Articles | Volume 13, issue 1
https://doi.org/10.5194/se-13-41-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-41-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biotite supports long-range diffusive transport in dissolution–precipitation creep in halite through small porosity fluctuations
Berit Schwichtenberg
CORRESPONDING AUTHOR
The University of Edinburgh, School of Geosciences, Edinburgh, UK
Florian Fusseis
The University of Edinburgh, School of Geosciences, Edinburgh, UK
Ian B. Butler
The University of Edinburgh, School of Geosciences, Edinburgh, UK
Edward Andò
Université des Alpes, CRNS, Laboratoire 3SR, Grenoble, France
Related authors
No articles found.
Derek D. V. Leung, Florian Fusseis, and Ian B. Butler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3499, https://doi.org/10.5194/egusphere-2025-3499, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
Curling stones often collide with each other during a game. Over time, these collisions cause damage in the striking bands on the sides of the stones. We determined experimentally how hard these stones collide into one another. We then looked at old curling stones to understand how damage builds up in these rocks. We found that early, fast impacts produce fractures until the striking band is saturated in fractures. Repeated impacts after this stage make fractures grow.
Roberto Emanuele Rizzo, Damien Freitas, James Gilgannon, Sohan Seth, Ian B. Butler, Gina Elizabeth McGill, and Florian Fusseis
Solid Earth, 15, 493–512, https://doi.org/10.5194/se-15-493-2024, https://doi.org/10.5194/se-15-493-2024, 2024
Short summary
Short summary
Here we introduce a new approach for analysing time-resolved 3D X-ray images tracking mineral changes in rocks. Using deep learning, we accurately identify and quantify the evolution of mineral components during reactions. The method demonstrates high precision in quantifying a metamorphic reaction, enabling accurate calculation of mineral growth rates and porosity changes. This showcases artificial intelligence's potential to enhance our understanding of Earth science processes.
Marie Dumont, Frederic Flin, Aleksey Malinka, Olivier Brissaud, Pascal Hagenmuller, Philippe Lapalus, Bernard Lesaffre, Anne Dufour, Neige Calonne, Sabine Rolland du Roscoat, and Edward Ando
The Cryosphere, 15, 3921–3948, https://doi.org/10.5194/tc-15-3921-2021, https://doi.org/10.5194/tc-15-3921-2021, 2021
Short summary
Short summary
The role of snow microstructure in snow optical properties is only partially understood despite the importance of snow optical properties for the Earth system. We present a dataset combining bidirectional reflectance measurements and 3D images of snow. We show that the snow reflectance is adequately simulated using the distribution of the ice chord lengths in the snow microstructure and that the impact of the morphological type of snow is especially important when ice is highly absorptive.
James Gilgannon, Marius Waldvogel, Thomas Poulet, Florian Fusseis, Alfons Berger, Auke Barnhoorn, and Marco Herwegh
Solid Earth, 12, 405–420, https://doi.org/10.5194/se-12-405-2021, https://doi.org/10.5194/se-12-405-2021, 2021
Short summary
Short summary
Using experiments that simulate deep tectonic interfaces, known as viscous shear zones, we found that these zones spontaneously develop periodic sheets of small pores. The presence of porous layers in deep rocks undergoing tectonic deformation is significant because it requires a change to the current model of how the Earth deforms. Emergent porous layers in viscous rocks will focus mineralising fluids and could lead to the seismic failure of rocks that are never supposed to have this occur.
