and apply full-waveform based method for location. Our results and first characterization identified different types of microseismic clusters, which might be associated to either production/injection or the tectonic activity of the geothermal area.
Gregory Church, Melchior Grab, Cédric Schmelzbach, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 14, 3269–3286, https://doi.org/10.5194/tc-14-3269-2020, https://doi.org/10.5194/tc-14-3269-2020, 2020
Short summary
Short summary
In this field study, we repeated ground-penetrating radar measurements over an active englacial channel network that transports meltwater through the glacier. We successfully imaged the englacial meltwater pathway and were able to delimitate the channel's shape. Meltwater from the glacier can impact the glacier's dynamics if it reaches the ice–bed interface, and therefore monitoring these englacial drainage networks is important to understand how these networks behave throughout a season.
Hannes Krietsch, Valentin S. Gischig, Joseph Doetsch, Keith F. Evans, Linus Villiger, Mohammadreza Jalali, Benoît Valley, Simon Löw, and Florian Amann
Solid Earth, 11, 1699–1729, https://doi.org/10.5194/se-11-1699-2020, https://doi.org/10.5194/se-11-1699-2020, 2020
Sonja Martens, Maren Brehme, Viktor J. Bruckman, Christopher Juhlin, Johannes Miocic, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 54, 1–5, https://doi.org/10.5194/adgeo-54-1-2020, https://doi.org/10.5194/adgeo-54-1-2020, 2020
Joseph Doetsch, Hannes Krietsch, Cedric Schmelzbach, Mohammadreza Jalali, Valentin Gischig, Linus Villiger, Florian Amann, and Hansruedi Maurer
Solid Earth, 11, 1441–1455, https://doi.org/10.5194/se-11-1441-2020, https://doi.org/10.5194/se-11-1441-2020, 2020
Marco Broccardo, Arnaud Mignan, Francesco Grigoli, Dimitrios Karvounis, Antonio Pio Rinaldi, Laurentiu Danciu, Hannes Hofmann, Claus Milkereit, Torsten Dahm, Günter Zimmermann, Vala Hjörleifsdóttir, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 20, 1573–1593, https://doi.org/10.5194/nhess-20-1573-2020, https://doi.org/10.5194/nhess-20-1573-2020, 2020
Short summary
Short summary
This study presents a first-of-its-kind pre-drilling probabilistic induced seismic risk analysis for the Geldinganes (Iceland) deep-hydraulic stimulation. The results of the assessment indicate that the individual risk within a radius of 2 km around the injection point is below the safety limits. However, the analysis is affected by a large variability due to the presence of pre-drilling deep uncertainties. This suggests the need for online risk updating during the stimulation.
Dominik Zbinden, Antonio Pio Rinaldi, Tobias Diehl, and Stefan Wiemer
Solid Earth, 11, 909–933, https://doi.org/10.5194/se-11-909-2020, https://doi.org/10.5194/se-11-909-2020, 2020
Short summary
Short summary
The deep geothermal project in St. Gallen, Switzerland, aimed at generating electricity and heat. The fluid pumped into the underground caused hundreds of small earthquakes and one larger one felt by the local population. Here we use computer simulations to study the physical processes that led to the earthquakes. We find that gas present in the subsurface could have intensified the seismicity, which may have implications for future geothermal projects conducted in similar geological conditions.
Linus Villiger, Valentin Samuel Gischig, Joseph Doetsch, Hannes Krietsch, Nathan Oliver Dutler, Mohammadreza Jalali, Benoît Valley, Paul Antony Selvadurai, Arnaud Mignan, Katrin Plenkers, Domenico Giardini, Florian Amann, and Stefan Wiemer
Solid Earth, 11, 627–655, https://doi.org/10.5194/se-11-627-2020, https://doi.org/10.5194/se-11-627-2020, 2020
Short summary
Short summary
Hydraulic stimulation summarizes fracture initiation and reactivation due to high-pressure fluid injection. Several borehole intervals covering intact rock and pre-existing fractures were targets for high-pressure fluid injections within a decameter-scale, crystalline rock volume. The observed induced seismicity strongly depends on the target geology. In addition, the severity of the induced seismicity per experiment counter correlates with the observed transmissivity enhancement.
Felix Kästner, Simona Pierdominici, Judith Elger, Alba Zappone, Jochem Kück, and Christian Berndt
Solid Earth, 11, 607–626, https://doi.org/10.5194/se-11-607-2020, https://doi.org/10.5194/se-11-607-2020, 2020
Short summary
Short summary
Knowledge about physical properties at depth is crucial to image and understand structures linked with orogenic processes. We examined seismic velocities from core and downhole data from the COSC-1 borehole, Sweden, and calibrated our results with laboratory measurements on core samples. Despite a strong mismatch between the core and downhole velocities due to microcracks, mafic units are resolved at all scales, while at sample scale, strong seismic anisotropy correlates with the rock foliation.
Michèle Marti, Michael Stauffacher, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 19, 2677–2700, https://doi.org/10.5194/nhess-19-2677-2019, https://doi.org/10.5194/nhess-19-2677-2019, 2019
Short summary
Short summary
Maps are an established way to illustrate natural hazards and regularly used to communicate with non-experts. However, there is evidence that they are frequently misconceived. Using a real case, our study shows that applying or disregarding best practices in visualization, editing, and presentation significantly impacts the comprehensibility of seismic hazard information. We suggest scrutinizing current natural-hazard communication strategies and empirically testing new products.
Patrick Selvadurai, Paul A. Selvadurai, and Morteza Nejati
Solid Earth, 10, 2001–2014, https://doi.org/10.5194/se-10-2001-2019, https://doi.org/10.5194/se-10-2001-2019, 2019
Short summary
Short summary
The paper presents an alternative technique for estimating the Biot coefficient, which governs the partitioning of stresses between a porous skeleton and the saturating pore fluid of a fluid-saturated rock.
Nathan Dutler, Benoît Valley, Valentin Gischig, Linus Villiger, Hannes Krietsch, Joseph Doetsch, Bernard Brixel, Mohammadreza Jalali, and Florian Amann
Solid Earth, 10, 1877–1904, https://doi.org/10.5194/se-10-1877-2019, https://doi.org/10.5194/se-10-1877-2019, 2019
Short summary
Short summary
In this study, we present seismo-hydromechanical results from six hydraulic fracturing experiments executed in the framework of the In-situ Stimulation and Circulation (ISC) project. The well-characterized and extensively monitored target rock allows for the study of (1) the response of the rock mass, (2) the injection and pore pressure response, and (3) the geometry of newly created fractures and their interaction with the natural fracture network.
Sonja Martens, Christopher Juhlin, Viktor J. Bruckman, Gregor Giebel, Thomas Nagel, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 49, 31–35, https://doi.org/10.5194/adgeo-49-31-2019, https://doi.org/10.5194/adgeo-49-31-2019, 2019
Lisbeth Langhammer, Melchior Grab, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 13, 2189–2202, https://doi.org/10.5194/tc-13-2189-2019, https://doi.org/10.5194/tc-13-2189-2019, 2019
Short summary
Short summary
We have developed a novel procedure for glacier thickness estimations that combines traditional glaciological modeling constraints with ground-truth data, for example, those obtained with ground-penetrating radar (GPR) measurements. This procedure is very useful for determining ice volume when only limited data are available. Furthermore, we outline a strategy for acquiring GPR data on glaciers, such that the cost/benefit ratio is optimized.
Quinn C. Wenning, Claudio Madonna, Antoine de Haller, and Jean-Pierre Burg
Solid Earth, 9, 683–698, https://doi.org/10.5194/se-9-683-2018, https://doi.org/10.5194/se-9-683-2018, 2018
Short summary
Short summary
We measured the elastic and fluid flow properties in a ductile-brittle shear zone. The results suggest that although brittle deformation has persisted in the recent fault evolution, precursory ductile microstructure continues to control the petrophysical properties outside the fault core. The results are a glimpse into the evolutionary path of a shear zone during the ductile to brittle transition and are insightful for geothermal energy and geologic waste disposal exploitation and usage.
Florian Amann, Valentin Gischig, Keith Evans, Joseph Doetsch, Reza Jalali, Benoît Valley, Hannes Krietsch, Nathan Dutler, Linus Villiger, Bernard Brixel, Maria Klepikova, Anniina Kittilä, Claudio Madonna, Stefan Wiemer, Martin O. Saar, Simon Loew, Thomas Driesner, Hansruedi Maurer, and Domenico Giardini
Solid Earth, 9, 115–137, https://doi.org/10.5194/se-9-115-2018, https://doi.org/10.5194/se-9-115-2018, 2018
Valentin Samuel Gischig, Joseph Doetsch, Hansruedi Maurer, Hannes Krietsch, Florian Amann, Keith Frederick Evans, Morteza Nejati, Mohammadreza Jalali, Benoît Valley, Anne Christine Obermann, Stefan Wiemer, and Domenico Giardini
Solid Earth, 9, 39–61, https://doi.org/10.5194/se-9-39-2018, https://doi.org/10.5194/se-9-39-2018, 2018
Katrin M. Wild, Patric Walter, and Florian Amann
Solid Earth, 8, 351–360, https://doi.org/10.5194/se-8-351-2017, https://doi.org/10.5194/se-8-351-2017, 2017
Melchior Grab, Beatriz Quintal, Eva Caspari, Hansruedi Maurer, and Stewart Greenhalgh
Solid Earth, 8, 255–279, https://doi.org/10.5194/se-8-255-2017, https://doi.org/10.5194/se-8-255-2017, 2017
Short summary
Short summary
Hot fluids and hydraulically conductive rock formations are essential for the accessibility of geothermal resources. We use numerical modeling techniques to investigate how seismic waves change their shape in presence of these factors. We demonstrate how to parameterize such models depending on the local geology and as a function of depth. Finally, we show how the attenuation, i.e. the energy loss of the wave, can be indicative for permeable rock fractures saturated with a fluid of specific type.
