Research article 18 Nov 2020
Research article | 18 Nov 2020
Relationship between microstructures and resistance in mafic assemblages that deform and transform
Nicolas Mansard et al.
Related authors
No articles found.
Vincent Famin, Hugues Raimbourg, Muriel Andreani, and Anne-Marie Boullier
Solid Earth, 12, 2067–2085, https://doi.org/10.5194/se-12-2067-2021, https://doi.org/10.5194/se-12-2067-2021, 2021
Short summary
Short summary
Sediments accumulated in accretionary prisms are deformed by the compression imposed by plate subduction. Here we show that deformation of the sediments transforms some minerals in them. We suggest that these mineral transformations are due to the proliferation of microorganisms boosted by deformation. Deformation-enhanced microbial proliferation may change our view of sedimentary and tectonic processes in subduction zones.
Junichi Fukuda, Hugues Raimbourg, Ichiko Shimizu, Kai Neufeld, and Holger Stünitz
Solid Earth, 10, 621–636, https://doi.org/10.5194/se-10-621-2019, https://doi.org/10.5194/se-10-621-2019, 2019
Short summary
Short summary
Grain size is a key factor for deformation. Quartz is one of the main constituents of the crust, but little is known about grain growth that can change grain size. We therefore experimentally determined grain growth laws for quartz. We discuss the importance of the grain size exponent, water fugacity exponent, and activation energy. Our results indicate that the contribution of grain growth to deformation may become important in lower-crustal conditions.
Carly Faber, Holger Stünitz, Deta Gasser, Petr Jeřábek, Katrin Kraus, Fernando Corfu, Erling K. Ravna, and Jiří Konopásek
Solid Earth, 10, 117–148, https://doi.org/10.5194/se-10-117-2019, https://doi.org/10.5194/se-10-117-2019, 2019
Short summary
Short summary
The Caledonian mountains formed when Baltica and Laurentia collided around 450–400 million years ago. This work describes the history of the rocks and the dynamics of that continental collision through space and time using field mapping, estimated pressures and temperatures, and age dating on rocks from northern Norway. The rocks preserve continental collision between 440–430 million years ago, and an unusual pressure–temperature evolution suggests unusual tectonic activity prior to collision.
Sina Marti, Holger Stünitz, Renée Heilbronner, Oliver Plümper, and Rüdiger Kilian
Solid Earth, 9, 985–1009, https://doi.org/10.5194/se-9-985-2018, https://doi.org/10.5194/se-9-985-2018, 2018
Short summary
Short summary
Using rock deformation experiments we study how rocks deform at mid-crustal levels within mountain belts and along plate boundaries. For the studied material, fluid-assisted mass transport and grain sliding are the dominant deformation mechanisms when small amounts of water are present. Our results provide new data on the mechanical response of the earth's crust, and the wide range of presented microstructures will help to correlate observations from experiments and nature.
Alexis Plunder, Cédric Thieulot, and Douwe J. J. van Hinsbergen
Solid Earth, 9, 759–776, https://doi.org/10.5194/se-9-759-2018, https://doi.org/10.5194/se-9-759-2018, 2018
Short summary
Short summary
The thermal state of the Earth's crust determines how it reacts to tectonic forces and to fluid flow responsible for ore formation. We hypothesize that the angle between plate motion and convergent boundaries determines the thermal regime of subduction zones (where a plate goes under another one). Computer models and a geological reconstruction of Turkey were used to validate this hypothesis.
This research was done to validate a hypothesis made on the basis of nonquantitative field data.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, rock physics, experimental deformation | Discipline: Structural geology
Deformation-enhanced diagenesis and bacterial proliferation in the Nankai accretionary prism
Rheological stratification in impure rock salt during long-term creep: morphology, microstructure, and numerical models of multilayer folds in the Ocnele Mari salt mine, Romania
Geodynamic and seismotectonic model of a long-lived transverse structure: The Schio-Vicenza Fault System (NE Italy)
Dating folding beyond folding, from layer-parallel shortening to fold tightening, using mesostructures: Lessons from the Apennines, Pyrenees and Rocky Mountains
Neogene kinematics of the Giudicarie Belt and eastern Southern Alpine orogenic front (northern Italy)
Fault interpretation uncertainties using seismic data, and the effects on fault seal analysis: a case study from the Horda Platform, with implications for CO2 storage
Reply to Norini and Groppelli's comment on “Estimating the depth and evolution of intrusions at resurgent calderas: Los Humeros (Mexico)” by Urbani et al. (2020)
Roughness of Fracture Surfaces in Numerical Models and Laboratory Experiments
Emplacement of “exotic” Zechstein slivers along the inverted Sontra Graben (northern Hessen, Germany): clues from balanced cross sections and geometrical forward modeling
Kinematics of subduction in the Ibero-Armorican arc constrained by 3D microstructural analysis of garnet and pseudomorphed lawsonite porphyroblasts from Île de Groix (Variscan belt)
Investigating Spatial Heterogeneity within Fracture Networks using Hierarchical Clustering and Graph Distance Metrics
Frictional properties and microstructural evolution of dry and wet calcite–dolomite gouges
Experimental evidence that viscous shear zones generate periodic pore sheets
Influence of inherited structural domains and their particular strain distributions on the Roer Valley graben evolution from inversion to extension
The Piuquencillo fault system: a long-lived, Andean-transverse fault system and its relationship with magmatic and hydrothermal activity
Extensional reactivation of the Penninic frontal thrust 3 Myr ago as evidenced by U–Pb dating on calcite in fault zone cataclasite
Distribution, microphysical properties, and tectonic controls of deformation bands in the Miocene subduction wedge (Whakataki Formation) of the Hikurangi subduction zone
Analysis of deformation bands associated with the Trachyte Mesa intrusion, Henry Mountains, Utah: implications for reservoir connectivity and fluid flow around sill intrusions
Characterization of discontinuities in potential reservoir rocks for geothermal applications in the Rhine-Ruhr metropolitan area (Germany)
On a new robust workflow for the statistical and spatial analysis of fracture data collected with scanlines (or the importance of stationarity)
Micro- and nano-porosity of the active Alpine Fault zone, New Zealand
Unraveling the origins and P-T-t evolution of the allochthonous Sobrado unit (Órdenes Complex, NW Spain) using combined U–Pb titanite, monazite and zircon geochronology and rare-earth element (REE) geochemistry
Evidence for the Late Cretaceous Asteroussia event in the Gondwanan Ios basement terranes
Fracture attribute scaling and connectivity in the Devonian Orcadian Basin with implications for geologically equivalent sub-surface fractured reservoirs
Structural control on fluid flow and shallow diagenesis: insights from calcite cementation along deformation bands in porous sandstones
The growth of faults and fracture networks in a mechanically evolving, mechanically stratified rock mass: a case study from Spireslack Surface Coal Mine, Scotland
Multiphase, decoupled faulting in the southern German Molasse Basin – evidence from 3-D seismic data
Near-surface Palaeocene fluid flow, mineralisation and faulting at Flamborough Head, UK: new field observations and U–Pb calcite dating constraints
Geologic characterization of nonconformities using outcrop and core analogs: hydrologic implications for injection-induced seismicity
Mapping the fracture network in the Lilstock pavement, Bristol Channel, UK: manual versus automatic
Precambrian faulting episodes and insights into the tectonothermal history of north Australia: microstructural evidence and K–Ar, 40Ar–39Ar, and Rb–Sr dating of syntectonic illite from the intracratonic Millungera Basin
Transverse jointing in foreland fold-and-thrust belts: a remote sensing analysis in the eastern Pyrenees
Pre-inversion normal fault geometry controls inversion style and magnitude, Farsund Basin, offshore southern Norway
Uncertainty assessment for 3D geologic modeling of fault zones based on geologic inputs and prior knowledge
Control of pre-existing fabric in fracture formation, reactivation and vein emplacement under variable fluid pressure conditions: an example from Archean greenstone belt, India
Extension and inversion of salt-bearing rift systems
Structure and kinematics of an extensional growth fold, Hadahid Fault System, Suez Rift, Egypt
Throw variations and strain partitioning associated with fault-bend folding along normal faults
Resolved stress analysis, failure mode, and fault-controlled fluid conduits
An active tectonic field for CO2 storage management: the Hontomín onshore case study (Spain)
Evolution of structures and hydrothermal alteration in a Palaeoproterozoic supracrustal belt: Constraining paired deformation–fluid flow events in an Fe and Cu–Au prospective terrain in northern Sweden
Estimating the depth and evolution of intrusions at resurgent calderas: Los Humeros (Mexico)
Abutting faults: a case study of the evolution of strain at Courthouse branch point, Moab Fault, Utah
Fluid-mediated, brittle–ductile deformation at seismogenic depth – Part 2: Stress history and fluid pressure variations in a shear zone in a nuclear waste repository (Olkiluoto Island, Finland)
Fault zone architecture of a large plate-bounding strike-slip fault: a case study from the Alpine Fault, New Zealand
An automated fracture trace detection technique using the complex shearlet transform
A numerical sensitivity study of how permeability, porosity, geological structure, and hydraulic gradient control the lifetime of a geothermal reservoir
Actors, actions, and uncertainties: optimizing decision-making based on 3-D structural geological models
Structure of massively dilatant faults in Iceland: lessons learned from high-resolution unmanned aerial vehicle data
Fracturing and crystal plastic behaviour of garnet under seismic stress in the dry lower continental crust (Musgrave Ranges, Central Australia)
Vincent Famin, Hugues Raimbourg, Muriel Andreani, and Anne-Marie Boullier
Solid Earth, 12, 2067–2085, https://doi.org/10.5194/se-12-2067-2021, https://doi.org/10.5194/se-12-2067-2021, 2021
Short summary
Short summary
Sediments accumulated in accretionary prisms are deformed by the compression imposed by plate subduction. Here we show that deformation of the sediments transforms some minerals in them. We suggest that these mineral transformations are due to the proliferation of microorganisms boosted by deformation. Deformation-enhanced microbial proliferation may change our view of sedimentary and tectonic processes in subduction zones.