Cited articles
Aharonov, E. and Katsman, R.:
Interaction between pressure solution and clays in stylolite development: Insights from modeling,
Am. J. Sci.,
309, 607–632, https://doi.org/10.2475/07.2009.04, 2009. a
Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W., Schindelin, J., Cardona, A., and Sebastian Seung, H.:
Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification,
Bioinformatics,
33, 2424–2426, https://doi.org/10.1093/bioinformatics/btx180, 2017. a
Bons, P. D. and Urai, J. L.:
Experimental deformation of two-phase rock analogues,
Mat. Sci. Eng. A,
175, 221–229, https://doi.org/10.1016/0921-5093(94)91061-8, 1994. a
Bruthans, J., Soukup, J., Vaculikova, J., Filippi, M., Schweigstillova, J., Mayo, A. L., Masin, D., Kletetschka, G., and Rihosek, J.:
Sandstone landforms shaped by negative feedback between stress and erosion,
Nat. Geosci.,
7, 597–601, https://doi.org/10.1038/ngeo2209, 2014. a
Buades, A., Coll, B., and Morel, J.-M.:
Non-local means denoising,
Image Processing On Line,
1, 208–212, https://doi.org/10.5201/ipol.2011.bcm_nlm, 2011. a
Buxton, T. M. and Sibley, D. F.:
Pressure solution features in a shallow buried limestone,
J. Sediment. Res.,
51, 19–26, https://doi.org/10.1306/212F7BF8-2B24-11D7-8648000102C1865D, 1981. a, b
Carter, N. L. and Hansen, F. D.:
Creep of rocksalt,
Tectonophysics,
92, 275–333, https://doi.org/10.1016/0040-1951(83)90200-7, 1983. a
Coble, R.:
A model for boundary diffusion controlled creep in polycrystalline materials,
Int. J. Appl. Phys.,
34, 1679–1682, https://doi.org/10.1063/1.1702656, 1963. a
Croize, D., Renard, F., and Gratier, J.-P.:
Compaction and porosity reduction in carbonates: A review of observations, theory, and experiments,
in: Advances in Geophysics, vol. 54, pp. 181–238, https://doi.org/10.1016/B978-0-12-380940-7.00003-2,
Elsevier, Amsterdam, Netherlands, 2013. a
Desarnaud, J., Derluyn, H., Carmeliet, J., Bonn, D., and Shahidzadeh, N.:
Metastability Limit for the Nucleation of NaCl Crystals in Confinement,
J. Phys. Chem. Lett.,
5, 890–895, https://doi.org/10.1021/jz500090x, 2014. a
Dierick, M., Masschaele, B., and Van Hoorebeke, L.:
Octopus, a fast and user-friendly tomographic reconstruction package developed in LabView®,
Measurement Science and Technology,
15, 1366, https://doi.org/10.1088/0957-0233/15/7/020, 2004. a
Durney, D.:
Solution-transfer, an important geological deformation mechanism,
Nature,
235, 315, https://doi.org/10.1038/235315a0, 1972. a
Durney, D.:
A Discussion on natural strain and geological structure-Pressure-solution and crystallization deformation,
Philos. T. R. Soc. A,
283, 229–240, https://doi.org/10.1098/rsta.1976.0081, 1976. a, b
Green, H.:
“Pressure solution” creep: some causes and mechanisms,
J. Geophys. Res.-Sol. Ea.,
89, 4313–4318, https://doi.org/10.1029/JB089iB06p04313, 1984. a
Greene, G. W., Kristiansen, K., Meyer, E. E., Boles, J. R., and Israelachvili, J. N.:
Role of electrochemical reactions in pressure solution,
Geochim. Cosmochim. Ac.,
73, 2862–2874, https://doi.org/10.1016/j.gca.2009.02.012, 2009. a
Groshong Jr., R. H.:
Low-temperature deformation mechanisms and their interpretation,
Geol. Soc. Am. Bull.,
100, 1329–1360, https://doi.org/10.1130/0016-7606(1988)100<1329:LTDMAT>2.3.CO;2, 1988. a, b
Gundersen, E., Renard, F., Dysthe, D. K., Bjørlykke, K., and Jamtveit, B.:
Coupling between pressure solution creep and diffusive mass transport in porous rocks,
J. Geophys. Res.-Sol. Ea.,
107, ECV–19, https://doi.org/10.1029/2001JB000287, 2002. a
Hansen, F. D. and Leigh, C. D.:
Salt disposal of heat-generating nuclear waste, Sandia National Laboratories Albuquerque, NM, https://doi.org/10.2172/1005078,
United States, 2011. a
Heald, M. T.:
Cementation of Simpson and St. Peter sandstones in parts of Oklahoma, Arkansas, and Missouri,
J. Geol.,
64, 16–30, https://doi.org/10.1086/626314, 1956. a, b, c
Herring, C.:
Diffusional viscosity of a polycrystalline solid,
Int. J. Appl. Phys.,
21, 437–445, https://doi.org/10.1063/1.1699681, 1950. a
Hickman, S. H. and Evans, B.:
Kinetics of pressure solution at halite-silica interfaces and intergranular clay films,
J. Geophys. Res.-Sol. Ea.,
100, 13113–13132, https://doi.org/10.1029/95JB00911, 1995. a
Kristiansen, K., Valtiner, M., Greene, G. W., Boles, J. R., and Israelachvili, J. N.:
Pressure solution–The importance of the electrochemical surface potentials,
Geochim. Cosmochim. Ac.,
75, 6882–6892, https://doi.org/10.1016/j.gca.2011.09.019, 2011. a