Irene Molinari, John Clinton, Edi Kissling, György Hetényi, Domenico Giardini, Josip Stipčević, Iva Dasović, Marijan Herak, Vesna Šipka, Zoltán Wéber, Zoltán Gráczer, Stefano Solarino, the Swiss-AlpArray Field Team, and the AlpArray Working Group
Adv. Geosci., 43, 15–29, https://doi.org/10.5194/adgeo-43-15-2016, https://doi.org/10.5194/adgeo-43-15-2016, 2016
Short summary
Short summary
AlpArray is a collaborative seismological project in Europe that includes ~ 50 research institutes and seismological observatories. At its heart is the collection of top-quality seismological data from a dense network of stations in the Alpine region: the AlpArray Seismic Network (AASN). We report the Swiss contribution: site selections, installation, data quality and management. We deployed 27 temporary BB stations across 5 countries as result of a fruitful collaboration between 5 institutes.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Structural geology
Time-dependent frictional properties of granular materials used in analogue modelling: implications for mimicking fault healing during reactivation and inversion
Large grain-size-dependent rheology contrasts of halite at low differential stress: evidence from microstructural study of naturally deformed gneissic Zechstein 2 rock salt (Kristallbrockensalz) from the northern Netherlands
Analogue modelling of the inversion of multiple extensional basins in foreland fold-and-thrust belts
A contribution to the quantification of crustal shortening and kinematics of deformation across the Western Andes ( ∼ 20–22° S)
Rift thermal inheritance in the SW Alps (France): insights from RSCM thermometry and 1D thermal numerical modelling
Water release and homogenization by dynamic recrystallization of quartz
Role of inheritance during tectonic inversion of a rift system in a thick- to thin-skin transition: Analogue modelling and application to the Pyrenean – Biscay System
The Luangwa Rift Active Fault Database and fault reactivation along the southwestern branch of the East African Rift
Clustering has a meaning: optimization of angular similarity to detect 3D geometric anomalies in geological terrains
Shear zone evolution and the path of earthquake rupture
Mechanical compaction mechanisms in the input sediments of the Sumatra subduction complex – insights from microstructural analysis of cores from IODP Expedition 362
Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods
Multiscale lineament analysis and permeability heterogeneity of fractured crystalline basement blocks
Structural characterization and K–Ar illite dating of reactivated, complex and heterogeneous fault zones: lessons from the Zuccale Fault, Northern Apennines
How do differences in interpreting seismic images affect estimates of geological slip rates?
Progressive veining during peridotite carbonation: insights from listvenites in Hole BT1B, Samail ophiolite (Oman)
Tectonic evolution of the Indio Hills segment of the San Andreas fault in southern California, southwestern USA
Structural diagenesis in ultra-deep tight sandstones in the Kuqa Depression, Tarim Basin, China
Variscan structures and their control on latest to post-Variscan basin architecture: insights from the westernmost Bohemian Massif and southeastern Germany
Biotite supports long-range diffusive transport in dissolution–precipitation creep in halite through small porosity fluctuations
De-risking the energy transition by quantifying the uncertainties in fault stability
Virtual field trip to the Esla Nappe (Cantabrian Zone, NW Spain): delivering traditional geological mapping skills remotely using real data
Marine forearc structure of eastern Java and its role in the 1994 Java tsunami earthquake
Roughness of fracture surfaces in numerical models and laboratory experiments
Impact of basement thrust faults on low-angle normal faults and rift basin evolution: a case study in the Enping sag, Pearl River Basin
Evidence for and significance of the Late Cretaceous Asteroussia event in the Gondwanan Ios basement terranes
Investigating spatial heterogeneity within fracture networks using hierarchical clustering and graph distance metrics
Dating folding beyond folding, from layer-parallel shortening to fold tightening, using mesostructures: lessons from the Apennines, Pyrenees, and Rocky Mountains
Deformation-enhanced diagenesis and bacterial proliferation in the Nankai accretionary prism
Rheological stratification in impure rock salt during long-term creep: morphology, microstructure, and numerical models of multilayer folds in the Ocnele Mari salt mine, Romania
Geodynamic and seismotectonic model of a long-lived transverse structure: The Schio-Vicenza Fault System (NE Italy)
Neogene kinematics of the Giudicarie Belt and eastern Southern Alpine orogenic front (northern Italy)
Fault interpretation uncertainties using seismic data, and the effects on fault seal analysis: a case study from the Horda Platform, with implications for CO2 storage
Reply to Norini and Groppelli's comment on “Estimating the depth and evolution of intrusions at resurgent calderas: Los Humeros (Mexico)” by Urbani et al. (2020)
Emplacement of “exotic” Zechstein slivers along the inverted Sontra Graben (northern Hessen, Germany): clues from balanced cross sections and geometrical forward modeling
Kinematics of subduction in the Ibero-Armorican arc constrained by 3D microstructural analysis of garnet and pseudomorphed lawsonite porphyroblasts from Île de Groix (Variscan belt)
Frictional properties and microstructural evolution of dry and wet calcite–dolomite gouges
Experimental evidence that viscous shear zones generate periodic pore sheets
Influence of inherited structural domains and their particular strain distributions on the Roer Valley graben evolution from inversion to extension
The Piuquencillo fault system: a long-lived, Andean-transverse fault system and its relationship with magmatic and hydrothermal activity
Extensional reactivation of the Penninic frontal thrust 3 Myr ago as evidenced by U–Pb dating on calcite in fault zone cataclasite
Distribution, microphysical properties, and tectonic controls of deformation bands in the Miocene subduction wedge (Whakataki Formation) of the Hikurangi subduction zone
Analysis of deformation bands associated with the Trachyte Mesa intrusion, Henry Mountains, Utah: implications for reservoir connectivity and fluid flow around sill intrusions
Characterization of discontinuities in potential reservoir rocks for geothermal applications in the Rhine-Ruhr metropolitan area (Germany)
On a new robust workflow for the statistical and spatial analysis of fracture data collected with scanlines (or the importance of stationarity)
Micro- and nano-porosity of the active Alpine Fault zone, New Zealand
Unraveling the origins and P-T-t evolution of the allochthonous Sobrado unit (Órdenes Complex, NW Spain) using combined U–Pb titanite, monazite and zircon geochronology and rare-earth element (REE) geochemistry
Fracture attribute scaling and connectivity in the Devonian Orcadian Basin with implications for geologically equivalent sub-surface fractured reservoirs
Structural control on fluid flow and shallow diagenesis: insights from calcite cementation along deformation bands in porous sandstones
The growth of faults and fracture networks in a mechanically evolving, mechanically stratified rock mass: a case study from Spireslack Surface Coal Mine, Scotland
Michael Rudolf, Matthias Rosenau, and Onno Oncken
Solid Earth, 14, 311–331, https://doi.org/10.5194/se-14-311-2023, https://doi.org/10.5194/se-14-311-2023, 2023
Short summary
Short summary
Analogue models of tectonic processes rely on the reproduction of their geometry, kinematics and dynamics. An important property is fault behaviour, which is linked to the frictional characteristics of the fault gouge. This is represented by granular materials, such as quartz sand. In our study we investigate the time-dependent frictional properties of various analogue materials and highlight their impact on the suitability of these materials for analogue models focusing on fault reactivation.
Jessica Barabasch, Joyce Schmatz, Jop Klaver, Alexander Schwedt, and Janos L. Urai
Solid Earth, 14, 271–291, https://doi.org/10.5194/se-14-271-2023, https://doi.org/10.5194/se-14-271-2023, 2023
Short summary
Short summary
We analysed Zechstein salt with microscopes and observed specific microstructures that indicate much faster deformation in rock salt with fine halite grains when compared to salt with larger grains. This is important because people build large cavities in the subsurface salt for energy storage or want to deposit radioactive waste inside it. When engineers and scientists use grain-size data and equations that include this mechanism, it will help to make better predictions in geological models.
Nicolás Molnar and Susanne Buiter
Solid Earth, 14, 213–235, https://doi.org/10.5194/se-14-213-2023, https://doi.org/10.5194/se-14-213-2023, 2023
Short summary
Short summary
Progression of orogenic wedges over pre-existing extensional structures is common in nature, but deciphering the spatio-temporal evolution of deformation from the geological record remains challenging. Our laboratory experiments provide insights on how horizontal stresses are transferred across a heterogeneous crust, constrain which pre-shortening conditions can either favour or hinder the reactivatation of extensional structures, and explain what implications they have on critical taper theory.
Tania Habel, Martine Simoes, Robin Lacassin, Daniel Carrizo, and German Aguilar
Solid Earth, 14, 17–42, https://doi.org/10.5194/se-14-17-2023, https://doi.org/10.5194/se-14-17-2023, 2023
Short summary
Short summary
The Central Andes are one of the most emblematic reliefs on Earth, but their western flank remains understudied. Here we explore two rare key sites in the hostile conditions of the Atacama desert to build cross-sections, quantify crustal shortening, and discuss the timing of this deformation at ∼20–22°S. We propose that the structures of the Western Andes accommodated significant crustal shortening here, but only during the earliest stages of mountain building.
