Articles | Volume 9, issue 4
Solid Earth, 9, 923–951, 2018
https://doi.org/10.5194/se-9-923-2018
Solid Earth, 9, 923–951, 2018
https://doi.org/10.5194/se-9-923-2018
Research article
20 Jul 2018
Research article | 20 Jul 2018

Neoproterozoic and post-Caledonian exhumation and shallow faulting in NW Finnmark from K–Ar dating and pT analysis of fault rocks

Jean-Baptiste P. Koehl et al.

Related authors

The timing of the Svalbardian Orogeny in Svalbard: a review
Jean-Baptiste P. Koehl, John E. A. Marshall, and Gilda Lopes
Solid Earth, 13, 1353–1370, https://doi.org/10.5194/se-13-1353-2022,https://doi.org/10.5194/se-13-1353-2022, 2022
Short summary
Tectonic evolution of the Indio Hills segment of the San Andreas fault in southern California, southwestern USA
Jean-Baptiste P. Koehl, Steffen G. Bergh, and Arthur G. Sylvester
Solid Earth, 13, 1169–1190, https://doi.org/10.5194/se-13-1169-2022,https://doi.org/10.5194/se-13-1169-2022, 2022
Short summary
Impact of Timanian thrust systems on the late Neoproterozoic–Phanerozoic tectonic evolution of the Barents Sea and Svalbard
Jean-Baptiste P. Koehl, Craig Magee, and Ingrid M. Anell
Solid Earth, 13, 85–115, https://doi.org/10.5194/se-13-85-2022,https://doi.org/10.5194/se-13-85-2022, 2022
Short summary
Early Cenozoic Eurekan strain partitioning and decoupling in central Spitsbergen, Svalbard
Jean-Baptiste P. Koehl
Solid Earth, 12, 1025–1049, https://doi.org/10.5194/se-12-1025-2021,https://doi.org/10.5194/se-12-1025-2021, 2021
Short summary
Devonian–Mississippian collapse and core complex exhumation, and partial decoupling and partitioning of Eurekan deformation as alternatives to the Ellesmerian Orogeny in Spitsbergen
Jean-Baptiste P. Koehl
Solid Earth Discuss., https://doi.org/10.5194/se-2019-200,https://doi.org/10.5194/se-2019-200, 2020
Revised manuscript not accepted
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Structural geology
Structural characterization and K–Ar illite dating of reactivated, complex and heterogeneous fault zones: lessons from the Zuccale Fault, Northern Apennines
Giulio Viola, Giovanni Musumeci, Francesco Mazzarini, Lorenzo Tavazzani, Manuel Curzi, Espen Torgersen, Roelant van der Lelij, and Luca Aldega
Solid Earth, 13, 1327–1351, https://doi.org/10.5194/se-13-1327-2022,https://doi.org/10.5194/se-13-1327-2022, 2022
Short summary
How do differences in interpreting seismic images affect estimates of geological slip rates?
Wan-Lin Hu
Solid Earth, 13, 1281–1290, https://doi.org/10.5194/se-13-1281-2022,https://doi.org/10.5194/se-13-1281-2022, 2022
Short summary
Progressive veining during peridotite carbonation: insights from listvenites in Hole BT1B, Samail ophiolite (Oman)
Manuel D. Menzel, Janos L. Urai, Estibalitz Ukar, Thierry Decrausaz, and Marguerite Godard
Solid Earth, 13, 1191–1218, https://doi.org/10.5194/se-13-1191-2022,https://doi.org/10.5194/se-13-1191-2022, 2022
Short summary
Tectonic evolution of the Indio Hills segment of the San Andreas fault in southern California, southwestern USA
Jean-Baptiste P. Koehl, Steffen G. Bergh, and Arthur G. Sylvester
Solid Earth, 13, 1169–1190, https://doi.org/10.5194/se-13-1169-2022,https://doi.org/10.5194/se-13-1169-2022, 2022
Short summary
Structural diagenesis in ultra-deep tight sandstones in the Kuqa Depression, Tarim Basin, China
Jin Lai, Dong Li, Yong Ai, Hongkun Liu, Deyang Cai, Kangjun Chen, Yuqiang Xie, and Guiwen Wang
Solid Earth, 13, 975–1002, https://doi.org/10.5194/se-13-975-2022,https://doi.org/10.5194/se-13-975-2022, 2022
Short summary

Cited articles

Andersen, T. B.: The structure of the Magerøy Nappe, Finnmark, North Norway, Norg. Geol. Unders. B., 363, 1–23, 1981.
Andersen, T. B.: The stratigraphy of the Magerøy Supergroup, Finnmark, north Norway, Norg. Geol. Unders. B., 395, 25–37, 1984.
Barberi, F., Santacroce, R., and Varet, J.: Chemical Aspects of Rift Magmatism, in: Continental and Oceanic Rifts, edited by: Palmason, G., Am. Geophys. Union Geodyn. Ser., Washington D.C., USA, 8, 223–258, 1982.
Bergh, S. G. and Torske, T.: The Proterozoic Skoadduvarri Sandstone Formation, Alta, Northern Norway: A tectonic fan-delta complex, Sediment. Geol., 47, 1–25, 1986.
Bergh, S. G. and Torske, T.: Palaeovolcanology and tectonic setting of a Proterozoic metatholeiitic sequence near the Baltic Shield Margin, northern Norway, Precambrian Res., 39, 227–246, 1988.
Download
Short summary
We dated the formation of large faults in order to constrain the tectonic and exhumation history of the Barents Sea and northern Norway. Some of the dated faults formed apprx. 1 Ga and are much older than expected. However, most dated faults were active during two periods of extension: 375–325 and 315–265 Ma. The study of minerals along these cracks shows that exposed rocks in Finnmark were exhumed from deep (> 10 km) to shallow depth (< 3.5 km) during the two periods of extension.