Articles | Volume 8, issue 1
https://doi.org/10.5194/se-8-235-2017
https://doi.org/10.5194/se-8-235-2017
Research article
 | 
23 Feb 2017
Research article |  | 23 Feb 2017

The deep Earth origin of the Iceland plume and its effects on regional surface uplift and subsidence

Nicholas Barnett-Moore, Rakib Hassan, Nicolas Flament, and Dietmar Müller

Related authors

Early Permian longitudinal position of the South China Block from brachiopod paleobiogeography
Robert James Marks, Nicolas Flament, Sangmin Lee, and Guang R. Shi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1018,https://doi.org/10.5194/egusphere-2025-1018, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
On the impact of true polar wander on heat flux patterns at the core–mantle boundary
Thomas Frasson, Stéphane Labrosse, Henri-Claude Nataf, Nicolas Coltice, and Nicolas Flament
Solid Earth, 15, 617–637, https://doi.org/10.5194/se-15-617-2024,https://doi.org/10.5194/se-15-617-2024, 2024
Short summary
A tectonic-rules-based mantle reference frame since 1 billion years ago – implications for supercontinent cycles and plate–mantle system evolution
R. Dietmar Müller, Nicolas Flament, John Cannon, Michael G. Tetley, Simon E. Williams, Xianzhi Cao, Ömer F. Bodur, Sabin Zahirovic, and Andrew Merdith
Solid Earth, 13, 1127–1159, https://doi.org/10.5194/se-13-1127-2022,https://doi.org/10.5194/se-13-1127-2022, 2022
Short summary
Kinematics and extent of the Piemont–Liguria Basin – implications for subduction processes in the Alps
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021,https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Surrogate-assisted Bayesian inversion for landscape and basin evolution models
Rohitash Chandra, Danial Azam, Arpit Kapoor, and R. Dietmar Müller
Geosci. Model Dev., 13, 2959–2979, https://doi.org/10.5194/gmd-13-2959-2020,https://doi.org/10.5194/gmd-13-2959-2020, 2020
Short summary

Related subject area

Geodynamics
Increased metamorphic conditions in the lower crust during oceanic transform fault evolution
Peter Haas, Myron F. H. Thomas, Christian Heine, Jörg Ebbing, Andrey Seregin, and Jimmy van Itterbeeck
Solid Earth, 15, 1419–1443, https://doi.org/10.5194/se-15-1419-2024,https://doi.org/10.5194/se-15-1419-2024, 2024
Short summary
On the global geodynamic consequences of different phase boundary morphologies
Gwynfor T. Morgan, J. Huw Davies, Robert Myhill, and James Panton
EGUsphere, https://doi.org/10.5194/egusphere-2024-3496,https://doi.org/10.5194/egusphere-2024-3496, 2024
Short summary
ECOMAN: an open-source package for geodynamic and seismological modelling of mechanical anisotropy
Manuele Faccenda, Brandon P. VanderBeek, Albert de Montserrat, Jianfeng Yang, Francesco Rappisi, and Neil Ribe
Solid Earth, 15, 1241–1264, https://doi.org/10.5194/se-15-1241-2024,https://doi.org/10.5194/se-15-1241-2024, 2024
Short summary
How a volcanic arc influences back-arc extension: insight from 2D numerical models
Duo Zhang and J. Huw Davies
Solid Earth, 15, 1113–1132, https://doi.org/10.5194/se-15-1113-2024,https://doi.org/10.5194/se-15-1113-2024, 2024
Short summary
Quantifying mantle mixing through configurational entropy
Erik van der Wiel, Cedric Thieulot, and Douwe J. J. van Hinsbergen
Solid Earth, 15, 861–875, https://doi.org/10.5194/se-15-861-2024,https://doi.org/10.5194/se-15-861-2024, 2024
Short summary

Cited articles

Anell, I., Thybo, H., and Artemieva, I.: Cenozoic uplift and subsidence in the North Atlantic region: geological evidence revisited, Tectonophysics, 474, 78–105, 2009.
Artemieva, I. M.: Global 1  ×  1 thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution, Tectonophysics, 416, 245–277, 2006.
Barnett-Moore, N., Müller, R. D., Williams, S., Skogseid, J., and Seton, M.: A reconstruction of the North Atlantic since the earliest Jurassic, Basin Res., 1–26, https://doi.org/10.1111/bre.12214, 2016.
Bertram, G. and Milton, N.: Reconstructing basin evolution from sedimentary thickness; the importance of palaeobathymetric control, with reference to the North Sea, Basin Res., 1, 247–257, 1988.
Bower, D. J., Gurnis, M., and Seton, M.: Lower mantle structure from paleogeographically constrained dynamic Earth models, Geochem. Geophy. Geosy., 14, 44–63, 2013.
Download
Short summary
We use 3D mantle flow models to investigate the evolution of the Iceland plume in the North Atlantic. Results show that over the last ~ 100 Myr a remarkably stable pattern of flow in the lowermost mantle beneath the region resulted in the formation of a plume nucleation site. At the surface, a model plume compared to published observables indicates that its large plume head, ~ 2500 km in diameter, arriving beneath eastern Greenland in the Palaeocene, can account for the volcanic record and uplift.
Share