Articles | Volume 8, issue 1
Solid Earth, 8, 235–254, 2017
https://doi.org/10.5194/se-8-235-2017
Solid Earth, 8, 235–254, 2017
https://doi.org/10.5194/se-8-235-2017

Research article 23 Feb 2017

Research article | 23 Feb 2017

The deep Earth origin of the Iceland plume and its effects on regional surface uplift and subsidence

Nicholas Barnett-Moore et al.

Related authors

Kinematics and extent of the Piemont–Liguria Basin – implications for subduction processes in the Alps
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021,https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Surrogate-assisted Bayesian inversion for landscape and basin evolution models
Rohitash Chandra, Danial Azam, Arpit Kapoor, and R. Dietmar Müller
Geosci. Model Dev., 13, 2959–2979, https://doi.org/10.5194/gmd-13-2959-2020,https://doi.org/10.5194/gmd-13-2959-2020, 2020
Short summary
Quantitative stratigraphic analysis in a source-to-sink numerical framework
Xuesong Ding, Tristan Salles, Nicolas Flament, and Patrice Rey
Geosci. Model Dev., 12, 2571–2585, https://doi.org/10.5194/gmd-12-2571-2019,https://doi.org/10.5194/gmd-12-2571-2019, 2019
Short summary
Bayesian geological and geophysical data fusion for the construction and uncertainty quantification of 3D geological models
Hugo K. H. Olierook, Richard Scalzo, David Kohn, Rohitash Chandra, Ehsan Farahbakhsh, Gregory Houseman, Chris Clark, Steven M. Reddy, and R. Dietmar Müller
Solid Earth Discuss., https://doi.org/10.5194/se-2019-4,https://doi.org/10.5194/se-2019-4, 2019
Revised manuscript not accepted
Oblique rifting: the rule, not the exception
Sascha Brune, Simon E. Williams, and R. Dietmar Müller
Solid Earth, 9, 1187–1206, https://doi.org/10.5194/se-9-1187-2018,https://doi.org/10.5194/se-9-1187-2018, 2018
Short summary

Related subject area

Geodynamics
Analytical solution for residual stress and strain preserved in anisotropic inclusion entrapped in an isotropic host
Xin Zhong, Marcin Dabrowski, and Bjørn Jamtveit
Solid Earth, 12, 817–833, https://doi.org/10.5194/se-12-817-2021,https://doi.org/10.5194/se-12-817-2021, 2021
Short summary
Gravity effect of Alpine slab segments based on geophysical and petrological modelling
Maximilian Lowe, Jörg Ebbing, Amr El-Sharkawy, and Thomas Meier
Solid Earth, 12, 691–711, https://doi.org/10.5194/se-12-691-2021,https://doi.org/10.5194/se-12-691-2021, 2021
Short summary
The role of edge-driven convection in the generation of volcanism – Part 1: A 2D systematic study
Antonio Manjón-Cabeza Córdoba and Maxim D. Ballmer
Solid Earth, 12, 613–632, https://doi.org/10.5194/se-12-613-2021,https://doi.org/10.5194/se-12-613-2021, 2021
Short summary
Gravity modeling of the Alpine lithosphere affected by magmatism based on seismic tomography
Davide Tadiello and Carla Braitenberg
Solid Earth, 12, 539–561, https://doi.org/10.5194/se-12-539-2021,https://doi.org/10.5194/se-12-539-2021, 2021
Short summary
Timescales of chemical equilibrium between the convecting solid mantle and over- and underlying magma oceans
Daniela Paz Bolrão, Maxim D. Ballmer, Adrien Morison, Antoine B. Rozel, Patrick Sanan, Stéphane Labrosse, and Paul J. Tackley
Solid Earth, 12, 421–437, https://doi.org/10.5194/se-12-421-2021,https://doi.org/10.5194/se-12-421-2021, 2021
Short summary

Cited articles

Anell, I., Thybo, H., and Artemieva, I.: Cenozoic uplift and subsidence in the North Atlantic region: geological evidence revisited, Tectonophysics, 474, 78–105, 2009.
Artemieva, I. M.: Global 1  ×  1 thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution, Tectonophysics, 416, 245–277, 2006.
Barnett-Moore, N., Müller, R. D., Williams, S., Skogseid, J., and Seton, M.: A reconstruction of the North Atlantic since the earliest Jurassic, Basin Res., 1–26, https://doi.org/10.1111/bre.12214, 2016.
Bertram, G. and Milton, N.: Reconstructing basin evolution from sedimentary thickness; the importance of palaeobathymetric control, with reference to the North Sea, Basin Res., 1, 247–257, 1988.
Bower, D. J., Gurnis, M., and Seton, M.: Lower mantle structure from paleogeographically constrained dynamic Earth models, Geochem. Geophy. Geosy., 14, 44–63, 2013.
Download
Short summary
We use 3D mantle flow models to investigate the evolution of the Iceland plume in the North Atlantic. Results show that over the last ~ 100 Myr a remarkably stable pattern of flow in the lowermost mantle beneath the region resulted in the formation of a plume nucleation site. At the surface, a model plume compared to published observables indicates that its large plume head, ~ 2500 km in diameter, arriving beneath eastern Greenland in the Palaeocene, can account for the volcanic record and uplift.