Naïm Célini, Frédéric Mouthereau, Abdeltif Lahfid, Claude Gout, and Jean-Paul Callot
Solid Earth, 14, 1–16, https://doi.org/10.5194/se-14-1-2023, https://doi.org/10.5194/se-14-1-2023, 2023
Short summary
Short summary
We investigate the peak temperature of sedimentary rocks of the SW Alps (France), using Raman spectroscopy on carbonaceous material. This method provides an estimate of the peak temperature achieved by organic-rich rocks. To determine the timing and the tectonic context of the origin of these temperatures we use 1D thermal modelling. We find that the high temperatures up to 300 °C were achieved during precollisional extensional events, not during tectonic burial in the Western Alps.
Junichi Fukuda, Takamoto Okudaira, and Yukiko Ohtomo
EGUsphere, https://doi.org/10.5194/egusphere-2022-1487, https://doi.org/10.5194/egusphere-2022-1487, 2023
Short summary
Short summary
We measured water distributions in deformed quartz by infrared spectroscopy mapping and used the results to discuss changes in water distribution resulting from textural development. Because of the grain size reduction process (dynamic recrystallization), water contents decrease from 40–1750 wt. ppm in host grains of ~500 µm to 100–510 wt. ppm in recrystallized regions composed of fine grains of ~10 µm. Our results indicate that water is released and homogenized by dynamic recrystallization.
Jordi Miró, Oriol Ferrer, Josep Anton Muñoz, and Gianreto Manastchal
EGUsphere, https://doi.org/10.5194/egusphere-2022-1175, https://doi.org/10.5194/egusphere-2022-1175, 2022
Short summary
Short summary
Using the Asturian – Basque-Cantabrian System and analogue (sandbox) models, this work focuses on the linkage between basement-controlled and salt-decoupled domains, and how deformation is accommodated in between both during extension and subsequent inversion. Analogue models show significant structural variability in the transitional domain, with oblique structures that can be strongly modified by syn-contractional sedimentation. Experimental results are consistent with the case study.
Luke N. J. Wedmore, Tess Turner, Juliet Biggs, Jack N. Williams, Henry M. Sichingabula, Christine Kabumbu, and Kawawa Banda
Solid Earth, 13, 1731–1753, https://doi.org/10.5194/se-13-1731-2022, https://doi.org/10.5194/se-13-1731-2022, 2022
Short summary
Short summary
Mapping and compiling the attributes of faults capable of hosting earthquakes are important for the next generation of seismic hazard assessment. We document 18 active faults in the Luangwa Rift, Zambia, in an active fault database. These faults are between 9 and 207 km long offset Quaternary sediments, have scarps up to ~30 m high, and are capable of hosting earthquakes from Mw 5.8 to 8.1. We associate the Molaza Fault with surface ruptures from two unattributed M 6+ 20th century earthquakes.
Michał P. Michalak, Lesław Teper, Florian Wellmann, Jerzy Żaba, Krzysztof Gaidzik, Marcin Kostur, Yuriy P. Maystrenko, and Paulina Leonowicz
Solid Earth, 13, 1697–1720, https://doi.org/10.5194/se-13-1697-2022, https://doi.org/10.5194/se-13-1697-2022, 2022
Short summary
Short summary
When characterizing geological/geophysical surfaces, various geometric attributes are calculated, such as dip angle (1D) or dip direction (2D). However, the boundaries between specific values may be subjective and without optimization significance, resulting from using default color palletes. This study proposes minimizing cosine distance among within-cluster observations to detect 3D anomalies. Our results suggest that the method holds promise for identification of megacylinders or megacones.
Erik M. Young, Christie D. Rowe, and James D. Kirkpatrick
Solid Earth, 13, 1607–1629, https://doi.org/10.5194/se-13-1607-2022, https://doi.org/10.5194/se-13-1607-2022, 2022
Short summary
Short summary
Studying how earthquakes spread deep within the faults they originate from is crucial to improving our understanding of the earthquake process. We mapped preserved ancient earthquake surfaces that are now exposed in South Africa and studied their relationship with the shape and type of rocks surrounding them. We determined that these surfaces are not random and are instead associated with specific kinds of rocks and that their shape is linked to the evolution of the faults in which they occur.
Sivaji Lahiri, Kitty L. Milliken, Peter Vrolijk, Guillaume Desbois, and Janos L. Urai
Solid Earth, 13, 1513–1539, https://doi.org/10.5194/se-13-1513-2022, https://doi.org/10.5194/se-13-1513-2022, 2022
Short summary
Short summary
Understanding the mechanism of mechanical compaction is important. Previous studies on mechanical compaction were mostly done by performing experiments. Studies on natural rocks are rare due to compositional heterogeneity of the sedimentary succession with depth. Due to remarkable similarity in composition and grain size, the Sumatra subduction complex provides a unique opportunity to study the micromechanism of mechanical compaction on natural samples.
Dongwon Lee, Nikolaos Karadimitriou, Matthias Ruf, and Holger Steeb
Solid Earth, 13, 1475–1494, https://doi.org/10.5194/se-13-1475-2022, https://doi.org/10.5194/se-13-1475-2022, 2022
Short summary
Short summary
This research article focuses on filtering and segmentation methods employed in high-resolution µXRCT studies for crystalline rocks, bearing fractures, or fracture networks, of very small aperture. Specifically, we focus on the identification of artificially induced (via quenching) fractures in Carrara marble samples. Results from the same dataset from all five different methods adopted were produced and compared with each other in terms of their output quality and time efficiency.
Alberto Ceccato, Giulia Tartaglia, Marco Antonellini, and Giulio Viola
Solid Earth, 13, 1431–1453, https://doi.org/10.5194/se-13-1431-2022, https://doi.org/10.5194/se-13-1431-2022, 2022
Short summary
Short summary
The Earth's surface is commonly characterized by the occurrence of fractures, which can be mapped, and their can be geometry quantified on digital representations of the surface at different scales of observation. Here we present a series of analytical and statistical tools, which can aid the quantification of fracture spatial distribution at different scales. In doing so, we can improve our understanding of how fracture geometry and geology affect fluid flow within the fractured Earth crust.
Giulio Viola, Giovanni Musumeci, Francesco Mazzarini, Lorenzo Tavazzani, Manuel Curzi, Espen Torgersen, Roelant van der Lelij, and Luca Aldega
Solid Earth, 13, 1327–1351, https://doi.org/10.5194/se-13-1327-2022, https://doi.org/10.5194/se-13-1327-2022, 2022
Short summary
Short summary
A structural-geochronological approach helps to unravel the Zuccale Fault's architecture. By mapping its internal structure and dating some of its fault rocks, we constrained a deformation history lasting 20 Myr starting at ca. 22 Ma. Such long activity is recorded by now tightly juxtaposed brittle structural facies, i.e. different types of fault rocks. Our results also have implications on the regional evolution of the northern Apennines, of which the Zuccale Fault is an important structure.
Wan-Lin Hu
Solid Earth, 13, 1281–1290, https://doi.org/10.5194/se-13-1281-2022, https://doi.org/10.5194/se-13-1281-2022, 2022
Short summary
Short summary
Having a seismic image is generally expected to enable us to better determine fault geometry and thus estimate geological slip rates accurately. However, the process of interpreting seismic images may introduce unintended uncertainties, which have not yet been widely discussed. Here, a case of a shear fault-bend fold in the frontal Himalaya is used to demonstrate how differences in interpretations can affect the following estimates of slip rates and dependent conclusions.
Manuel D. Menzel, Janos L. Urai, Estibalitz Ukar, Thierry Decrausaz, and Marguerite Godard
Solid Earth, 13, 1191–1218, https://doi.org/10.5194/se-13-1191-2022, https://doi.org/10.5194/se-13-1191-2022, 2022
Short summary
Short summary
Mantle rocks can bind large quantities of carbon by reaction with CO2, but this capacity requires fluid pathways not to be clogged by carbonate. We studied mantle rocks from Oman to understand the mechanisms allowing their transformation into carbonate and quartz. Using advanced imaging techniques, we show that abundant veins were essential fluid pathways driving the reaction. Our results show that tectonic stress was important for fracture opening and a key ingredient for carbon fixation.
Jean-Baptiste P. Koehl, Steffen G. Bergh, and Arthur G. Sylvester
Solid Earth, 13, 1169–1190, https://doi.org/10.5194/se-13-1169-2022, https://doi.org/10.5194/se-13-1169-2022, 2022
Short summary
Short summary
The San Andreas fault is a major active fault associated with ongoing earthquake sequences in southern California. The present study investigates the development of the Indio Hills area in the Coachella Valley along the main San Andreas fault and the Indio Hills fault. The Indio Hills area is located near an area with high ongoing earthquake activity (Brawley seismic zone), and, therefore, its recent tectonic evolution has implications for earthquake prediction.
Jin Lai, Dong Li, Yong Ai, Hongkun Liu, Deyang Cai, Kangjun Chen, Yuqiang Xie, and Guiwen Wang
Solid Earth, 13, 975–1002, https://doi.org/10.5194/se-13-975-2022, https://doi.org/10.5194/se-13-975-2022, 2022
Short summary
Short summary
(1) Structural diagenesis analysis is performed on the ultra-deep tight sandstone. (2) Fracture and intergranular pores are related to the low in situ stress magnitudes. (3) Dissolution is associated with the presence of fracture.