Marta Adamuszek, Dan M. Tămaş, Jessica Barabasch, and Janos L. Urai
Solid Earth, 12, 2041–2065, https://doi.org/10.5194/se-12-2041-2021, https://doi.org/10.5194/se-12-2041-2021, 2021
Short summary
Short summary
We analyse folded multilayer sequences in the Ocnele Mari salt mine (Romania) to gain insight into the long-term rheological behaviour of rock salt. Our results indicate the large role of even a small number of impurities in the rock salt for its effective mechanical behaviour. We demonstrate how the development of folds that occur at various scales can be used to constrain the viscosity ratio in the deformed multilayer sequence.
Dario Zampieri, Paola Vannoli, and Pierfrancesco Burrato
Solid Earth, 12, 1967–1986, https://doi.org/10.5194/se-12-1967-2021, https://doi.org/10.5194/se-12-1967-2021, 2021
Short summary
Short summary
The long-lived Schio-Vicenza Fault System is a major shear zone cross-cutting the foreland and the thrust belt of the eastern southern Alps. We review 150 years of scientific works and explain its activity and kinematics, characterized by sinistral and dextral transcurrent motion along its southern and northern sections, respectively, by a geodynamic model that has the Adria indenter as the main actor and coherently reconciles the available geological and geophysical evidence collected so far.
Olivier Lacombe, Nicolas Beaudoin, Guilhem Hoareau, Aurélie Labeur, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth Discuss., https://doi.org/10.5194/se-2021-82, https://doi.org/10.5194/se-2021-82, 2021
Revised manuscript accepted for SE
Short summary
Short summary
This paper aims at illustrating how the timing and duration of contractional deformation associated to folding in orogenic forelands can be constrained by the dating of brittle mesostructures observed in folded strata. The study combines new and already published absolute ages of fractures to provide for the first time an educated discussion about the factors controlling the duration of the sequence of deformation encompassing layer-parallel shortening, fold growth and late fold tightening.
Vincent F. Verwater, Eline Le Breton, Mark R. Handy, Vincenzo Picotti, Azam Jozi Najafabadi, and Christian Haberland
Solid Earth, 12, 1309–1334, https://doi.org/10.5194/se-12-1309-2021, https://doi.org/10.5194/se-12-1309-2021, 2021
Short summary
Short summary
Balancing along geological cross sections reveals that the Giudicarie Belt comprises two kinematic domains. The SW domain accommodated at least ~ 18 km Late Oligocene to Early Miocene shortening. Since the Middle Miocene, the SW domain experienced at least ~ 12–22 km shortening, whereas the NE domain underwent at least ~ 25–35 km. Together, these domains contributed to ~ 40–47 km of sinistral offset of the Periadriatic Fault along the Northern Giudicarie Fault since the Late Oligocene.
Emma A. H. Michie, Mark J. Mulrooney, and Alvar Braathen
Solid Earth, 12, 1259–1286, https://doi.org/10.5194/se-12-1259-2021, https://doi.org/10.5194/se-12-1259-2021, 2021
Short summary
Short summary
Generating an accurate model of the subsurface is crucial when assessing a site for CO2 storage, particularly for a fault-bound storage site that may act as a seal or could reactivate upon CO2 injection. However, we have shown how picking strategy, i.e. line spacing, chosen to create the model significantly influences any subsequent fault analyses but is surprisingly rarely discussed. This analysis has been performed on the Vette Fault bounding the Smeaheia potential CO2 storage site.
Stefano Urbani, Guido Giordano, Federico Lucci, Federico Rossetti, and Gerardo Carrasco-Núñez
Solid Earth, 12, 1111–1124, https://doi.org/10.5194/se-12-1111-2021, https://doi.org/10.5194/se-12-1111-2021, 2021
Short summary
Short summary
Structural studies in active calderas have a key role in the exploration of geothermal systems. We reply in detail to the points raised by the comment of Norini and Groppelli (2020), strengthening the relevance of our structural fieldwork for geothermal exploration and exploitation in active caldera geothermal systems including the Los Humeros caldera.
Steffen Abe and Hagen Deckert
Solid Earth Discuss., https://doi.org/10.5194/se-2021-51, https://doi.org/10.5194/se-2021-51, 2021
Revised manuscript accepted for SE
Short summary
Short summary
We use numerical simulations and laboratory experiments on rock samples to investigate how stress conditions influence the geometry and roughness of fracture surfaces. The roughness of the surfaces was analysed in terms of absolute roughness and scaling properties. The results show that the surfaces are self-affine, but with different scaling properties between the numerical models and the real rock samples. Results suggest that stress conditions have little influence on the surface roughness.
Jakob Bolz and Jonas Kley
Solid Earth, 12, 1005–1024, https://doi.org/10.5194/se-12-1005-2021, https://doi.org/10.5194/se-12-1005-2021, 2021
Short summary
Short summary
To assess the role smaller graben structures near the southern edge of the Central European Basin System play in the basin’s overall deformational history, we take advantage of a feature found on some of these structures, where slivers from older rock units appear along the graben's main fault, surrounded on both sides by younger strata. The implications for the geometry of the fault provide a substantially improved estimate for the magnitude of normal and thrust motion along the fault system.
Domingo G. A. M. Aerden, Alejandro Ruiz-Fuentes, Mohammad Sayab, and Aidan Forde
Solid Earth, 12, 971–992, https://doi.org/10.5194/se-12-971-2021, https://doi.org/10.5194/se-12-971-2021, 2021
Short summary
Short summary
We studied the geometry of foliations and microfolds preserved within metamorphic garnet crystals using X-ray tomography. The studied rocks are blueschists from Ile de Groix formed during Late Devonian subduction of Gondwana under Armorica. Several sets of differently oriented microfabrics were found recording variations in the direction of subduction. Comparison with similar data for Iberia supports that Iberia rotated only 10–20° during the Cretaceous opening of the North Atlantic.
Rahul Prabhakaran, Giovanni Bertotti, Janos Urai, and David Smeulders
Solid Earth Discuss., https://doi.org/10.5194/se-2021-45, https://doi.org/10.5194/se-2021-45, 2021
Revised manuscript accepted for SE
Short summary
Short summary
Rock fractures are organized as networks with spatially varying arrangements. Owing to networks' influence on bulk rock behavior, it is important to quantify network spatial variation. We utilize an approach where fracture networks are treated as spatial graphs. By combining graph similarity measures with clustering techniques, spatial clusters within large-scale fracture networks are identified and organized hierarchically. The method is validated on a dataset with nearly 300,000 fractures.
Matteo Demurtas, Steven A.F. Smith, Elena Spagnuolo, and Giulio Di Toro
Solid Earth, 12, 595–612, https://doi.org/10.5194/se-12-595-2021, https://doi.org/10.5194/se-12-595-2021, 2021
Short summary
Short summary
We performed shear experiments on calcite–dolomite gouge mixtures to better understand the behaviour of carbonates during sub-seismic to seismic deformation in the shallow crust. The development of a foliation in the gouge was only restricted to coseismic sliding, whereas fluidisation occurred over a wide range of slip velocities (sub-seismic to coseismic) in the presence of water. These observations will contribute to a better interpretation of the rock record.
James Gilgannon, Marius Waldvogel, Thomas Poulet, Florian Fusseis, Alfons Berger, Auke Barnhoorn, and Marco Herwegh
Solid Earth, 12, 405–420, https://doi.org/10.5194/se-12-405-2021, https://doi.org/10.5194/se-12-405-2021, 2021
Short summary
Short summary
Using experiments that simulate deep tectonic interfaces, known as viscous shear zones, we found that these zones spontaneously develop periodic sheets of small pores. The presence of porous layers in deep rocks undergoing tectonic deformation is significant because it requires a change to the current model of how the Earth deforms. Emergent porous layers in viscous rocks will focus mineralising fluids and could lead to the seismic failure of rocks that are never supposed to have this occur.
Jef Deckers, Bernd Rombaut, Koen Van Noten, and Kris Vanneste
Solid Earth, 12, 345–361, https://doi.org/10.5194/se-12-345-2021, https://doi.org/10.5194/se-12-345-2021, 2021
Short summary
Short summary
This study shows the presence of two structural domains in the western border fault system of the Roer Valley graben. These domains, dominated by NW–SE-striking faults, displayed distinctly different strain distributions during both Late Cretaceous compression and Cenozoic extension. The southern domain is characterized by narrow, localized faulting, while the northern domain is characterized by wide, distributed faulting. The non-colinear WNW–ESE Grote Brogel fault links both domains.