Lehner, F. K.:
A model for intergranular pressure solution in open systems,
Tectonophysics,
245, 153–170, https://doi.org/10.1016/0040-1951(94)00232-X, 1995. a
Lidiard, A.:
The Radiolysis of Alkali Halides – the Nucleation and Growth of Aggregates,
Z. Phys. Chem.,
206, 219–248, 1998. a
McClay, K.:
Pressure solution and Coble creep in rocks and minerals: a review,
J. Geol. Soc. London,
134, 57–70, https://doi.org/10.1144/gsjgs.134.1.0057, 1977. a
Mimran, Y.:
Chalk deformation and large-scale migration of calcium carbonate,
Sedimentology,
24, 333–360, https://doi.org/10.1111/j.1365-3091.1977.tb00127.x, 1977. a, b
Object Research Systems (ORS) Inc.:
Dragonfly,
available at: http://www.theobjects.com/dragonfly (last access: 1 June 2021),
Object Research Systems (ORS) Inc, Montreal, Canada, 2021. a
Paterson, M.:
Nonhydrostatic thermodynamics and its geologic applications,
Rev. Geophys.,
11, 355–389, https://doi.org/10.1029/RG011i002p00355, 1973. a
Peach, C.:
Influence of deformation on the fluid transport properties of salt rocks,
PhD thesis,
Faculteit Aardwetenschappen der Rijksuniversiteit te Utrecht, Utrecht, Netherlands, 1991. a
Peng, T., Thorn, K., Schroeder, T., Wang, L., Theis, F. J., Marr, C., and Navab, N.:
A BaSiC tool for background and shading correction of optical microscopy images,
Nat. Commun.,
8, 14836, https://doi.org/10.1038/ncomms14836, 2017. a
Renard, F., Dysthe, D., Feder, J., Bjørlykke, K., and Jamtveit, B.:
Enhanced pressure solution creep rates induced by clay particles: Experimental evidence in salt aggregates,
Geophys. Res. Lett.,
28, 1295–1298, https://doi.org/10.1029/2000GL012394, 2001. a
Renard, F., Bernard, D., Thibault, X., and Boller, E.:
Synchrotron 3D microtomography of halite aggregates during experimental pressure solution creep and evolution of the permeability,
Geophys. Res. Lett.,
31, L07607, https://doi.org/10.1029/2004GL019605, 2004. a, b, c
Rutter, E. and Wanten, P.:
Experimental study of the compaction of phyllosilicate-bearing sand at elevated temperature and with controlled pore water pressure,
J. Sediment. Res.,
70, 107–116, https://doi.org/10.1306/2DC40902-0E47-11D7-8643000102C1865D, 2000. a
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B.,
Tinevez,
J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A.:
Fiji: an open-source platform for biological-image analysis,
Nat. Methods,
9, 676, https://doi.org/10.1038/nmeth.2019, 2012. a
Schutjens, P. and Spiers, C. J.:
Intergranular Pressure Solution in Nacl: Grain-To-Grain Contact Experiments under the Optical Microscope,
in: Dossier: Euroconference on Pore Pressure, Scale Effect and the Deformation of Rocks, 16–20 November 1998, Aussois, France, vol. 54,
Oil & Gas Science and Technology – Rev. IFP, https://doi.org/10.2516/ogst:1999062, 1999. a
Snyder, J. P.:
Map projections–A working manual, vol. 1395,
US Government Printing Office, Washington, D.C., https://doi.org/10.3133/pp1395, 1987. a
Spiers, C., Schutjens, P., Brzesowsky, R., Peach, C., Liezenberg, J., and Zwart, H.:
Experimental determination of constitutive parameters governing creep of rocksalt by pressure solution,
Geological Society, London, Special Publications,
54, 215–227, https://doi.org/10.1144/GSL.SP.1990.054.01.21, 1990. a, b
Spiers, C., De Meer, S., Niemeijer, A., and Zhang, X.:
Kinetics of rock deformation by pressure solution and the role of thin aqueous films,
Front. Sci. Series, in: Physicochemistry of Water in Geological and Biological Systems – Structures and Properties of Thin Aqueous Films, edited by: Nakashima, S., Spiers, C. J., Mercury, L., Fenter, P. A., and Hochella Jr., M. F., Universal Academy Press, Tokyo, 129–158, 2004. a, b, c, d
Spiers, C. J. and Schutjens, P. M.:
Densification of crystalline aggregates by fluid-phase diffusional creep,
in: Deformation processes in minerals, ceramics and rocks, vol. 1, pp. 334–353, https://doi.org/10.1007/978-94-011-6827-4_13,
Springer, Dordrecht, 1990. a, b
Stamati, O., Andò, E., Roubin, E., Cailletaud, R., Wiebicke, M., Pinzon, G., Couture, C., Hurley, R. C., Caulk, R., Caillerie, D.,
Matsushima, T., Bésuelle, P., Bertoni, F., Arnaud, T.,
Ortega Laborin, A., Rorato, R., Sun, Y., Tengattini, A., Okubadejo, O., Colliat, J.-B., Saadatfar, M.,
Garcia, F. E., Papazoglou, C., Vego, I., Brisard, S., Dijkstra, J., and Birmpilis, G.:
spam: Software for Practical Analysis of Materials,
J. Open Source Softw.,
5, 2286, https://doi.org/10.21105/joss.02286, 2020.