Hamed Fazlikhani, Wolfgang Bauer, and Harald Stollhofen
Solid Earth, 13, 393–416, https://doi.org/10.5194/se-13-393-2022, https://doi.org/10.5194/se-13-393-2022, 2022
Short summary
Short summary
Interpretation of newly acquired FRANKEN 2D seismic survey data in southeeastern Germany shows that upper Paleozoic low-grade metasedimentary rocks and possible nappe units are transported by Variscan shear zones to ca. 65 km west of the Franconian Fault System (FFS). We show that the locations of post-Variscan upper Carboniferous–Permian normal faults and associated graben and half-graben basins are controlled by the geometry of underlying Variscan shear zones.
Berit Schwichtenberg, Florian Fusseis, Ian B. Butler, and Edward Andò
Solid Earth, 13, 41–64, https://doi.org/10.5194/se-13-41-2022, https://doi.org/10.5194/se-13-41-2022, 2022
Short summary
Short summary
Hydraulic rock properties such as porosity and permeability are relevant factors that have an impact on groundwater resources, geological repositories and fossil fuel reservoirs. We investigate the influence of chemical compaction upon the porosity evolution in salt–biotite mixtures and related transport length scales by conducting laboratory experiments in combination with 4-D analysis. Our observations invite a renewed discussion of the effect of sheet silicates on chemical compaction.
David Healy and Stephen Paul Hicks
Solid Earth, 13, 15–39, https://doi.org/10.5194/se-13-15-2022, https://doi.org/10.5194/se-13-15-2022, 2022
Short summary
Short summary
The energy transition requires operations in faulted rocks. To manage the technical challenges and public concern over possible induced earthquakes, we need to quantify the risks. We calculate the probability of fault slip based on uncertain inputs, stresses, fluid pressures, and the mechanical properties of rocks in fault zones. Our examples highlight the specific gaps in our knowledge. Citizen science projects could produce useful data and include the public in the discussions about hazards.
Manuel I. de Paz-Álvarez, Thomas G. Blenkinsop, David M. Buchs, George E. Gibbons, and Lesley Cherns
Solid Earth, 13, 1–14, https://doi.org/10.5194/se-13-1-2022, https://doi.org/10.5194/se-13-1-2022, 2022
Short summary
Short summary
We describe a virtual geological mapping course implemented in response to travelling and social restrictions derived from the ongoing COVID-19 pandemic. The course was designed to replicate a physical mapping exercise as closely as possible with the aid of real field data and photographs collected by the authors during previous years in the Cantabrian Zone (NW Spain). The course is delivered through Google Earth via a KMZ file with outcrop descriptions and links to GitHub-hosted photographs.
Yueyang Xia, Jacob Geersen, Dirk Klaeschen, Bo Ma, Dietrich Lange, Michael Riedel, Michael Schnabel, and Heidrun Kopp
Solid Earth, 12, 2467–2477, https://doi.org/10.5194/se-12-2467-2021, https://doi.org/10.5194/se-12-2467-2021, 2021
Short summary
Short summary
The 2 June 1994 Java tsunami earthquake ruptured in a seismically quiet subduction zone and generated a larger-than-expected tsunami. Here, we re-process a seismic line across the rupture area. We show that a subducting seamount is located up-dip of the mainshock in a region that did not rupture during the earthquake. Seamount subduction modulates the topography of the marine forearc and acts as a seismic barrier in the 1994 earthquake rupture.
Steffen Abe and Hagen Deckert
Solid Earth, 12, 2407–2424, https://doi.org/10.5194/se-12-2407-2021, https://doi.org/10.5194/se-12-2407-2021, 2021
Short summary
Short summary
We use numerical simulations and laboratory experiments on rock samples to investigate how stress conditions influence the geometry and roughness of fracture surfaces. The roughness of the surfaces was analyzed in terms of absolute roughness and scaling properties. The results show that the surfaces are self-affine but with different scaling properties between the numerical models and the real rock samples. Results suggest that stress conditions have little influence on the surface roughness.
Chao Deng, Rixiang Zhu, Jianhui Han, Yu Shu, Yuxiang Wu, Kefeng Hou, and Wei Long
Solid Earth, 12, 2327–2350, https://doi.org/10.5194/se-12-2327-2021, https://doi.org/10.5194/se-12-2327-2021, 2021
Short summary
Short summary
This study uses seismic reflection data to interpret the geometric relationship and evolution of intra-basement and rift-related structures in the Enping sag in the northern South China Sea. Our observations suggest the primary control of pre-existing thrust faults is the formation of low-angle normal faults, with possible help from low-friction materials, and the significant role of pre-existing basement thrust faults in fault geometry, paleotopography, and syn-rift stratigraphy of rift basins.
Sonia Yeung, Marnie Forster, Emmanuel Skourtsos, and Gordon Lister
Solid Earth, 12, 2255–2275, https://doi.org/10.5194/se-12-2255-2021, https://doi.org/10.5194/se-12-2255-2021, 2021
Short summary
Short summary
We do not know when the ancient Tethys Ocean lithosphere began to founder, but one clue can be found in subduction accreted tectonic slices, including Gondwanan basement terranes on the island of Ios, Cyclades, Greece. We propose a 250–300 km southwards jump of the subduction megathrust with a period of flat-slab subduction followed by slab break-off. The initiation and its subsequent rollback of a new subduction zone would explain the onset of Oligo–Miocene extension and accompanying magmatism.
Rahul Prabhakaran, Giovanni Bertotti, Janos Urai, and David Smeulders
Solid Earth, 12, 2159–2209, https://doi.org/10.5194/se-12-2159-2021, https://doi.org/10.5194/se-12-2159-2021, 2021
Short summary
Short summary
Rock fractures are organized as networks with spatially varying arrangements. Due to networks' influence on bulk rock behaviour, it is important to quantify network spatial variation. We utilize an approach where fracture networks are treated as spatial graphs. By combining graph similarity measures with clustering techniques, spatial clusters within large-scale fracture networks are identified and organized hierarchically. The method is validated on a dataset with nearly 300 000 fractures.
Olivier Lacombe, Nicolas E. Beaudoin, Guilhem Hoareau, Aurélie Labeur, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 12, 2145–2157, https://doi.org/10.5194/se-12-2145-2021, https://doi.org/10.5194/se-12-2145-2021, 2021
Short summary
Short summary
This paper aims to illustrate how the timing and duration of contractional deformation associated with folding in orogenic forelands can be constrained by the dating of brittle mesostructures observed in folded strata. The study combines new and already published absolute ages of fractures to provide, for the first time, an educated discussion about the factors controlling the duration of the sequence of deformation encompassing layer-parallel shortening, fold growth, and late fold tightening.
Vincent Famin, Hugues Raimbourg, Muriel Andreani, and Anne-Marie Boullier
Solid Earth, 12, 2067–2085, https://doi.org/10.5194/se-12-2067-2021, https://doi.org/10.5194/se-12-2067-2021, 2021
Short summary
Short summary
Sediments accumulated in accretionary prisms are deformed by the compression imposed by plate subduction. Here we show that deformation of the sediments transforms some minerals in them. We suggest that these mineral transformations are due to the proliferation of microorganisms boosted by deformation. Deformation-enhanced microbial proliferation may change our view of sedimentary and tectonic processes in subduction zones.
Marta Adamuszek, Dan M. Tămaş, Jessica Barabasch, and Janos L. Urai
Solid Earth, 12, 2041–2065, https://doi.org/10.5194/se-12-2041-2021, https://doi.org/10.5194/se-12-2041-2021, 2021
Short summary
Short summary
We analyse folded multilayer sequences in the Ocnele Mari salt mine (Romania) to gain insight into the long-term rheological behaviour of rock salt. Our results indicate the large role of even a small number of impurities in the rock salt for its effective mechanical behaviour. We demonstrate how the development of folds that occur at various scales can be used to constrain the viscosity ratio in the deformed multilayer sequence.
Dario Zampieri, Paola Vannoli, and Pierfrancesco Burrato
Solid Earth, 12, 1967–1986, https://doi.org/10.5194/se-12-1967-2021, https://doi.org/10.5194/se-12-1967-2021, 2021
Short summary
Short summary
The long-lived Schio-Vicenza Fault System is a major shear zone cross-cutting the foreland and the thrust belt of the eastern southern Alps. We review 150 years of scientific works and explain its activity and kinematics, characterized by sinistral and dextral transcurrent motion along its southern and northern sections, respectively, by a geodynamic model that has the Adria indenter as the main actor and coherently reconciles the available geological and geophysical evidence collected so far.
Vincent F. Verwater, Eline Le Breton, Mark R. Handy, Vincenzo Picotti, Azam Jozi Najafabadi, and Christian Haberland
Solid Earth, 12, 1309–1334, https://doi.org/10.5194/se-12-1309-2021, https://doi.org/10.5194/se-12-1309-2021, 2021
Short summary
Short summary
Balancing along geological cross sections reveals that the Giudicarie Belt comprises two kinematic domains. The SW domain accommodated at least ~ 18 km Late Oligocene to Early Miocene shortening. Since the Middle Miocene, the SW domain experienced at least ~ 12–22 km shortening, whereas the NE domain underwent at least ~ 25–35 km. Together, these domains contributed to ~ 40–47 km of sinistral offset of the Periadriatic Fault along the Northern Giudicarie Fault since the Late Oligocene.