José Piquer, Orlando Rivera, Gonzalo Yáñez, and Nicolás Oyarzún
Solid Earth, 12, 253–273, https://doi.org/10.5194/se-12-253-2021, https://doi.org/10.5194/se-12-253-2021, 2021
Short summary
Short summary
A proper recognition of deep, long-lived fault systems is very important for society. They can produce potentially dangerous earthquakes. They can also act as pathways for magmas and hydrothermal fluids, leading to the formation of volcanoes, geothermal systems and mineral deposits. However, the manifestations of these very old faults in the present-day surface can be very subtle. Here, we present a detailed, multi-disciplinary study of a fault system of this type in the Andes of central Chile.
Antonin Bilau, Yann Rolland, Stéphane Schwartz, Nicolas Godeau, Abel Guihou, Pierre Deschamps, Benjamin Brigaud, Aurélie Noret, Thierry Dumont, and Cécile Gautheron
Solid Earth, 12, 237–251, https://doi.org/10.5194/se-12-237-2021, https://doi.org/10.5194/se-12-237-2021, 2021
Short summary
Short summary
As a result of the collision between the European and Apulian plates, the Alps have experienced several evolutionary stages. The Penninic frontal thrust (PFT) (major thrust) was associated with compression, and now seismic studies show ongoing extensional activity. Calcite mineralization associated with shortening and extensional structures was sampled. The last deformation stages are dated by U–Pb on calcite at ~ 3.5 and ~ 2.5 Ma. Isotope analysis evidences deep crustal fluid mobilization.
Kathryn E. Elphick, Craig R. Sloss, Klaus Regenauer-Lieb, and Christoph E. Schrank
Solid Earth, 12, 141–170, https://doi.org/10.5194/se-12-141-2021, https://doi.org/10.5194/se-12-141-2021, 2021
Short summary
Short summary
We analysed a sedimentary rock package located in Castlepoint, New Zealand, to test the control of the tectonic setting on the observed deformation structures. In extension and contraction, we observed faults and small fault-like structures characterised by complex spatial patterns and a reduction in porosity and grain size compared with the host rock. With these properties, the structures are likely to act as barriers to fluid flow and cause compartmentalisation of the sedimentary sequence.
Penelope I. R. Wilson, Robert W. Wilson, David J. Sanderson, Ian Jarvis, and Kenneth J. W. McCaffrey
Solid Earth, 12, 95–117, https://doi.org/10.5194/se-12-95-2021, https://doi.org/10.5194/se-12-95-2021, 2021
Short summary
Short summary
Magma accommodation in the shallow crust leads to deformation of the surrounding host rock through the creation of faults, fractures and folds. This deformation will impact fluid flow around intrusive magma bodies (including sills and laccoliths) by changing the porosity and permeability network of the host rock. The results may have important implications for industries where fluid flow within the subsurface adds value (e.g. oil and gas, hydrology, geothermal and carbon sequestration).
Martin Balcewicz, Benedikt Ahrens, Kevin Lippert, and Erik H. Saenger
Solid Earth, 12, 35–58, https://doi.org/10.5194/se-12-35-2021, https://doi.org/10.5194/se-12-35-2021, 2021
Short summary
Short summary
The geothermal potential of a carbonate reservoir in the Rhine-Ruhr area, Germany, was investigated by field and laboratory investigations. The carbonate layer of interest is approx. 150 m thick; located at 4 to 6 km depth; and might extend below Essen, Bochum, and Dortmund. We proposed focusing on discontinuities striking NNW–SSE for geothermal applications, as these are the most common, strike in the direction of the main horizontal stress, and dominate reservoir fluid flow.
Andrea Bistacchi, Silvia Mittempergher, Mattia Martinelli, and Fabrizio Storti
Solid Earth, 11, 2535–2547, https://doi.org/10.5194/se-11-2535-2020, https://doi.org/10.5194/se-11-2535-2020, 2020
Short summary
Short summary
We present an innovative workflow for the statistical analysis of fracture data collected along scanlines. Our methodology is based on performing non-parametric statistical tests, which allow detection of important features of the spatial distribution of fractures, and on the analysis of the cumulative spacing function (CSF) and cumulative spacing derivative (CSD), which allows the boundaries of stationary domains to be defined in an objective way.
Martina Kirilova, Virginia Toy, Katrina Sauer, François Renard, Klaus Gessner, Richard Wirth, Xianghui Xiao, and Risa Matsumura
Solid Earth, 11, 2425–2438, https://doi.org/10.5194/se-11-2425-2020, https://doi.org/10.5194/se-11-2425-2020, 2020
Short summary
Short summary
Processes associated with open pores can change the physical properties of rocks and cause earthquakes. In borehole samples from the Alpine Fault zone, we show that many pores in these rocks were filled by weak materials that can slide easily. The amount of open spaces was thus reduced, and fluids circulating within them built up high pressures. Both weak materials and high pressures within pores reduce the rock strength; thus the state of pores here can trigger the next Alpine Fault earthquake.
José Manuel Benítez-Pérez, Pedro Castiñeiras, Juan Gómez-Barreiro, José R. Martínez Catalán, Andrew Kylander-Clark, and Robert Holdsworth
Solid Earth, 11, 2303–2325, https://doi.org/10.5194/se-11-2303-2020, https://doi.org/10.5194/se-11-2303-2020, 2020
Short summary
Short summary
The Sobrado unit represents an allochthonous tectonic slice of exhumed high-grade metamorphic rocks formed during a complex sequence of orogenic processes in the middle to lower crust. We have combined U–Pb geochronology and REE analyses (LASS-ICP-MS) of accessory minerals in migmatitic paragneiss (monazite, zircon) and mylonitic amphibolites (titanite) to constrain the evolution. A Middle Devonian minimum age for HP metamorphism has been obtained.
Sonia Yeung, Marnie Forster, Emmanuel Skourtsos, and Gordon Lister
Solid Earth Discuss., https://doi.org/10.5194/se-2020-186, https://doi.org/10.5194/se-2020-186, 2020
Revised manuscript accepted for SE
Short summary
Short summary
We do not know when the ancient Tethys Ocean lithosphere began to founder, but one clue can be found in subduction accreted tectonic slices, including Gondwanan basement terranes on the island of Ios, Cyclades, Greece. We propose a 250-300km southwards jump of the subduction megathrust, with a period of flat-slab subduction followed by slab break-off. The initiation and its subsequent rollback of a new subduction zone would explain the onset of Oligo-Miocene extension and accompanying magmatism.
Anna M. Dichiarante, Ken J. W. McCaffrey, Robert E. Holdsworth, Tore I. Bjørnarå, and Edward D. Dempsey
Solid Earth, 11, 2221–2244, https://doi.org/10.5194/se-11-2221-2020, https://doi.org/10.5194/se-11-2221-2020, 2020
Short summary
Short summary
We studied the characteristics of fracture systems in the Devonian rocks of the Orcadian Basin in Caithness. These mineral-filled fractures have properties that may be used to predict the size and spatial arrangement of similar structures in offshore basins. This includes the Clair field in the Faroe–Shetland Basin.
Leonardo Del Sole, Marco Antonellini, Roger Soliva, Gregory Ballas, Fabrizio Balsamo, and Giulio Viola
Solid Earth, 11, 2169–2195, https://doi.org/10.5194/se-11-2169-2020, https://doi.org/10.5194/se-11-2169-2020, 2020
Short summary
Short summary
This study focuses on the impact of deformation bands on fluid flow and diagenesis in porous sandstones in two different case studies (northern Apennines, Italy; Provence, France) by combining a variety of multiscalar mapping techniques, detailed field and microstructural observations, and stable isotope analysis. We show that deformation bands buffer and compartmentalize fluid flow and foster and localize diagenesis, recorded by carbonate cement nodules spatially associated with the bands.
Billy James Andrews, Zoe Kai Shipton, Richard Lord, and Lucy McKay
Solid Earth, 11, 2119–2140, https://doi.org/10.5194/se-11-2119-2020, https://doi.org/10.5194/se-11-2119-2020, 2020
Short summary
Short summary
Through geological mapping we find that fault zone internal structure depends on whether or not the fault cuts multiple lithologies, the presence of shale layers, and the orientation of joints and coal cleats at the time of faulting. During faulting, cementation of fractures (i.e. vein formation) is highest where the fractures are most connected. This leads to the counter-intuitive result that the highest-fracture-density part of the network often has the lowest open-fracture connectivity.
Vladimir Shipilin, David C. Tanner, Hartwig von Hartmann, and Inga Moeck
Solid Earth, 11, 2097–2117, https://doi.org/10.5194/se-11-2097-2020, https://doi.org/10.5194/se-11-2097-2020, 2020
Short summary
Short summary
In our work, we carry out an in-depth structural analysis of a geometrically decoupled fault system in the southern German Molasse Basin using a high-resolution 3-D seismic dataset. Based on this analysis, we reconstruct the tectonic history and changes in the stress regimes to explain the structure and evolution of faults. The results contribute in understanding the driving mechanisms behind formation, propagation, and reactivation of faults during foreland basin formation.