a
Tada, R. and Siever, R.:
Pressure solution during diagenesis,
Annu. Rev. Earth Pl. Sc.,
17, 89–118, https://doi.org/10.1146/annurev.ea.17.050189.000513, 1989. a, b, c
Thomson, A.:
Pressure Solution and Porosity,
in: Silica in Sediments, vol. 7, https://doi.org/10.2110/pec.59.01.0092,
SEPM Society for Sedimentary Geology, Tulsa, Oklahoma, USA, 1959. a
Trurnit, P.:
Pressure solution phenomena in detrital rocks,
Sediment. Geol.,
2, 89–114, https://doi.org/10.1016/0037-0738(68)90030-4, 1968. a
Tudisco, E., Andò, E., Cailletaud, R., and Hall, S. A.:
TomoWarp2: A local digital volume correlation code,
SoftwareX,
6, 267–270, https://doi.org/10.1016/j.softx.2017.10.002, 2017. a
Urai, J., Schléder, Z., Spiers, C., and Kukla, P.:
Flow and transport properties of salt rocks,
in: Dynamics of complex intracontinental basins: The central European basin system,
edited by: Littke, R., Bayer, U., Gajewski, D., and Nelskamp, S.,
Springer Berlin, https://doi.org/10.1007/978-3-540-85085-4, pp. 277–290, 2008. a
von Berlepsch, T. and Haverkamp, B.:
Salt as a Host Rock for the Geological Repository for Nuclear Waste,
Elements,
12, 257–262, https://doi.org/10.2113/gselements.12.4.257, 2016. a
Walderhaug, O., Bjørkum, P. A., and Aase, N. E.:
Kaolin-coating of stylolites, effect on quartz cementation and general implications for dissolution at mineral interfaces,
J. Sediment. Res.,
76, 234–243, https://doi.org/10.2110/jsr.2006.015, 2006. a
Weyl, P. K.:
Pressure solution and the force of crystallization: a phenomenological theory,
J. Geophys. Res.,
64, 2001–2025, https://doi.org/10.1029/JZ064i011p02001, 1959. a
Zartman, R. E.:
A Geochronologie Study of the Lone Grove Pluton from the Llano Uplift, Texas,
J. Petrol.,
5, 359–409, https://doi.org/10.1093/petrology/5.3.359, 1964. a
Zimmermann, N. E. R., Vorselaars, B., Quigley, D., and Peters, B.:
Nucleation of NaCl from Aqueous Solution: Critical Sizes, Ion-Attachment Kinetics, and Rates,
J. Am. Chem. Soc.,
137, 13352–13361, https://doi.org/10.1021/jacs.5b08098, 2015. a
Short summary
Hydraulic rock properties such as porosity and permeability are relevant factors that have an impact on groundwater resources, geological repositories and fossil fuel reservoirs. We investigate the influence of chemical compaction upon the porosity evolution in salt–biotite mixtures and related transport length scales by conducting laboratory experiments in combination with 4-D analysis. Our observations invite a renewed discussion of the effect of sheet silicates on chemical compaction.
Hydraulic rock properties such as porosity and permeability are relevant factors that have an...