Emma A. H. Michie, Mark J. Mulrooney, and Alvar Braathen
Solid Earth, 12, 1259–1286, https://doi.org/10.5194/se-12-1259-2021, https://doi.org/10.5194/se-12-1259-2021, 2021
Short summary
Short summary
Generating an accurate model of the subsurface is crucial when assessing a site for CO2 storage, particularly for a fault-bound storage site that may act as a seal or could reactivate upon CO2 injection. However, we have shown how picking strategy, i.e. line spacing, chosen to create the model significantly influences any subsequent fault analyses but is surprisingly rarely discussed. This analysis has been performed on the Vette Fault bounding the Smeaheia potential CO2 storage site.
Stefano Urbani, Guido Giordano, Federico Lucci, Federico Rossetti, and Gerardo Carrasco-Núñez
Solid Earth, 12, 1111–1124, https://doi.org/10.5194/se-12-1111-2021, https://doi.org/10.5194/se-12-1111-2021, 2021
Short summary
Short summary
Structural studies in active calderas have a key role in the exploration of geothermal systems. We reply in detail to the points raised by the comment of Norini and Groppelli (2020), strengthening the relevance of our structural fieldwork for geothermal exploration and exploitation in active caldera geothermal systems including the Los Humeros caldera.
Jakob Bolz and Jonas Kley
Solid Earth, 12, 1005–1024, https://doi.org/10.5194/se-12-1005-2021, https://doi.org/10.5194/se-12-1005-2021, 2021
Short summary
Short summary
To assess the role smaller graben structures near the southern edge of the Central European Basin System play in the basin’s overall deformational history, we take advantage of a feature found on some of these structures, where slivers from older rock units appear along the graben's main fault, surrounded on both sides by younger strata. The implications for the geometry of the fault provide a substantially improved estimate for the magnitude of normal and thrust motion along the fault system.
Domingo G. A. M. Aerden, Alejandro Ruiz-Fuentes, Mohammad Sayab, and Aidan Forde
Solid Earth, 12, 971–992, https://doi.org/10.5194/se-12-971-2021, https://doi.org/10.5194/se-12-971-2021, 2021
Short summary
Short summary
We studied the geometry of foliations and microfolds preserved within metamorphic garnet crystals using X-ray tomography. The studied rocks are blueschists from Ile de Groix formed during Late Devonian subduction of Gondwana under Armorica. Several sets of differently oriented microfabrics were found recording variations in the direction of subduction. Comparison with similar data for Iberia supports that Iberia rotated only 10–20° during the Cretaceous opening of the North Atlantic.
Matteo Demurtas, Steven A.F. Smith, Elena Spagnuolo, and Giulio Di Toro
Solid Earth, 12, 595–612, https://doi.org/10.5194/se-12-595-2021, https://doi.org/10.5194/se-12-595-2021, 2021
Short summary
Short summary
We performed shear experiments on calcite–dolomite gouge mixtures to better understand the behaviour of carbonates during sub-seismic to seismic deformation in the shallow crust. The development of a foliation in the gouge was only restricted to coseismic sliding, whereas fluidisation occurred over a wide range of slip velocities (sub-seismic to coseismic) in the presence of water. These observations will contribute to a better interpretation of the rock record.
James Gilgannon, Marius Waldvogel, Thomas Poulet, Florian Fusseis, Alfons Berger, Auke Barnhoorn, and Marco Herwegh
Solid Earth, 12, 405–420, https://doi.org/10.5194/se-12-405-2021, https://doi.org/10.5194/se-12-405-2021, 2021
Short summary
Short summary
Using experiments that simulate deep tectonic interfaces, known as viscous shear zones, we found that these zones spontaneously develop periodic sheets of small pores. The presence of porous layers in deep rocks undergoing tectonic deformation is significant because it requires a change to the current model of how the Earth deforms. Emergent porous layers in viscous rocks will focus mineralising fluids and could lead to the seismic failure of rocks that are never supposed to have this occur.
Jef Deckers, Bernd Rombaut, Koen Van Noten, and Kris Vanneste
Solid Earth, 12, 345–361, https://doi.org/10.5194/se-12-345-2021, https://doi.org/10.5194/se-12-345-2021, 2021
Short summary
Short summary
This study shows the presence of two structural domains in the western border fault system of the Roer Valley graben. These domains, dominated by NW–SE-striking faults, displayed distinctly different strain distributions during both Late Cretaceous compression and Cenozoic extension. The southern domain is characterized by narrow, localized faulting, while the northern domain is characterized by wide, distributed faulting. The non-colinear WNW–ESE Grote Brogel fault links both domains.
José Piquer, Orlando Rivera, Gonzalo Yáñez, and Nicolás Oyarzún
Solid Earth, 12, 253–273, https://doi.org/10.5194/se-12-253-2021, https://doi.org/10.5194/se-12-253-2021, 2021
Short summary
Short summary
A proper recognition of deep, long-lived fault systems is very important for society. They can produce potentially dangerous earthquakes. They can also act as pathways for magmas and hydrothermal fluids, leading to the formation of volcanoes, geothermal systems and mineral deposits. However, the manifestations of these very old faults in the present-day surface can be very subtle. Here, we present a detailed, multi-disciplinary study of a fault system of this type in the Andes of central Chile.
Antonin Bilau, Yann Rolland, Stéphane Schwartz, Nicolas Godeau, Abel Guihou, Pierre Deschamps, Benjamin Brigaud, Aurélie Noret, Thierry Dumont, and Cécile Gautheron
Solid Earth, 12, 237–251, https://doi.org/10.5194/se-12-237-2021, https://doi.org/10.5194/se-12-237-2021, 2021
Short summary
Short summary
As a result of the collision between the European and Apulian plates, the Alps have experienced several evolutionary stages. The Penninic frontal thrust (PFT) (major thrust) was associated with compression, and now seismic studies show ongoing extensional activity. Calcite mineralization associated with shortening and extensional structures was sampled. The last deformation stages are dated by U–Pb on calcite at ~ 3.5 and ~ 2.5 Ma. Isotope analysis evidences deep crustal fluid mobilization.
Kathryn E. Elphick, Craig R. Sloss, Klaus Regenauer-Lieb, and Christoph E. Schrank
Solid Earth, 12, 141–170, https://doi.org/10.5194/se-12-141-2021, https://doi.org/10.5194/se-12-141-2021, 2021
Short summary
Short summary
We analysed a sedimentary rock package located in Castlepoint, New Zealand, to test the control of the tectonic setting on the observed deformation structures. In extension and contraction, we observed faults and small fault-like structures characterised by complex spatial patterns and a reduction in porosity and grain size compared with the host rock. With these properties, the structures are likely to act as barriers to fluid flow and cause compartmentalisation of the sedimentary sequence.
Penelope I. R. Wilson, Robert W. Wilson, David J. Sanderson, Ian Jarvis, and Kenneth J. W. McCaffrey
Solid Earth, 12, 95–117, https://doi.org/10.5194/se-12-95-2021, https://doi.org/10.5194/se-12-95-2021, 2021
Short summary
Short summary
Magma accommodation in the shallow crust leads to deformation of the surrounding host rock through the creation of faults, fractures and folds. This deformation will impact fluid flow around intrusive magma bodies (including sills and laccoliths) by changing the porosity and permeability network of the host rock. The results may have important implications for industries where fluid flow within the subsurface adds value (e.g. oil and gas, hydrology, geothermal and carbon sequestration).
Martin Balcewicz, Benedikt Ahrens, Kevin Lippert, and Erik H. Saenger
Solid Earth, 12, 35–58, https://doi.org/10.5194/se-12-35-2021, https://doi.org/10.5194/se-12-35-2021, 2021
Short summary
Short summary
The geothermal potential of a carbonate reservoir in the Rhine-Ruhr area, Germany, was investigated by field and laboratory investigations. The carbonate layer of interest is approx. 150 m thick; located at 4 to 6 km depth; and might extend below Essen, Bochum, and Dortmund. We proposed focusing on discontinuities striking NNW–SSE for geothermal applications, as these are the most common, strike in the direction of the main horizontal stress, and dominate reservoir fluid flow.
Andrea Bistacchi, Silvia Mittempergher, Mattia Martinelli, and Fabrizio Storti
Solid Earth, 11, 2535–2547, https://doi.org/10.5194/se-11-2535-2020, https://doi.org/10.5194/se-11-2535-2020, 2020
Short summary
Short summary
We present an innovative workflow for the statistical analysis of fracture data collected along scanlines. Our methodology is based on performing non-parametric statistical tests, which allow detection of important features of the spatial distribution of fractures, and on the analysis of the cumulative spacing function (CSF) and cumulative spacing derivative (CSD), which allows the boundaries of stationary domains to be defined in an objective way.
Martina Kirilova, Virginia Toy, Katrina Sauer, François Renard, Klaus Gessner, Richard Wirth, Xianghui Xiao, and Risa Matsumura
Solid Earth, 11, 2425–2438, https://doi.org/10.5194/se-11-2425-2020, https://doi.org/10.5194/se-11-2425-2020, 2020
Short summary
Short summary
Processes associated with open pores can change the physical properties of rocks and cause earthquakes. In borehole samples from the Alpine Fault zone, we show that many pores in these rocks were filled by weak materials that can slide easily. The amount of open spaces was thus reduced, and fluids circulating within them built up high pressures. Both weak materials and high pressures within pores reduce the rock strength; thus the state of pores here can trigger the next Alpine Fault earthquake.