Nick M. W. Roberts, Jack K. Lee, Robert E. Holdsworth, Christopher Jeans, Andrew R. Farrant, and Richard Haslam
Solid Earth, 11, 1931–1945, https://doi.org/10.5194/se-11-1931-2020, https://doi.org/10.5194/se-11-1931-2020, 2020
Short summary
Short summary
We characterise a well-known fractured and faulted exposure of Cretaceous chalk in NE England, combining field observations with novel U–Pb calcite dating. We show that the faulting and associated fluid flow occurred during the interval of ca. 64–56 Ma, predating earlier estimates of Alpine-related tectonic inversion. We demonstrate that the main extensional fault zone acted as a conduit linking voluminous fluid flow and linking deeper sedimentary layers with the shallow subsurface.
Elizabeth S. Petrie, Kelly K. Bradbury, Laura Cuccio, Kayla Smith, James P. Evans, John P. Ortiz, Kellie Kerner, Mark Person, and Peter Mozley
Solid Earth, 11, 1803–1821, https://doi.org/10.5194/se-11-1803-2020, https://doi.org/10.5194/se-11-1803-2020, 2020
Short summary
Short summary
A summary of observed rock properties across the contact between crystalline basement rock and the overlying younger sedimentary rocks from outcrop and core samples is presented. The data span a range of tectonic settings and describe the rock types immediately adjacent to the contact. The range of features observed at these contacts can influence the migration of fluids. The observations presented here are critical for the safe implementation of fluid injection and geothermal production.
Christopher Weismüller, Rahul Prabhakaran, Martijn Passchier, Janos L. Urai, Giovanni Bertotti, and Klaus Reicherter
Solid Earth, 11, 1773–1802, https://doi.org/10.5194/se-11-1773-2020, https://doi.org/10.5194/se-11-1773-2020, 2020
Short summary
Short summary
We photographed a fractured limestone pavement with a drone to compare manual and automatic fracture tracing and analyze the evolution and spatial variation of the fracture network in high resolution. We show that automated tools can produce results comparable to manual tracing in shorter time but do not yet allow the interpretation of fracture generations. This work pioneers the automatic fracture mapping of a complete outcrop in detail, and the results can be used as fracture benchmark.
I. Tonguç Uysal, Claudio Delle Piane, Andrew James Todd, and Horst Zwingmann
Solid Earth, 11, 1653–1679, https://doi.org/10.5194/se-11-1653-2020, https://doi.org/10.5194/se-11-1653-2020, 2020
Short summary
Short summary
This study represents an integrated approach to radiometric age dating using potassium-bearing clay minerals formed during faulting and provides insights into the enigmatic time–space distribution of Precambrian tectonic zones in north-central Australia. Specifically, our work firmly indicates a late Mesoproterzoic minimum age for the Millungera Basin in north Australia and a previously unrecorded concealed late Mesoproterozoic–early Neoproterozoic tectonic event in north-central Australia.
Stefano Tavani, Pablo Granado, Amerigo Corradetti, Thomas Seers, Josep Maria Casas, and Josep Anton Muñoz
Solid Earth, 11, 1643–1651, https://doi.org/10.5194/se-11-1643-2020, https://doi.org/10.5194/se-11-1643-2020, 2020
Short summary
Short summary
Using orthophotos, we manually digitized 30 000 joints in the eastern Ebro Basin of the Pyrenees. Joints are perpendicular to the belt in the frontal portion of the belt and in the inner and central portion of the foredeep basin. Joint orientations in the external portion of the foredeep become less clustered. Joints in the studied area formed in the foredeep in response to foredeep-parallel stretching, which becomes progressively less intense within the external portion of the foredeep basin.
Thomas B. Phillips, Christopher A.-L. Jackson, and James R. Norcliffe
Solid Earth, 11, 1489–1510, https://doi.org/10.5194/se-11-1489-2020, https://doi.org/10.5194/se-11-1489-2020, 2020
Short summary
Short summary
Normal faults often reactivate under compression, in a process called inversion. The 3D geometry of these structures (and the effect on resultant inversion structural style) is often not considered. Using seismic reflection data, we examine how stresses form different inversion styles that are controlled by the geometry of the pre-existing structure. Geometrically simple faults are preferentially reactivated; more complex areas are typically not reactivated and instead experience bulk uplift.
Ashton Krajnovich, Wendy Zhou, and Marte Gutierrez
Solid Earth, 11, 1457–1474, https://doi.org/10.5194/se-11-1457-2020, https://doi.org/10.5194/se-11-1457-2020, 2020
Short summary
Short summary
In this paper, a novel methodology of 3D geologic model uncertainty assessment that considers both input data and prior knowledge is developed and applied to characterize fault zones – areas of damaged rock surrounding a fault surface that are important to subsurface engineering projects. The results of the study demonstrate how existing frameworks can be expanded to incorporate new types of information to arrive at a realistic and straightforward model of fault zone geometry in the subsurface.
Sreyashi Bhowmick and Tridib Kumar Mondal
Solid Earth, 11, 1227–1246, https://doi.org/10.5194/se-11-1227-2020, https://doi.org/10.5194/se-11-1227-2020, 2020
Short summary
Short summary
We explore pre-existing fabric in metabasalts replete with a wide range of crisscross fractures/faults, hosting quartz veins of variable orientations and thicknesses in the Chitradurga region, India. The fractures are identified as components of a riedel shear system. We evaluate reactivation potential of fractures and conclude that episodic changes in fluid pressure conditions triggered fault-valve action, thereby reactivating fabric and fractures, leading to vein emplacement in the region.
Tim P. Dooley and Michael R. Hudec
Solid Earth, 11, 1187–1204, https://doi.org/10.5194/se-11-1187-2020, https://doi.org/10.5194/se-11-1187-2020, 2020
Short summary
Short summary
Sandbox models investigated extension and inversion of salt-bearing rifts such as those found in the Moroccan High Atlas, North Africa. Sand packs were stretched and the structural lows were filled with a salt analog. Models were then subjected to additional extension and loading that remobilized the salt into diapirs. During shortening the distribution of the salt in the overburden governed the structural styles and trends in the supra-salt strata, strongly decoupled from subsalt deformation.
Christopher A.-L. Jackson, Paul S. Whipp, Robert L. Gawthorpe, and Matthew M. Lewis
Solid Earth, 11, 1027–1051, https://doi.org/10.5194/se-11-1027-2020, https://doi.org/10.5194/se-11-1027-2020, 2020
Short summary
Short summary
Plate tectonics describes the creation, motion, and ultimate destruction of the Earth's continents and oceans. A key plate tectonic process is continental extension; this occurs when the Earth's plates are pulled apart to ultimately form a new ocean. Giant fractures (faults) accommodate plate stretching, although buckling (folding) is thought to be locally important. We use field data to understand how fracturing and buckling relate to each other, demonstrating they are spatially complex.
Efstratios Delogkos, Muhammad Mudasar Saqab, John J. Walsh, Vincent Roche, and Conrad Childs
Solid Earth, 11, 935–945, https://doi.org/10.5194/se-11-935-2020, https://doi.org/10.5194/se-11-935-2020, 2020
Short summary
Short summary
Normal faults have irregular geometries on a range of scales. A quantitative model has been presented which illustrates the range of deformation arising from movement on fault surface irregularities, with fault-bend folding generating geometries reminiscent of normal drag and reverse drag. We show that fault throw can be subject to errors of up to ca. 50 % for realistic fault bend geometries (up to ca. 40°), even on otherwise sub-planar faults with constant displacement.
David A. Ferrill, Kevin J. Smart, and Alan P. Morris
Solid Earth, 11, 899–908, https://doi.org/10.5194/se-11-899-2020, https://doi.org/10.5194/se-11-899-2020, 2020
Short summary
Short summary
This paper explores failure modes and deformation behavior of faults in the mechanically layered Eagle Ford Formation, an ultra-low permeability self-sourced oil and gas reservoir and aquitard in southwest Texas, USA. The role of dilation versus slip relates in predictable ways to mechanical stratigraphy, stress field, and dilation and slip tendency. We conclude that dilation tendency vs. slip tendency can be used to infer fault and fracture deformation modes and conduit versus seal behaviour.
Raúl Pérez-López, José F. Mediato, Miguel A. Rodríguez-Pascua, Jorge L. Giner-Robles, Adrià Ramos, Silvia Martín-Velázquez, Roberto Martínez-Orío, and Paula Fernández-Canteli
Solid Earth, 11, 719–739, https://doi.org/10.5194/se-11-719-2020, https://doi.org/10.5194/se-11-719-2020, 2020
Short summary
Short summary
Long-term monitoring of CO2 of onshore storage has to consider thousands of years as a medium lifetime of the storage. In this wide time interval, the stress and strain properties of the reservoir change and earthquakes could occur. Therefore, we have to identify those fault sets which can be reactivated by changing the stress conditions. We need to know the role of active fault sets and model the changing conditions to prevent induced seismicity.
Joel B. H. Andersson, Tobias E. Bauer, and Edward P. Lynch
Solid Earth, 11, 547–578, https://doi.org/10.5194/se-11-547-2020, https://doi.org/10.5194/se-11-547-2020, 2020
Short summary
Short summary
In this field-based study, geological structures and hydrothermal alterations in one of the least known geological terrains in Sweden are investigated. The area is located above the polar circle in northwestern Sweden that produces a significant portion of the iron and copper in the EU. A new tectonic model based on field evidence and microstructures is presented and it is shown that minerals typical for iron and copper–gold deposits can be linked to different phases of the structural evolution.