José Manuel Benítez-Pérez, Pedro Castiñeiras, Juan Gómez-Barreiro, José R. Martínez Catalán, Andrew Kylander-Clark, and Robert Holdsworth
Solid Earth, 11, 2303–2325, https://doi.org/10.5194/se-11-2303-2020, https://doi.org/10.5194/se-11-2303-2020, 2020
Short summary
Short summary
The Sobrado unit represents an allochthonous tectonic slice of exhumed high-grade metamorphic rocks formed during a complex sequence of orogenic processes in the middle to lower crust. We have combined U–Pb geochronology and REE analyses (LASS-ICP-MS) of accessory minerals in migmatitic paragneiss (monazite, zircon) and mylonitic amphibolites (titanite) to constrain the evolution. A Middle Devonian minimum age for HP metamorphism has been obtained.
Anna M. Dichiarante, Ken J. W. McCaffrey, Robert E. Holdsworth, Tore I. Bjørnarå, and Edward D. Dempsey
Solid Earth, 11, 2221–2244, https://doi.org/10.5194/se-11-2221-2020, https://doi.org/10.5194/se-11-2221-2020, 2020
Short summary
Short summary
We studied the characteristics of fracture systems in the Devonian rocks of the Orcadian Basin in Caithness. These mineral-filled fractures have properties that may be used to predict the size and spatial arrangement of similar structures in offshore basins. This includes the Clair field in the Faroe–Shetland Basin.
Leonardo Del Sole, Marco Antonellini, Roger Soliva, Gregory Ballas, Fabrizio Balsamo, and Giulio Viola
Solid Earth, 11, 2169–2195, https://doi.org/10.5194/se-11-2169-2020, https://doi.org/10.5194/se-11-2169-2020, 2020
Short summary
Short summary
This study focuses on the impact of deformation bands on fluid flow and diagenesis in porous sandstones in two different case studies (northern Apennines, Italy; Provence, France) by combining a variety of multiscalar mapping techniques, detailed field and microstructural observations, and stable isotope analysis. We show that deformation bands buffer and compartmentalize fluid flow and foster and localize diagenesis, recorded by carbonate cement nodules spatially associated with the bands.
Billy James Andrews, Zoe Kai Shipton, Richard Lord, and Lucy McKay
Solid Earth, 11, 2119–2140, https://doi.org/10.5194/se-11-2119-2020, https://doi.org/10.5194/se-11-2119-2020, 2020
Short summary
Short summary
Through geological mapping we find that fault zone internal structure depends on whether or not the fault cuts multiple lithologies, the presence of shale layers, and the orientation of joints and coal cleats at the time of faulting. During faulting, cementation of fractures (i.e. vein formation) is highest where the fractures are most connected. This leads to the counter-intuitive result that the highest-fracture-density part of the network often has the lowest open-fracture connectivity.
Cited articles
Achtziger-Zupančič, P., Loew, S., and Mariéthoz, G.: A new
global database to improve predictions of permeability distribution in
crystalline rocks at site scale, J. Geophys. Res.-Sol. Ea., 122,
3513–3539, https://doi.org/10.1002/2017JB014106, 2017.
Alcaiìno Olivares, R.: Assessing the influence of the environmental
conditions on the fracture growth in the bedretto tunnel – Switzerland,
University of Leeds, 2017.
Amann, F., Gischig, V., Evans, K., Doetsch, J., Jalali, R., Valley, B., Krietsch, H., Dutler, N., Villiger, L., Brixel, B., Klepikova, M., Kittilä, A., Madonna, C., Wiemer, S., Saar, M. O., Loew, S., Driesner, T., Maurer, H., and Giardini, D.: The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment, Solid Earth, 9, 115–137, https://doi.org/10.5194/se-9-115-2018, 2018.
Barker, J. A.: A generalized radial flow model for hydraulic tests in
fractured rock, Water Resour. Res., 24, 1796–1804,
https://doi.org/10.1029/WR024I010P01796, 1988.
Barton, C. A., Zoback, M. D., and Moos, D.: Fluid flow along potentially
active faults in crystalline rock, Geology, 23, 683–686,
https://doi.org/10.1130/0091-7613(1995)023<0683:FFAPAF>2.3.CO;2, 1995.
BedrettoLab Team: Data Collection for the Bedretto Reservoir Project (BRP), ETH Zürich Library Research-Collection [data set], https://doi.org/10.3929/ethz-b-000527856, 2022.
Bourdarot, G.: Well testing: Interpretation methods, Editions Technip, 337 pp., ISBN 2710807386, 9782710807384,
1998.
Brace, W. F., Walsh, J. B., and Frangos, W. T.: Permeability of granite
under high pressure, J. Geophys. Res., 73, 2225–2236,
https://doi.org/10.1029/JB073I006P02225, 1968.
Bröker, K.: In-situ stress and rock mass characterization via mini-frac
tests at the Bedretto Underground Laboratory, MSc thesis, ETH Zurich,
https://doi.org/10.3929/ethz-b-000445278, 2019.
Bröker, K. and Ma, X.: Estimating the Least Principal Stress in a Granitic Rock Mass: Systematic Mini-Frac Tests and Elaborated Pressure Transient Analysis, Rock Mech. Rock Eng., https://doi.org/10.1007/s00603-021-02743-1, 2022.
Byerlee, J.: Friction of Rocks, in: Rock Friction and Earthquake Prediction,
edited by: Byerlee, J. D. and Wyss, M., Birkhäuser Basel,
615–626, https://doi.org/10.1007/978-3-0348-7182-2_4, 1978.
Casey, M.: Mechanics of shear zones in isotropic dilatant materials, J.
Struct. Geol., 2, 143–147, https://doi.org/10.1016/0191-8141(80)90044-9,
1980.
Caspari, E., Greenwood, A., Baron, L., and Holliger, K.: Wireline logging of
Bedretto stress measurement boreholes – preliminary results, in: SCCER-SoE
Science Report 2019, 2019.
Castilla, R., Krietsch, H., Jordan, D., Ma, X., Serbeto, F., Shakas, A.,
Guntli, P., Bröker, K., Löw, S., Hertrich, M., Bethmann, F., and
Meier, P.: Conceptual Geological Model of the Bedretto Underground
Laboratory for Geoenergies, European Association of Geoscientists & Engineers, Conference Proceedings, 82nd EAGE Annual Conference & Exhibition, October 2021, Vol. 2021, 1–5,
https://doi.org/10.3997/2214-4609.202011912, 2020.
Chester, F. M., Evans, J. P., and Biegel, R. L.: Internal structure and
weakening mechanisms of the San Andreas Fault, J. Geophys. Res., 98,
771–786, https://doi.org/10.1029/92JB01866, 1993.
Clauser, C.: Permeability of crystalline rocks, Eos, Trans. Am. Geophys.
Union, 73, 233–238, https://doi.org/10.1029/91EO00190, 1992.
Cornet, F. H.: Earthquakes induced by fluid injections, Science,
348, 1204–1205, https://doi.org/10.1126/science.aab3820, 2015.
David, C., Nejati, M., and Geremia, D.: On petrophysical and geomechanical
properties of Bedretto Granite, MSc thesis, ETH Zurich,
https://doi.org/10.3929/ethz-b-000428267, 2020.
Ellsworth, W. L.: Injection-Induced Earthquakes, Science, 341, 1225942,
https://doi.org/10.1126/SCIENCE.1225942, 2013.
Elsworth, D., Spiers, C. J., and Niemeijer, A. R.: Understanding induced
seismicity, Science, 354, 1380–1381,
https://doi.org/10.1126/science.aal2584, 2016.
Evans, K., Dahlø, T., and Roti, J.-A.: Mechanisms of Pore Pressure-stress
Coupling which Can Adversely Affect Stress Measurements Conducted in Deep
Tunnels, Pure Appl. Geophys., 160, 1087–1102,
https://doi.org/10.1007/PL00012562, 2003.
Faulkner, D. R., Lewis, A. C., and Rutter, E. H.: On the internal structure
and mechanics of large strike-slip fault zones: field observations of the
Carboneras fault in southeastern Spain, Tectonophysics, 367, 235–251,
https://doi.org/10.1016/S0040-1951(03)00134-3, 2003.
Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton,
Z. K., Wibberley, C. A. J., and Withjack, M. O.: A review of recent
developments concerning the structure, mechanics and fluid flow properties
of fault zones, J. Struct. Geol., 32, 1557–1575,
https://doi.org/10.1016/J.JSG.2010.06.009, 2010.
Fu, P., White, M. D., Morris, J. P., Kneafsey, T. J., and Collab Team, E.:
Predicting Hydraulic Fracture Trajectory Under the Influence of a Mine Drift
in EGS Collab Experiment I, 43rd Workshop on Geothermal Reservoir Engineering, 12–14 February 2018, Stanford, CA,
1–11, 2018.
Fu, P., Schoenball, M., Ajo-Franklin, J. B., Chai, C., Maceira, M., Morris,
J. P., Wu, H., Knox, H., Schwering, P. C., White, M. D., Burghardt, J. A.,
Strickland, C. E., Johnson, T. C., Vermeul, V. R., Sprinkle, P., Roberts,
B., Ulrich, C., Guglielmi, Y., Cook, P. J., Dobson, P. F., Wood, T., Frash,
L. P., Huang, L., Ingraham, M. D., Pope, J. S., Smith, M. M., Neupane, G.,
Doe, T. W., Roggenthen, W. M., Horne, R., Singh, A., Zoback, M. D., Wang,
H., Condon, K., Ghassemi, A., Chen, H., McClure, M. W., Vandine, G.,
Blankenship, D., Kneafsey, T. J., and Team, E. C.: Close Observation of
Hydraulic Fracturing at EGS Collab Experiment 1: Fracture Trajectory,
Microseismic Interpretations, and the Role of Natural Fractures, J. Geophys.
Res-Sol. Ea., 126, e2020JB020840, https://doi.org/10.1029/2020JB020840, 2021.
Ganye, J. A., Alcaino-Olivares, R., Perras, M. A., and Leith, K.: Back
analysis to determine the stress state around the Bedretto Adit,
Switzerland, ISRM Int. Symp.-EUROCK 2020, June 2020, ISRM-EUROCK-2020-029, 2020.
Giardini, D.: Geothermal quake risks must be faced, Nature, 462,
848–849, https://doi.org/10.1038/462848a, 2009.
Gischig, V. S., Giardini, D., Amann, F., Hertrich, M., Krietsch, H., Loew,
S., Maurer, H., Villiger, L., Wiemer, S., Bethmann, F., Brixel, B., Doetsch,
J., Doonechaly, N. G., Driesner, T., Dutler, N., Evans, K. F., Jalali, M.,
Jordan, D., Kittilä, A., Ma, X., Meier, P., Nejati, M., Obermann, A.,
Plenkers, K., Saar, M. O., Shakas, A., and Valley, B.: Hydraulic stimulation
and fluid circulation experiments in underground laboratories: Stepping up
the scale towards engineered geothermal systems, Geomech. Energ. Environ.,
24, 100175, https://doi.org/10.1016/j.gete.2019.100175, 2020.
Goodman, R. E.: Introduction to rock mechanics, Wiley, 562 pp., ISBNs 10 0471812005, 13 978-0471812005,
1989.
Grasmueck, M., Coll, M., Eberli, G. P., and Pomar, K.: Diffraction imaging
of vertical fractures and karst with full-resolution 3D GPR, cassis quarry,
France, Conference Proceedings, 72nd EAGE Conference and Exhibition incorporating SPE EUROPEC 2010, June 2010, cp-161-00249, European Association of Geoscientists & Engineers, 2043–2047, https://doi.org/10.3997/2214-4609.201400841,
2010.
Greenwood, A., Caspari, E., Baron, L., and Holliger, K.: Borehole radar and
full waveform sonic measurements of the Bedretto stress-measurement
boreholes, in: SCCER-SoE Science Report 2019, 2019.
Hafner, S.: Petrographie des südwestlichen Gotthardmassivs zwischen
St. Gotthardpass und Nufenenpass, ETH Zürich, Zürich,
https://doi.org/10.3929/ethz-a-000097546, 1958.
Haimson, B. C. and Cornet, F. H.: ISRM Suggested Methods for rock stress
estimation – Part 3: hydraulic fracturing (HF) and/or hydraulic testing of
pre-existing fractures (HTPF), Int. J. Rock Mech. Min. Sci., 40, 1011–1020,
https://doi.org/10.1016/j.ijrmms.2003.08.002, 2003.
Hediger, R.: 3D geological model of a shear zone conditioned on geophysical
data and geological observations, ETH Zurich,
https://doi.org/10.3929/ethz-b-000455004, 2020.
Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J.,
Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M. O., Zoback, M.-L.,
and Zoback, M.: The World Stress Map database release 2016: Crustal stress
pattern across scales, Tectonophysics, 744, 484–498,
https://doi.org/10.1016/j.tecto.2018.07.007, 2018.
Hertrich, M., Brixel, B., Broeker, K., Driesner, T., Gholizadeh, N.,
Giardini, D., Jordan, D., Krietsch, H., Loew, S., Ma, X., Maurer, H.,
Nejati, M., Plenkers, K., Rast, M., Saar, M., Shakas, A., van Limborgh, R.,
Villiger, L., Wenning, Q. C., Ciardo, F., Kaestli, P., Obermann, A.,
Rinaldi, A. P., Wiemer, S., Zappone, A., Bethmann, F., Castilla, R.,
Christe, F., Dyer, B., Karvounis, D., Meier, P., Serbeto, F., Amann, F.,
Gischig, V., and Valley, B.: Characterization, Hydraulic Stimulation, and
Fluid Circulation Experiments in the Bedretto Underground Laboratory for
Geosciences and Geoenergies, 55th U.S. Rock Mechanics/Geomechanics Symposium, Virtual, June 2021,
ARMA-2021-1895, 2021.
Horner, D. R.: Pressure Build-up in Wells, 3rd World Petroleum Congress, The Hague, the Netherlands, 28 May 1951, 1951.
Huber, B.: Stress-induced Fractures in the Deep-seated Bedretto Tunnel:
Their Geological and Geomechanical Reasons, ETH Zürich, 2004.
Ingebritsen, S. E. and Manning, C. E.: Permeability of the continental
crust: dynamic variations inferred from seismicity and metamorphism, Geofluids, 10,
193–205, https://doi.org/10.1111/J.1468-8123.2010.00278.X, 2010.
Ingraham, M. D.: Introduction to the Special Issue: Deep Underground
Laboratories II (USA), American Rock Mechanics Association, ARMA Lett., 1–2, 2021.
Jaeger, J. C., Cook, N. G. W., and Zimmerman, R.: Fundamentals of Rock
Mechanics, Wiley, Fundamentals of Rock Mechanics, 4th Edn., 488 pp., ISBN 978-0-632-05759-7, 2007.
Jordan, D.: Geological Characterization of the Bedretto Underground
Laboratory for Geoenergies, MSc thesis, ETH Zurich, Geological Institute,
https://doi.org/10.3929/ethz-b-000379305, 2019.
Jordan, T., Fulton, P., Tester, J., Bruhn, D., Asanuma, H., Harms, U., Wang, C., Schmitt, D., Vardon, P. J., Hofmann, H., Pasquini, T., Smith, J., and the workshop participants: Borehole research in New York State can advance utilization of low-enthalpy geothermal energy, management of potential risks, and understanding of deep sedimentary and crystalline geologic systems, Sci. Dril., 28, 75–91, https://doi.org/10.5194/sd-28-75-2020, 2020.
Kastrup, U., Zoback, M. L., Deichmann, N., Evans, K. F., Giardini, D., and
Michael, A. J.: Stress field variations in the Swiss Alps and the northern
Alpine foreland derived from inversion of fault plane solutions, J. Geophys.
Res.-Earth, 109, B01402, https://doi.org/10.1029/2003jb002550, 2004.
Keller, F. and Schneider, T. R.: Geologie und Geotechnik, Schweizer Ing.
Archit., 24, 512–520, 1982.
Keller, F., Wanner, H., and Schneider, T. R.: Geologischer Schlussbericht
Gotthard-Strassentunnel, Beiträge zur Geologie der Schweiz, Geotech.
Ser., 70, 1987.
Krietsch, H., S. Gischig, V., Doetsch, J., F. Evans, K., Villiger, L.,
Jalali, M., Amann, F., and Löw, S.: Hydromechanical processes and their
influence on the stimulation effected volume: Observations from a
decameter-scale hydraulic stimulation project, Solid Earth, 11, 1699–1729,
https://doi.org/10.5194/se-11-1699-2020, 2020.
Labhart, T.: Erläuterungen Zum Geologischen Atlas Des Schweiz 1:25 000,
Val Bedretto, Atlasblatt, 68, 2005.
Liu, L. and Zoback, M. D.: The effect of topography on the state of stress
in the crust: application to the site of the Cajon Pass Scientific Drilling
Project, J. Geophys. Res., 97, 5095–5108,
https://doi.org/10.1029/91jb01355, 1992.
Lützenkirchen, V.: Structural Geology and Hydrogeology of Brittle Fault
Zones in the Central and Eastern Gotthard Massif, PhD thesis, Switzerland, ETH Zurich,
247 pp., https://doi.org/10.3929/ethz-a-004522949, 2002.
Lützenkirchen, V. and Loew, S.: Late Alpine brittle faulting in the
Rotondo granite (Switzerland): Deformation mechanisms and fault evolution,
Swiss J. Geosci., 104, 31–54, https://doi.org/10.1007/s00015-010-0050-0,
2011.
Ma, X.: Introduction to the Special Issue: Deep Underground Laboratories
(DUL), American Rock Mechanics Association, ARMA Lett., 1–2, 2021.
Ma, X., Saar, M. O., and Fan, L.-S.: Coulomb criterion – bounding crustal
stress limit and intact rock failure: Perspectives, Powder Technol., 374,
106–110, https://doi.org/10.1016/j.powtec.2020.07.044,
2020a.
Ma, X., Gholizadeh Doonechaly, N., Hertrich, M., Gischig, V., and Klee, G.:
Preliminary in situ stress and fractures characterization in the Bedretto
Underground Laboratory, Swiss Alps: implications on hydraulic stimulation, 1559–1567, 2019.
Manga, M., Beresnev, I., Brodsky, E. E., Elkhoury, J. E., Elsworth, D.,
Ingebritsen, S. E., Mays, D. C., and Wang, C.-Y.: Changes in permeability
caused by transient stresses: Field observations, experiments, and
mechanisms, Rev. Geophys., 50, RG2004, https://doi.org/10.1029/2011RG000382, 2012.