Stefano Urbani, Guido Giordano, Federico Lucci, Federico Rossetti, Valerio Acocella, and Gerardo Carrasco-Núñez
Solid Earth, 11, 527–545, https://doi.org/10.5194/se-11-527-2020, https://doi.org/10.5194/se-11-527-2020, 2020
Short summary
Short summary
In Los Humeros, through field structural–geological mapping and analogue experiments, we show a discontinuous and small-scale (areal size
~ 1 km2) uplift of the caldera floor due to the emplacement of multiple shallow (< 1 km) magmatic bodies. These results allow for a better assessment of the subsurface structure of Los Humeros, with crucial implications for planning future geothermal exploration, which should account for the local geothermal gradient affected by such a shallow heat source.
Heijn van Gent and Janos L. Urai
Solid Earth, 11, 513–526, https://doi.org/10.5194/se-11-513-2020, https://doi.org/10.5194/se-11-513-2020, 2020
Short summary
Short summary
Faults form due to stresses caused by crustal processes. As faults influence the stress field locally, fault interaction leads to local variations in the stress field, but this is difficult to observe directly.
We describe an outcrop of one fault abuting into another one. By careful measurement of structures in the overlapping deformation zones and separating them using published relative age data, we show a rotation in the local stress field resulting from the faults growing to each other
Francesca Prando, Luca Menegon, Mark Anderson, Barbara Marchesini, Jussi Mattila, and Giulio Viola
Solid Earth, 11, 489–511, https://doi.org/10.5194/se-11-489-2020, https://doi.org/10.5194/se-11-489-2020, 2020
Bernhard Schuck, Anja M. Schleicher, Christoph Janssen, Virginia G. Toy, and Georg Dresen
Solid Earth, 11, 95–124, https://doi.org/10.5194/se-11-95-2020, https://doi.org/10.5194/se-11-95-2020, 2020
Rahul Prabhakaran, Pierre-Olivier Bruna, Giovanni Bertotti, and David Smeulders
Solid Earth, 10, 2137–2166, https://doi.org/10.5194/se-10-2137-2019, https://doi.org/10.5194/se-10-2137-2019, 2019
Short summary
Short summary
This contribution describes a technique to automatically extract digitized fracture patterns from images of fractured rock. Digitizing fracture patterns, accurately and rapidly with minimal human intervention, is a desirable objective in fractured rock characterization. Our method can extract fractures at varying scales of rock discontinuities, and results are presented from three different outcrop settings. The method enables faster processing of copious amounts of fractured outcrop image data.
Johanna F. Bauer, Michael Krumbholz, Elco Luijendijk, and David C. Tanner
Solid Earth, 10, 2115–2135, https://doi.org/10.5194/se-10-2115-2019, https://doi.org/10.5194/se-10-2115-2019, 2019
Short summary
Short summary
We use a 4-D numerical sensitivity study to investigate which geological parameters exert a dominant control on the quality of a deep geothermal reservoir. We constrain how the variability of these parameters affects the economic potential of a reservoir. We show that the interplay of high permeability and hydraulic gradient is the dominant control on reservoir lifetime. Fracture anisotropy, typical for faults, leads to fluid channelling and thus restricts the exploitable volume significantly.
Fabian Antonio Stamm, Miguel de la Varga, and Florian Wellmann
Solid Earth, 10, 2015–2043, https://doi.org/10.5194/se-10-2015-2019, https://doi.org/10.5194/se-10-2015-2019, 2019
Christopher Weismüller, Janos L. Urai, Michael Kettermann, Christoph von Hagke, and Klaus Reicherter
Solid Earth, 10, 1757–1784, https://doi.org/10.5194/se-10-1757-2019, https://doi.org/10.5194/se-10-1757-2019, 2019
Short summary
Short summary
We use drones to study surface geometries of massively dilatant faults (MDFs) in Iceland, with apertures up to tens of meters at the surface. Based on throw, aperture and structures, we define three geometrically different endmembers of the surface expression of MDFs and show that they belong to one continuum. The transition between the endmembers is fluent and can change at one fault over short distances, implying less distinct control of deeper structures on surface geometries than expected.
Friedrich Hawemann, Neil Mancktelow, Sebastian Wex, Giorgio Pennacchioni, and Alfredo Camacho
Solid Earth, 10, 1635–1649, https://doi.org/10.5194/se-10-1635-2019, https://doi.org/10.5194/se-10-1635-2019, 2019
Cited articles
Angiboust, S., Agard, P., Raimbourg, H., Yamato, P. and Huet, B.: Subduction
interface processes recorded by eclogite-facies shear zones (Monviso, W.
Alps), Lithos, 127, 222–238, https://doi.org/10.1016/j.lithos.2011.09.004, 2011.
Ashby, M. and Verrall, R.: Diffusion-accommodated flow and
superplasticity, Acta Metall., 21, 149–163,
https://doi.org/10.1016/0001-6160(73)90057-6, 1973.
Austrheim, H.: Eclogitization of lower crustal granulites by fluid migration
through shear zones, Earth Planet. Sci. Lett., 81, 221–232,
https://doi.org/10.1016/0012-821X(87)90158-0, 1987.
Baratoux, L., Schulmann, K., Ulrich, S., and Lexa, O.: Contrasting
microstructures and deformation mechanisms in metagabbro mylonites
contemporaneously deformed under different temperatures (c. 650 C and c.
750 C), Geol. Soc. London, Spec. Publ., 243, 97–125,
https://doi.org/10.1144/GSL.SP.2005.243.01.09, 2005.
Barreiro, J. G., Lonardelli, I., Wenk, H. R., Dresen, G., Rybacki, E., Ren,
Y., and Tomé, C. N.: Preferred orientation of anorthite deformed
experimentally in Newtonian creep, Earth Planet. Sci. Lett., 264,
188–207, https://doi.org/10.1016/J.EPSL.2007.09.018, 2007.
Behrmann, J. H.: Crystal plasticity and superplasticity in quartzite; A
natural example, Tectonophysics, 115, 101–129,
https://doi.org/10.1016/0040-1951(85)90102-7, 1985.
Bell, D. R., Ihinger, P. D., and Rossman, G. R.: Quantitative analysis of
trace OH in garnet and pyroxenes, Am. Mineral., 80, 465–474,
https://doi.org/10.2138/am-1995-5-607, 1995.
Bercovici, D. and Ricard, Y.: Mechanisms for the generation of plate
tectonics by two-phase grain-damage and pinning, Phys. Earth Planet. Inter.,
202–203, 27–55, https://doi.org/10.1016/J.PEPI.2012.05.003, 2012.
Berger, A. and Stünitz, H.: Deformation mechanisms and reaction of
hornblende: examples from the Bergell tonalite (Central Alps),
Tectonophysics, 257, 149–174, https://doi.org/10.1016/0040-1951(95)00125-5,
1996.
Berthé, D., Choukroune, P., and Jegouzo, P.: Orthogneiss, mylonite and
non coaxial deformation of granites: the example of the South Armorican
Shear Zone, J. Struct. Geol., 1, 31–42,
https://doi.org/10.1016/0191-8141(79)90019-1, 1979.
Bons, P. D. and Den Brok, B.: Crystallographic preferred orientation
development by dissolution-precipitation creep, J. Struct.
Geol., 22, 1713–1722, 2000.
Borg, I. and Handin, J.: Experimental deformation of crystalline rocks,
Tectonophysics, 3, 249–367, https://doi.org/10.1016/0040-1951(66)90019-9, 1966.
Boullier, A. M. and Gueguen, Y.: SP-Mylonites: Origin of some mylonites by
superplastic flow, Contrib. Mineral. Petrol., 50, 93–104,
https://doi.org/10.1007/BF00373329, 1975.
Brander, L., Svahnberg, H., and Piazolo, S.: Brittle-plastic deformation in
initially dry rocks at fluid-present conditions: Transient behaviour of
feldspar at mid-crustal levels, Contrib. Mineral. Petrol., 163,
403–425, https://doi.org/10.1007/s00410-011-0677-5, 2012.
Brodie, K. H.: Variations in mineral chemistry across a shear zone in
phlogopite peridotite, J. Struct. Geol., 2, 265–272,
https://doi.org/10.1016/0191-8141(80)90059-0, 1980.
Brodie, K. H. and Rutter, E. H.: On the Relationship between Deformation and
Metamorphism, with Special Reference to the Behavior of Basic Rocks, pp.
138–179, Springer, New York, NY, 1985.
Brodie, K. H. and Rutter, E. H.: The role of transiently fine-grained
reaction products in syntectonic metamorphism: natural and experimental
examples, Can. J. Earth Sci., 24, 556–564, https://doi.org/10.1139/e87-054, 1987.
Brodie, K. H., Rutter, E. H., and Evans, P.: On the structure of the
Ivrea-Verbano Zone (northern Italy) and its implications for present-day
lower continental crust geometry, Terra Nov., 4, 34–40,
https://doi.org/10.1111/j.1365-3121.1992.tb00448.x, 1992.
Bunge, H.-J.: Texture analysis in materials science?: mathematical methods,
Butterworths, London, ISBN: 978-0-408-10642-9, 1982.
Bystricky, M. and Mackwell, S.: Creep of dry clinopyroxene aggregates, J.
Geophys. Res.-Solid Earth, 106, 13443–13454, https://doi.org/10.1029/2001JB000333,
2001.
Coe, R. S.: The thermodynamic effect of shear stress on the ortho-clino
inversion in enstatite and other coherent phase transitions characterized by
a finite simple shear, Contrib. Mineral. Petrol., 26, 247–264,
https://doi.org/10.1007/BF00373203, 1970.
Coe, R. S. and Kirby, S. H.: The orthoenstatite to clinoenstatite
transformation by shearing and reversion by annealing: Mechanism and
potential applications, Contrib. Mineral. Petrol., 52, 29–55,
https://doi.org/10.1007/BF00378000, 1975.
Connolly, J. A. D.: The geodynamic equation of state: What and how,
Geochemistry, Geophys. Geosystems, 10, Q10014,,
https://doi.org/10.1029/2009GC002540, 2009.
Dale, J., Powell, R., White, R. W., Elmer, F. L., and Holland, T. J. B.: A
thermodynamic model for Ca-Na clinoamphiboles in
Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O for petrological calculations, J.
Metamorph. Geol., 23, 771–791, https://doi.org/10.1111/j.1525-1314.2005.00609.x,
2005.
Degli Alessandrini, G., Menegon, L., Malaspina, N., Dijkstra, A. H., and
Anderson, M. W.: Creep of mafic dykes infiltrated by melt in the lower
continental crust (Seiland Igneous Province, Norway), Lithos, 274–275,
169–187, https://doi.org/10.1016/j.lithos.2016.12.030, 2017.
Dell'Angelo, L. N. and Tullis, J.: Textural and mechanical evolution with
progressive strain in experimentally deformed aplite, Tectonophysics,
256, 57–82, https://doi.org/10.1016/0040-1951(95)00166-2, 1996.
De Ronde, A. A. and Stünitz, H.: Deformation-enhanced reaction in
experimentally deformed plagioclase-olivine aggregates, Contrib. Mineral.
Petrol., 153, 699–717, https://doi.org/10.1007/s00410-006-0171-7, 2007.
De Ronde, A. A., Heilbronner, R., Stünitz, H., and Tullis, J.: Spatial
correlation of deformation and mineral reaction in experimentally deformed
plagioclase-olivine aggregates, Tectonophysics, 389, 93–109,
https://doi.org/10.1016/j.tecto.2004.07.054, 2004.
Dimanov, A. and Dresen, G.: Rheology of synthetic anorthite-diopside
aggregates: Implications for ductile shear zones, J. Geophys. Res.-Solid
Earth, 110, 1–24, https://doi.org/10.1029/2004JB003431, 2005.
Dimanov, A., Lavie, M. P., Dresen, G., Ingrin, J., and Jaoul, O.: Creep of
polycrystalline anorthite and diopside, J. Geophys. Res.-Solid Earth,
108, 2061, https://doi.org/10.1029/2002JB001815, 2003.
Dimanov, A., Rybacki, E., Wirth, R., and Dresen, G.: Creep and
strain-dependent microstructures of synthetic anorthite–diopside
aggregates, J. Struct. Geol., 29, 1049–1069,
https://doi.org/10.1016/J.JSG.2007.02.010, 2007.
Elyaszadeh, R., Prior, D. J., Sarkarinejad, K., and Mansouri, H.: Different
slip systems controlling crystallographic preferred orientation and
intracrystalline deformation of amphibole in mylonites from the Neyriz
mantle diapir, Iran, J. Struct. Geol., 107, 38–52,
https://doi.org/10.1016/j.jsg.2017.11.020, 2018.
Etheridge, M. A., Wall, V. J., and Vernon, R. H.: The role of the fluid phase
during regional metamorphism and deformation, J. Metamorph. Geol., 1,
205–226, https://doi.org/10.1111/j.1525-1314.1983.tb00272.x, 1983.
Farla, R. J. M., Karato, S.-I., and Cai, Z.: Role of orthopyroxene in
rheological weakening of the lithosphere via dynamic recrystallization,
P. Natl. Acad. Sci. USA, 110, 16355–16360,
https://doi.org/10.1073/pnas.1218335110, 2013.
Fitz Gerald, J. and Stünitz, H.: Deformation of granitoids at low
m∼ tamo∼ ∼ ic grade. I: Reactions
and grain size reduction, Elsevier Sci. Publ. B.V, 221, 269–297,
https://doi.org/10.1016/0040-1951(93)90164-F, 1993.
Fliervoet, T. F. and White, S. H.: Quartz deformation in a very fine grained
quartzo-feldspathic mylonite: a lack of evidence for dominant grain boundary
sliding deformation, J. Struct. Geol., 17, 1095–1109,
https://doi.org/10.1016/0191-8141(95)00007-Z, 1995.
Fliervoet, T. F., White, S. H., and Drury, M. R.: Evidence for dominant
grain-boundary sliding deformation in greenschist- and amphibolite-grade
polymineralic ultramylonites from the Redbank Deformed Zone, Central
Australia, J. Struct. Geol., 19, 1495–1520,
https://doi.org/10.1016/S0191-8141(97)00076-X, 1997.
Gapais, D.: Shear structures within deformed granites: Mechanical and
thermal indicators, Geology, 17, 1144–1147, 1989.
Getsinger, A. J. and Hirth, G.: Amphibole fabric formation during diffusion
creep and the rheology of shear zones, Geology, 42, 535–538,
https://doi.org/10.1130/G35327.1, 2014.
Getsinger, A. J., Hirth, G., Stünitz, H., and Goergen, E. T.: Influence
of water on rheology and strain localization in the lower continental crust,
Geochem. Geophys. Geosy., 14, 2247–2264,
https://doi.org/10.1002/ggge.20148, 2013.
Gilgannon, J., Fusseis, F., Menegon, L., Regenauer-Lieb, K., and Buckman, J.: Hierarchical creep cavity formation in an ultramylonite and implications for phase mixing, Solid Earth, 8, 1193–1209, https://doi.org/10.5194/se-8-1193-2017, 2017.
Giuntoli, F., Menegon, L., and Warren, C. J.: Replacement reactions and
deformation by dissolution and precipitation processes in amphibolites, J.
Metamorph. Geol., 36, 1263–1286, https://doi.org/10.1111/jmg.12445, 2018.
Gueydan, F., Leroy, Y. M., and Jolivet, L.: Mechanics of low-angle
extensional shear zones at the brittle-ductile transition, J. Geophys. Res.-Solid Earth, 109, 1–16, https://doi.org/10.1029/2003JB002806, 2004.
Handy, M. R.: Flow laws for rocks containing two non-linear viscous phases:
A phenomenological approach, J. Struct. Geol., 16, 287–301,
https://doi.org/10.1016/0191-8141(94)90035-3, 1994.
Handy, M. R. and Stünitz, H.: Strain localization by fracturing and
reaction weakening – a mechanism for initiating exhumation of
subcontinental mantle beneath rifted margins, Geol. Soc. London, Spec.
Publ., 200, 387–407, https://doi.org/10.1144/GSL.SP.2001.200.01.22, 2002.
Harigane, Y., Michibayashi, K., and Ohara, Y.: Shearing within lower crust
during progressive retrogression: Structural analysis of gabbroic rocks from
the Godzilla Mullion, an oceanic core complex in the Parece Vela backarc
basin, Tectonophysics, 457, 183–196, https://doi.org/10.1016/j.tecto.2008.06.009,
2008.
Herwegh, M. and Berger, A.: Deformation mechanisms in second-phase affected
microstructures and their energy balance, J. Struct. Geol., 26,
1483–1498, https://doi.org/10.1016/J.JSG.2003.10.006, 2004.
Herwegh, M., Linckens, J., Ebert, A., Berger, A., and Brodhag, S. H.: The
role of second phases for controlling microstructural evolution in
polymineralic rocks: A review, J. Struct. Geol., 33, 1728–1750,
https://doi.org/10.1016/j.jsg.2011.08.011, 2011.
Holland, T. J. B. and Powell, R.: An internally consistent thermodynamic
data set for phases of petrological interest, J. Metamorph. Geol., 16,
309–343, https://doi.org/10.1111/j.1525-1314.1998.00140.x, 1998.
Holyoke, C. W. and Tullis, J.: Formation and maintenance of shear zones,
Geology, 34, 105–108, https://doi.org/10.1130/G22116.1, 2006a.
Holyoke, C. W. and Tullis, J.: Mechanisms of weak phase interconnection and
the effects of phase strength contrast on fabric development, J. Struct.
Geol., 28, 621–640, https://doi.org/10.1016/j.jsg.2006.01.008, 2006b.
Imon, R., Okudaira, T., and Fujimoto, A.: Dissolution and precipitation
processes in deformed amphibolites: an example from the ductile shear zone
of the Ryoke metamorphic belt, SW Japan, J. Metamorph. Geol., 20,
297–308, https://doi.org/10.1046/j.1525-1314.2002.00367.x, 2002.
Imon, R., Okudaira, T., and Kanagawa, K.: Development of shape- and
lattice-preferred orientations of amphibole grains during initial
cataclastic deformation and subsequent deformation by
dissolution-precipitation creep in amphibolites from the Ryoke metamorphic
belt, SW Japan, J. Struct. Geol., 26, 793–805,
https://doi.org/10.1016/j.jsg.2003.09.004, 2004.
Johnson, E. A.: Water in nominally anhydrous crustal minerals: Speciation,
concentration, and geologic significance, in: Water in Nominally Anhydrous
Minerals, vol. 62, pp. 117–154, Walter de Gruyter GmbH, 2006.
Johnson, E. A. and Rossmann, G. R.: The concentration and speciation of
hydrogen in feldspars using FTIR and 1H MAS NMR spectroscopy, Am. Mineral.,
88, 901–911, https://doi.org/10.2138/am-2003-5-620, 2003.
Johnson, E. A. and Rossman, G. R.: A survey of hydrous species and
concentrations in igneous feldspars, Am. Mineral., 89, 586–600,
https://doi.org/10.2138/am-2004-0413, 2004.
Jolivet, L. and Miyashita, S.: The Hidaka Shear Zone (Hokkaido, Japan):
Genesis during a right-lateral strike-slip movement, Tectonics, 4,
289–302, https://doi.org/10.1029/TC004i003p00289, 1985.
Jordan, P.: The rheology of polymineralic rocks - an approach, Geol.
Rundschau, 77, 285–294, https://doi.org/10.1007/BF01848690, 1988.
Kanagawa, K., Shimano, H., and Hiroi, Y.: Mylonitic deformation of gabbro in
the lower crust: A case study from the Pankenushi gabbro in the Hidaka
metamorphic belt of central Hokkaido, Japan, J. Struct. Geol., 30,
1150–1166, https://doi.org/10.1016/j.jsg.2008.05.007, 2008.
Keller, L. M., Abart, R., Stünitz, H., and De Capitani, C.: Deformation,
mass transfer and mineral reactions in an eclogite facies shear zone in a
polymetamorphic metapelite (Monte Rosa nappe, western Alps), J. Metamorph.
Geol., 22, 97–118, https://doi.org/10.1111/j.1525-1314.2004.00500.x, 2004.
Kenkmann, T. and Dresen, G.: Dislocation microstructure and phase
distribution in a lower crustal shear zone – An example from the Ivrea-Zone,
Italy, Int. J. Earth Sci., 91, 445–458, https://doi.org/10.1007/s00531-001-0236-9,
2002.
Kerrich, R., Allison, I., Barnett, R. L., Moss, S., and Starkey, J.:
Microstructural and chemical transformations accompanying deformation of
granite in a shear zone at Miéville, Switzerland; with implications for
stress corrosion cracking and superplastic flow, Contrib. Mineral.
Petrol., 73, 221–242, https://doi.org/10.1007/BF00381442, 1980.
Kilian, R., Heilbronner, R., and Stünitz, H.: Quartz grain size reduction
in a granitoid rock and the transition from dislocation to diffusion creep,
J. Struct. Geol., 33, 1265–1284, https://doi.org/10.1016/j.jsg.2011.05.004, 2011.
Knipe, R.: Deformation mechanisms – recognition from natural tectonites,
J. Struct. Geol., 11, 127–146, https://doi.org/10.1016/0191-8141(89)90039-4,
1989.
Kohlstedt, D. L., Evans, B., and Mackwell, S. J.: Strength of the
lithosphere: Constraints imposed by laboratory experiments, J. Geophys. Res.-Solid Earth, 100, 17587–17602, https://doi.org/10.1029/95JB01460, 1995.
Kruse, R. and Stünitz, H.: Deformation mechanisms and phase distribution
in mafic high-temperature mylonites from the Jotun Nappe, southern Norway,
Tectonophysics, 303, 223–249, https://doi.org/10.1016/S0040-1951(98)00255-8,
1999.
Langdon, T. G.: Grain boundary sliding revisited: Developments in sliding
over four decades, J. Mater. Sci., 41, 597–609,
https://doi.org/10.1007/s10853-006-6476-0, 2006.
Linckens, J., Herwegh, M., Müntener, O., and Mercolli, I.: Evolution of a
polymineralic mantle shear zone and the role of second phases in the
localization of deformation, J. Geophys. Res.-Solid Earth, 116, B06210,
https://doi.org/10.1029/2010JB008119, 2011.
Linckens, J., Herwegh, M., and Müntener, O.: Small quantity but large
effect - How minor phases control strain localization in upper mantle shear
zones, Tectonophysics, 643, 26–43, https://doi.org/10.1016/j.tecto.2014.12.008, 2015.
Mansard, N., Stünitz, H., Raimbourg, H., and Précigout, J.: The role
of deformation-reaction interactions to localize strain in polymineralic
rocks: Insights from experimentally deformed plagioclase-pyroxene
assemblages, J. Struct. Geol., 134, 104008, https://doi.org/10.1016/j.jsg.2020.104008, 2020.
Marti, S., Stünitz, H., Heilbronner, R., Plümper, O., and Kilian, R.: Syn-kinematic hydration reactions, grain size reduction, and dissolution–precipitation creep in experimentally deformed plagioclase–pyroxene mixtures, Solid Earth, 9, 985–1009, https://doi.org/10.5194/se-9-985-2018, 2018.
Mehl, L. and Hirth, G.: Plagioclase preferred orientation in layered
mylonites: Evaluation of flow laws for the lower crust, J. Geophys. Res.,
113, B05202, https://doi.org/10.1029/2007JB005075, 2008.
Menegon, L., Fusseis, F., Stünitz, H., and Xiao, X.: Creep cavitation
bands control porosity and fluid flow in lower crustal shear zones, Geology,
43, 227–230, https://doi.org/10.1130/G36307.1, 2015.
Miyazaki, T., Sueyoshi, K., and Hiraga, T.: Olivine crystals align during
diffusion creep of Earth's upper mantle, Nature, 502, 321–326,
https://doi.org/10.1038/nature12570, 2013.
Montési, L. G. J.: Fabric development as the key for forming ductile
shear zones and enabling plate tectonics, J. Struct. Geol., 50, 254–266,
https://doi.org/10.1016/j.jsg.2012.12.011, 2013.
Newman, J., Lamb, W. M., Drury, M. R., and Vissers, R. L. M.: Deformation
processes in a peridotite shear zone: reaction-softening by an
H2O-deficient, continuous net transfer reaction, Tectonophysics, 303,
193–222, https://doi.org/10.1016/S0040-1951(98)00259-5, 1999.
Newton, R. C.: Fluids and shear zones in the deep crust, Tectonophysics,
182, 21–37, https://doi.org/10.1016/0040-1951(90)90339-A, 1990.
Newton, R. C., Charlu, T. V., and Kleppa, O. J.: Thermochemistry of the high
structural state plagioclases, Geochim. Cosmochim. Acta, 44, 933–941,
https://doi.org/10.1016/0016-7037(80)90283-5, 1980.
Nicolas, A. and Christensen, N. I.: Formation of anisotropy in upper mantle
peridotites: A review, pp. 111–123, American Geophysical Union (AGU),
1987.
Okudaira, T., Jeřábek, P., Stünitz, H., and Fusseis, F.:
High-temperature fracturing and subsequent grain-size-sensitive creep in
lower crustal gabbros: Evidence for coseismic loading followed by creep
during decaying stress in the lower crust, J. Geophys. Res.-Solid Earth,
120, 3119–3141, https://doi.org/10.1002/2014JB011708, 2015.
Okudaira, T., Shigematsu, N., Harigane, Y., and Yoshida, K.: Grain size
reduction due to fracturing and subsequent grain-size-sensitive creep in a
lower crustal shear zone in the presence of a CO2-bearing fluid, J. Struct.
Geol., 95, 171–187, https://doi.org/10.1016/j.jsg.2016.11.001, 2017.
Olgaard, D. L.: The role of second phase in localizing deformation, Geol.
Soc. London, Spec. Publ., 54, 175–181,
https://doi.org/10.1144/GSL.SP.1990.054.01.17, 1990.
Olgaard, D. L. and Evans, B.: Effect of Second-Phase Particles on Grain
Growth in Calcite, J. Am. Ceram. Soc., 69, C-272–C-277,
https://doi.org/10.1111/j.1151-2916.1986.tb07374.x, 1986.
Olgaard, D. L. and Evans, B.: Grain growth in synthetic marbles with added
mica and water, Contrib. Mineral. Petrol., 100, 246–260,
https://doi.org/10.1007/BF00373591, 1988.
Oliot, E., Goncalves, P., Schulmann, K., Marquer, D., and Lexa, O.:
Mid-crustal shear zone formation in granitic rocks: Constraints from
quantitative textural and crystallographic preferred orientations analyses,
Tectonophysics, 612–613, 63–80, https://doi.org/10.1016/j.tecto.2013.11.032, 2014.
Palazzin, G., Raimbourg, H., Stünitz, H., Heilbronner, R., Neufeld, K.,
and Précigout, J.: Evolution in H2O contents during deformation of
polycrystalline quartz: An experimental study, J. Struct. Geol., 114,
95–110, https://doi.org/10.1016/J.JSG.2018.05.021, 2018.
Paterson, M. S.: The determination of hydroxyl by infrared adsorption in
quartz, silicate glasses and similar materials., Bull. Mineral., 105,
20–29, https://doi.org/10.3406/bulmi.1982.7582, 1982.
Paterson, M. S.: Superplasticity in Geological Materials, MRS Proc., 196, 303,
https://doi.org/10.1557/proc-196-303, 1990.
Paterson, M. S.: A Granular Flow Approach to Fine-Grain Superplasticity, in:
Plastic Deformation of Ceramics, pp. 279–283, Springer USA, 1995.
Paterson, M. S.: Materials Science for Structural Geology, 1st ed.,
Springer, New York, 2013.
Pec, M., Stünitz, H., and Heilbronner, R.: Semi-brittle deformation of
granitoid gouges in shear experiments at elevated pressures and
temperatures, 38, 200–221, https://doi.org/10.1016/j.jsg.2011.09.001, 2012b.
Pec, M., Stünitz, H., Heilbronner, R., and Drury, M.: Semi-brittle flow
of granitoid fault rocks in experiments, J. Geophys. Res.-Solid Earth,
121, 1677–1705, https://doi.org/10.1002/2015JB012513, 2016.
Philippot, P. and Kienast, J. R.: Chemical-microstructural changes in
eclogite-facies shear zones (Monviso, Western Alps, north Italy) as
indicators of strain history and the mechanism and scale of mass transfer,
Lithos, 23, 179–200, https://doi.org/10.1016/0024-4937(89)90004-2, 1989.
Platt, J. P.: Rheology of two-phase systems: A microphysical and
observational approach, J. Struct. Geol., 77, 213–227,
https://doi.org/10.1016/j.jsg.2015.05.003, 2015.
Plümper, O., Botan, A., Los, C., Liu, Y., Malthe-Sørenssen, A., and
Jamtveit, B.: Fluid-driven metamorphism of the continental crust governed by
nanoscale fluid flow, Nat. Geosci., 10, 685–690, https://doi.org/10.1038/ngeo3009,
2017.
Powell, R. and Holland, T.: Relating formulations of the thermodynamics of
mineral solid solutions: Activity modeling of pyroxenes, amphiboles, and
micas, Am. Mineral., 84, 1–14, https://doi.org/10.2138/am-1999-1-201, 1999.
Précigout, J. and Hirth, G.: B-type olivine fabric induced by grain
boundary sliding, Earth Planet. Sci. Lett., 395, 231–240,
https://doi.org/10.1016/j.epsl.2014.03.052, 2014.
Précigout, J. and Stünitz, H.: Evidence of phase nucleation during
olivine diffusion creep: A new perspective for mantle strain localisation,
Earth Planet. Sci. Lett., 455, 94–105,
https://doi.org/10.1016/j.epsl.2016.09.029, 2016.
Précigout, J., Prigent, C., Palasse, L., and Pochon, A.: Water pumping in
mantle shear zones, Nat. Commun., 8, 15736, https://doi.org/10.1038/ncomms15736, 2017.
Précigout, J., Stünitz, H., Pinquier, Y., Champallier, R., and
Schubnel, A.: High-pressure, High-temperature Deformation Experiment Using
the New Generation Griggs-type Apparatus, J. Vis. Exp., 134, e56841,
https://doi.org/10.3791/56841, 2018.
Raimbourg, H., Toyoshima, T., Harima, Y., and Kimura, G.: Grain-size
reduction mechanisms and rheological consequences in high-temperature gabbro
mylonites of Hidaka, Japan, Earth Planet. Sci. Lett., 267, 637–653,
https://doi.org/10.1016/j.epsl.2007.12.012, 2008.
Richter, B., Stünitz, H., and Heilbronner, R.: The brittle-to-viscous
transition in polycrystalline quartz: An experimental study, J. Struct.
Geol., 114, 1–21, https://doi.org/10.1016/j.jsg.2018.06.005, 2018.
Rubie, D. C.: Reaction-enhanced ductility: The role of solid-solid
univariant reactions in deformation of the crust and mantle, Tectonophysics,
96, 331–352, https://doi.org/10.1016/0040-1951(83)90225-1, 1983.
Rudnick, R. L. and Fountain, D. M.: Nature and composition of the
continental crust: A lower crustal perspective, Rev. Geophys., 33, 267,
https://doi.org/10.1029/95RG01302, 1995.
Rutter, E. H. and Brodie, K. H.: The Permeation of Water into Hydrating
Shear Zones, Adv. Phys. Geochem., 4, 242–250, 1985.
Schmid, S. M.: Microfabric studies as indicators of deformation mechanisms
and flow laws operative in mountain building, Mt. Build. Process., edited by: Hsu, K. J., Academic Press,
95–110, 1982.
Schroeder, T. and John, B. E.: Strain localization on an oceanic detachment
fault system, Atlantis Massif, 30∘ N, Mid-Atlantic Ridge,
Geochem. Geophy. Geosy., 5, Q11007, https://doi.org/10.1029/2004GC000728, 2004.
Selverstone, J., Morteani, G., and Staude, J.-M.: Fluid channelling during
ductile shearing: transformation of granodiorite into aluminous schist in
the Tauern Window, Eastern Alps, J. Metamorph. Geol., 9, 419–431,
https://doi.org/10.1111/j.1525-1314.1991.tb00536.x, 1991.
Shelley, D.: Spider texture and amphibole preferred orientations, J. Struct.
Geol., 16, 709–717, https://doi.org/10.1016/0191-8141(94)90120-1, 1994.
Skemer, P., Katayama, I., Jiang, Z., and Karato, S.: The misorientation
index: Development of a new method for calculating the strength of
lattice-preferred orientation, Tectonophysics, 411, 157–167,
https://doi.org/10.1016/J.TECTO.2005.08.023, 2005.
Skogby, H.: Water in natural mantle minerals I: Pyroxenes, in: Water in
Nominally Anhydrous Minerals, vol. 62, pp. 155–168, Walter de Gruyter
GmbH, 2006.
Soret, M., Agard, P., Ildefonse, B., Dubacq, B., Prigent, C., and Rosenberg, C.: Deformation mechanisms in mafic amphibolites and granulites: record from the Semail metamorphic sole during subduction infancy, Solid Earth, 10, 1733–1755, https://doi.org/10.5194/se-10-1733-2019, 2019.
Stünitz, H. and Fitz Gerald, J. D.: Deformation of granitoids at low
metamorphic grades: II. Granular flow in albite rich mylonites,
Tectonophysics, 221, 299–324, https://doi.org/10.1016/0040-1951(93)90164-F, 1993.
Stünitz, H. and Tullis, J.: Weakening and strain localization produced
by syn-deformational reaction of plagioclase, Int. J. Earth Sci., 90,
136–148, https://doi.org/10.1007/s005310000148, 2001.
Sundberg, M. and Cooper, R. F.: Crystallographic preferred orientation
produced by diffusional creep of harzburgite: Effects of chemical
interactions among phases during plastic flow, J. Geophys. Res.-Solid Earth,
113, B12208, https://doi.org/10.1029/2008JB005618, 2008.
Svahnberg, H. and Piazolo, S.: Interaction of chemical and physical
processes during deformation at fluid-present conditions: A case study from
an anorthosite-leucogabbro deformed at amphibolite facies conditions,
Contrib. Mineral. Petrol., 165, 543–562,
https://doi.org/10.1007/s00410-012-0822-9, 2013.
Tasaka, M., Zimmerman, M. E., and Kohlstedt, D. L.: Evolution of the
rheological and microstructural properties of olivine aggregates during
dislocation creep under hydrous conditions, J. Geophys. Res.-Solid Earth,
121, 92–113, https://doi.org/10.1002/2015JB012134, 2016.
Tasaka, M., Zimmerman, M. E., Kohlstedt, D. L., Stünitz, H., and
Heilbronner, R.: Rheological Weakening of Olivine + Orthopyroxene
Aggregates Due To Phase Mixing: Part 2. Microstructural Development, J.
Geophys. Res.-Solid Earth, 122, 7597–7612, https://doi.org/10.1002/2017JB014311,
2017.
Tullis, J., Yund, R., and Farver, J.: Deformation-enhanced fluid distribution
in feldspar aggregates and implications for ductile shear zones, Geology,
24, 63–66, https://doi.org/10.1130/0091-7613(1996)024<0063:defdif>2.3.co;2, 1996.
Vissers, R. L. M., Drury, M. R., Newman, J., and Fliervoet, T. F.: Mylonitic
deformation in upper mantle peridotites of the North Pyrenean Zone (France):
implications for strength and strain localization in the lithosphere,
Tectonophysics, 279, 303–325, https://doi.org/10.1016/S0040-1951(97)00128-5,
1997.
Warren, J. M. and Hirth, G.: Grain size sensitive deformation mechanisms in
naturally deformed peridotites, Earth Planet. Sci. Lett., 248,
423–435, https://doi.org/10.1016/j.epsl.2006.06.006, 2006.
Wenk, H.-R. and Christie, J. M.: Comments on the interpretation of
deformation textures in rocks, J. Struct. Geol., 13, 1091–1110,
https://doi.org/10.1016/0191-8141(91)90071-P, 1991.
Wheeler, J.: Importance of pressure solution and coble creep in the
deformation of polymineralic rocks, J. Geophys. Res., 97, 4579,
https://doi.org/10.1029/91JB02476, 1992.
Short summary
Our rock deformation experiments (solid-medium Griggs-type apparatus) on wet assemblages of mafic compositions show that the ability of minerals to react controls the portions of rocks that deform and that minor chemical and mineralogical variations can considerably modify the strength of deformed assemblages. Our study suggests that the rheology of mafic rocks, which constitute a large part of the oceanic crust, cannot be summarized as being rheologically controlled by monophase materials.
Our rock deformation experiments (solid-medium Griggs-type apparatus) on wet assemblages of...