Marquer, D.: Structures et déformation alpine dans les granités
hercyniens du massif du Gothard (Alpes centrales suisses), Eclogae Geol.
Helv., 83, 77–97, 1990.
Mattila, J. and Follin, S.: Does In Situ State of Stress Affect Fracture
Flow in Crystalline Settings?, J. Geophys. Res.-Sol. Ea., 124,
5241–5253, https://doi.org/10.1029/2018JB016791, 2019.
Meier, M.: Geological characterisation of an underground research facility
in the Bedretto tunnel, BSc thesis, ETH Zurich, Zurich,
https://doi.org/10.3929/ethz-b-000334001, 2017.
Meier, M.: Heat Dilution Testing in Deep Underground Excavations, MSc thesis, ETH
Zürich, https://doi.org/10.3929/ETHZ-B-000447153, 2020.
Mercolli, I., Biino, G. G., and Abrecht, J.: The lithostratigraphy of the
pre-Mesozoic basement of the Gotthard Massif: a review, Schweizerische
Mineral. Petrogr. Mitteilungen, 74, 29–40, 1994.
Morris, A., Ferrill, D. A., and Henderson, D. B.: Slip-tendency analysis and
fault reactivation, Geology, 24, 275–278,
https://doi.org/10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2, 1996.
Münger, A.: Hydraulic Backbone of CB1 to CB3 Boreholes in the Bedretto
Underground Lab, MSc thesis, ETH Zürich, https://doi.org/10.3929/ethz-b-000469250, 2020.
NRC: Rock Fractures and Fluid Flow: Contemporary Understanding and
Applications, The National Academies Press, Washington, DC,
https://doi.org/10.17226/2309, 1996.
Ofterdinger, U. S.: Ground water flow systems in the Rotondo Granite,
Central Alps (Switzerland), ETH Zürich,
https://doi.org/10.3929/ethz-a-004218089, 2001.
Olsson, O., Falk, L., Forslund, O., Lundmark, L., and Sandberg, E.:
Investigations of Fracture Zones in Crystalline Rock by Borehole Radar, MRS
Online Proc. Libr., 50, 145–154,
https://doi.org/10.1557/PROC-50-145, 1985.
Perras, M. A. and Diederichs, M. S.: Predicting excavation damage zone
depths in brittle rocks, J. Rock Mech. Geotech. Eng., 8, 60–74,
https://doi.org/10.1016/j.jrmge.2015.11.004, 2016.
Rast, M.: Geology, Geochronology and Rock Magnetics Along Bedretto Tunnel
(Gotthard Massif, Central Alps) and Numerical Modelling of Quartz-Biotite
Aggregates, MSc thesis, ETH Zürich, https://doi.org/10.3929/ETHZ-B-000454117, 2020.
Renard, P.: Hytool: an open source matlab toolbox for the interpretation of
hydraulic tests using analytical solutions, J. Open Source Softw., 2, 441,
https://doi.org/10.21105/JOSS.00441, 2017.
Rogers, S. F.: Critical stress-related permeability in fractured rocks,
Geol. Soc. Lond. Spec. Publ., 209, 7–16,
https://doi.org/10.1144/GSL.SP.2003.209.01.02, 2003.
Rudnicki, J. W. and Rice, J. R.: Conditions for the localization of
deformation in pressure-sensitive dilatant materials, J. Mech. Phys. Sol.,
23, 371–394, https://doi.org/10.1016/0022-5096(75)90001-0, 1975.
Schaltegger, U. and Corfu, F.: The age and source of late Hercynian
magmatism in the central Alps: evidence from precise U-Pb ages and initial
Hf isotopes, Contrib. Mineral. Petrol., 111, 329–344,
https://doi.org/10.1007/BF00311195, 1992.
Schneider, T. R.: Basistunnel Furka – Geologische Aufnahme des Fensters
Bedretto, 1985.
Schoenball, M., Ajo-Franklin, J. B., Blankenship, D., Chai, C., Chakravarty,
A., Dobson, P., Hopp, C., Kneafsey, T., Knox, H. A., Maceira, M., Robertson,
M. C., Sprinkle, P., Strickland, C., Templeton, D., Schwering, P. C.,
Ulrich, C., and Wood, T.: Creation of a Mixed-Mode Fracture Network at
Mesoscale Through Hydraulic Fracturing and Shear Stimulation, J. Geophys.
Res.-Sol. Ea., 125, e2020JB019807, https://doi.org/10.1029/2020JB019807,
2020.
Sergeev, S. A., Meier, M., and Steiger, R. H.: Improving the resolution of
single-grain U/Pb dating by use of zircon extracted from feldspar:
Application to the Variscan magmatic cycle in the central Alps, Earth
Planet. Sc. Lett., 134, 37–51,
https://doi.org/10.1016/0012-821X(95)00105-L, 1995.
Shakas, A., Maurer, H., Giertzuch, P. L., Hertrich, M., Giardini, D.,
Serbeto, F., and Meier, P.: Permeability Enhancement From a Hydraulic
Stimulation Imaged With Ground Penetrating Radar, Geophys. Res. Lett., 47,
e2020GL088783, https://doi.org/10.1029/2020GL088783, 2020.
Shakas, A., Wenning, Q., Krietsch, H., Hertrich, M., Giardini, D., Wiemer,
S., and Maurer, H.: Modeling complex fault geometry by combining single-hole
GPR and televiewer information, Geophysics, in review, 2021.
Shamir, G. and Zoback, M. D.: Stress orientation profile to 3.5 km depth
near the San Andreas Fault at Cajon Pass, California, J. Geophys. Res., 97, 5059–5080,
https://doi.org/10.1029/91JB02959, 1992.
Siren, T., Kantia, P., and Rinne, M.: Considerations and observations of
stress-induced and construction-induced excavation damage zone in
crystalline rock, Int. J. Rock Mech. Min. Sci., 73, 165–174,
https://doi.org/10.1016/j.ijrmms.2014.11.001, 2015.
Steiger, C. and Guerrot, R.: Variscan granitoids of the Gotthard massif,
Switzerland: U-Pb single zircon and Sr-Nd data, 3, 1991.
Steiger, R. H.: Petrographie und Geologie des südlichen Gotthardmassivs
zwischen St. Gotthard- und Lukmanierpass, PhD thesis, ETH Zürich,
https://doi.org/10.3929/ETHZ-A-000090198, 1962.
Tester, J. W., Anderson, B. J., Batchelor, A., Blackwell, D., DiPippo, R., Drake, E., Garnish, J., Livesay, B., Moore, M., Nichols, K., Petty, S., Toksöz, M. N., and Veatch, R. W.: The future of geothermal energy – Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century, Massachusetts Institute of Technology, Cambridge, USA, 372 pp., 2006.
Theis, C.: The relation between the lowering of the Piezometric surface and
the rate and duration of discharge of a well using ground-water storage,
Eos, 16, 519–524,
https://doi.org/10.1029/TR016i002p00519, 1935.
Townend, J. and Zoback, M. D.: How faulting keeps the crust strong, Geology,
28, 399–402, https://doi.org/10.1130/0091-7613(2000)28<399:Hfktcs>2.0.Co;2, 2000.
Tsang, C. F., Bernier, F., and Davies, C.: Geohydromechanical processes in
the Excavation Damaged Zone in crystalline rock, rock salt, and indurated
and plastic clays – In the context of radioactive waste disposal, Int. J.
Rock Mech. Min. Sci., 42, 109–125,
https://doi.org/10.1016/j.ijrmms.2004.08.003, 2005.
van Limborgh, R.: Borehole Indicators of In Situ Stress Field Heterogeneity
at the Bedretto Underground Laboratory, MSc thesis, ETH Zurich,
https://doi.org/10.3929/ethz-b-000445987, 2020.
Vlasek, A.: Deep structures of large toppling slopes at the Bedretto Adit
(Ticino, Switzerland), MSc thesis, ETH Zürich, 2018.
Wenning, Q. C., Madonna, C., De Haller, A., and Burg, J. P.: Permeability
and seismic velocity anisotropy across a ductile-brittle fault zone in
crystalline rock, Solid Earth, 9, 683–698, https://doi.org/10.5194/se-9-683-2018, 2018.
Woodcock, N. H. and Mort, K.: Classification of fault breccias and related
fault rocks, Geol. Mag., 145, 435–440,
https://doi.org/10.1017/S0016756808004883, 2008.
Ye, Z. and Ghassemi, A.: Injection-Induced Shear Slip and Permeability
Enhancement in Granite Fractures, J. Geophys. Res.-Sol. Ea., 123,
9009–9032, https://doi.org/10.1029/2018JB016045, 2018.
Zhang, S. and Ma, X.: How Does In Situ Stress Rotate Within a Fault Zone?
Insights From Explicit Modeling of the Frictional, Fractured Rock Mass, J.
Geophys. Res.-Sol. Ea., 126, e2021JB022348,
https://doi.org/10.1029/2021JB022348, 2021.
Zoback, M. D. and Gorelick, S. M.: Earthquake triggering and large-scale
geologic storage of carbon dioxide, P. Natl. Acad. Sci. USA, 109,
10164–10168, https://doi.org/10.1073/PNAS.1202473109, 2012.
Zoback, M. D. and Townend, J.: Implications of hydrostatic pore pressures
and high crustal strength for the deformation of intraplate lithosphere, Tectonophysics,
336, 19–30, https://doi.org/10.1016/S0040-1951(01)00091-9, 2001.
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments...