Research article
21 Dec 2012
Research article | 21 Dec 2012
Dynamics of interplate domain in subduction zones: influence of rheological parameters and subducting plate age
D. Arcay
Related subject area
Deciphering the metamorphic evolution of the Pulo do Lobo metasedimentary domain (SW Iberian Variscides)
Irene Pérez-Cáceres, David Jesús Martínez Poyatos, Olivier Vidal, Olivier Beyssac, Fernando Nieto, José Fernando Simancas, Antonio Azor, and Franck Bourdelle
Solid Earth, 11, 469–488, https://doi.org/10.5194/se-11-469-2020,https://doi.org/10.5194/se-11-469-2020, 2020
Short summary
Combined numerical and experimental study of microstructure and permeability in porous granular media
Philipp Eichheimer, Marcel Thielmann, Wakana Fujita, Gregor J. Golabek, Michihiko Nakamura, Satoshi Okumura, Takayuki Nakatani, and Maximilian O. Kottwitz
Solid Earth Discuss., https://doi.org/10.5194/se-2019-199,https://doi.org/10.5194/se-2019-199, 2020
Revised manuscript accepted for SE
Short summary
Density distribution across the Alpine lithosphere constrained by 3-D gravity modelling and relation to seismicity and deformation
Cameron Spooner, Magdalena Scheck-Wenderoth, Hans-Jürgen Götze, Jörg Ebbing, György Hetényi, and the AlpArray Working Group
Solid Earth, 10, 2073–2088, https://doi.org/10.5194/se-10-2073-2019,https://doi.org/10.5194/se-10-2073-2019, 2019
Short summary
Pore-scale permeability prediction for Newtonian and non-Newtonian fluids
Philipp Eichheimer, Marcel Thielmann, Anton Popov, Gregor J. Golabek, Wakana Fujita, Maximilian O. Kottwitz, and Boris J. P. Kaus
Solid Earth, 10, 1717–1731, https://doi.org/10.5194/se-10-1717-2019,https://doi.org/10.5194/se-10-1717-2019, 2019
Short summary
3-D crustal density model of the Sea of Marmara
Ershad Gholamrezaie, Magdalena Scheck-Wenderoth, Judith Bott, Oliver Heidbach, and Manfred R. Strecker
Solid Earth, 10, 785–807, https://doi.org/10.5194/se-10-785-2019,https://doi.org/10.5194/se-10-785-2019, 2019
Short summary
Oblique rifting: the rule, not the exception
Sascha Brune, Simon E. Williams, and R. Dietmar Müller
Solid Earth, 9, 1187–1206, https://doi.org/10.5194/se-9-1187-2018,https://doi.org/10.5194/se-9-1187-2018, 2018
Short summary
A high-resolution lithospheric magnetic field model over southern Africa based on a joint inversion of CHAMP, Swarm, WDMAM, and ground magnetic field data
Foteini Vervelidou, Erwan Thébault, and Monika Korte
Solid Earth, 9, 897–910, https://doi.org/10.5194/se-9-897-2018,https://doi.org/10.5194/se-9-897-2018, 2018
Tie points for Gondwana reconstructions from a structural interpretation of the Mozambique Basin, East Africa and the Riiser-Larsen Sea, Antarctica
Jennifer Klimke, Dieter Franke, Estevão Stefane Mahanjane, and German Leitchenkov
Solid Earth, 9, 25–37, https://doi.org/10.5194/se-9-25-2018,https://doi.org/10.5194/se-9-25-2018, 2018
Short summary
Global patterns in Earth's dynamic topography since the Jurassic: the role of subducted slabs
Michael Rubey, Sascha Brune, Christian Heine, D. Rhodri Davies, Simon E. Williams, and R. Dietmar Müller
Solid Earth, 8, 899–919, https://doi.org/10.5194/se-8-899-2017,https://doi.org/10.5194/se-8-899-2017, 2017
Short summary
Phase change in subducted lithosphere, impulse, and quantizing Earth surface deformations
C. O. Bowin, W. Yi, R. D. Rosson, and S. T. Bolmer
Solid Earth, 6, 1075–1085, https://doi.org/10.5194/se-6-1075-2015,https://doi.org/10.5194/se-6-1075-2015, 2015
Short summary
Tectonic evolution and high-pressure rock exhumation in the Qiangtang terrane, central Tibet
Z. Zhao, P. D. Bons, G. Wang, A. Soesoo, and Y. Liu
Solid Earth, 6, 457–473, https://doi.org/10.5194/se-6-457-2015,https://doi.org/10.5194/se-6-457-2015, 2015
Short summary
Asymmetry of high-velocity lower crust on the South Atlantic rifted margins and implications for the interplay of magmatism and tectonics in continental breakup
K. Becker, D. Franke, R. Trumbull, M. Schnabel, I. Heyde, B. Schreckenberger, H. Koopmann, K. Bauer, W. Jokat, and C. M. Krawczyk
Solid Earth, 5, 1011–1026, https://doi.org/10.5194/se-5-1011-2014,https://doi.org/10.5194/se-5-1011-2014, 2014
Pacific plate slab pull and intraplate deformation in the early Cenozoic
N. P. Butterworth, R. D. Müller, L. Quevedo, J. M. O'Connor, K. Hoernle, and G. Morra
Solid Earth, 5, 757–777, https://doi.org/10.5194/se-5-757-2014,https://doi.org/10.5194/se-5-757-2014, 2014
Did Adria rotate relative to Africa?
D. J. J. van Hinsbergen, M. Mensink, C. G. Langereis, M. Maffione, L. Spalluto, M. Tropeano, and L. Sabato
Solid Earth, 5, 611–629, https://doi.org/10.5194/se-5-611-2014,https://doi.org/10.5194/se-5-611-2014, 2014
Cited articles
Abers, G., van Keken, P., Kneller, E., Ferris, A., and Stachnick, J.: The thermal structure of subduction zones constrained by seismic imaging: slab dehydration and wedge flow, Earth Planet. Sci. Lett., 241, 387–397, 2006.
Andrews, D. and Sleep, N.: Numerical modelling of tectonic flow behind island arcs., Geophys. J. R. Astron. Soc., 38, 237–251, 1974.
Arcay, D., Tric, E., and Doin, M.-P.: Numerical simulations of subduction zones: {E}ffect of slab dehydration on the mantle wedge dynamics, Phys. Earth Planet. Inter., 149, 133–153, 2005.
Arcay, D., Doin, M.-P., and Tric, E.: Overriding plate thinning in subduction zones: Localized convection induced by slab dehydration, Geochem. Geophys. Geosyst., 7, Q02007, https://doi.org/10.1029/2005GC001061, 2006.
Arcay, D., Doin, M.-P., Tric, E., and Bousquet, R.: Influence of the precollisional stage on the subduction dynamics and the burried crust thermal state: I}nsights from numerical simulations, Tectonophysics, 441, 27–45, https://doi.org/{10.1016/j.tecto.2007.06.001, 2007{a}.
Arcay, D., Tric, E., and Doin, M.-P.: Slab surface temperature in subduction zones: I}nfluence of the interplate decoupling depth and upper plate thinning processes, Earth Planet. Sci. Lett., 255, 324–338, https://doi.org/{10.1016/j.epsl.2006.12.027, 2007{b}.
Arcay, D., Lallemand, S., and Doin, M.-P.: Back-arc Strain in Subduction Zones: S}tatistical Observations vs. Numerical Modelling, Geochem. Geophys. Geosyst., 9, Q05015, https://doi.org/{10.1029/2007GC001875, 2008.
Audet, P., Bostock, M., Christensen, N., and Peacock, S.: Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing, Nature, 457, 76–78, https://doi.org/{10.1038/nature07650}, 2009.
Billen, M. and Hirth, G.: Newtonian versus non-Newtonian upper mantle viscosity: Implications for subduction initiation, Geophys. Res. Lett., 32, L19304, https://doi.org/{10.1029/2005GL023457}, 2005.
Bostock, M., Hyndman, R., Rondenay, S., and Peacock, S.: An inverted continental {M}oho and serpentinization of the forearc mantle, Nature, 417, 536–538, 2002.
Boyarko, D. and Brudzinski, M.: Spatial and temporal patterns of nonvolcanic tremor along the southern Cascadia subduction zone, J. Geophys. Res., 115, B00A22, https://doi.org/{10.1029/2008JB006064}, 2010.
Brocher, T., Parsons, T., Tréhu, A., Snelson, C., and Fisher, M.: Seismic evidence for widespread serpentinized forearc upper mantle along the {C}ascadia margin, Geology, 31, 267–270, 2003.
Brown, J. R., Beroza, G. C., Ide, S., Ohta, K., Shelly, D. R., Schwartz, S. Y., Rabbel, W., Thorwart, M., and Kao, H.: Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones, Geophys. Res. Lett., 36, L19306, https://doi.org/{10.1029/2009GL040027}, 2009.
Brown, J. R., Prejean, S. G., Beroza, G. C., Gomberg, J. S., and Haeussler, P. J.: Evidence for deep tectonic tremor in the Alaska-Aleutian subduction zone, in: AGU Fall Meeting, EOS, Transactions, American Geophysical Union, abstract S23A-2091, 2010.
Cattin, R. and Avouac, J.: Modeling mountain building and the seismic cycle in the Himalaya of Nepal, J. Geophys. Res., 105, 13389–13407, 2000.
Cattin, R., Chamot-{R}ooke, N., Pubellier, M., Rabaute, A., Delescluse, M., Vigny, C., Fleitout, L., and Dubernet, P.: Stress change and effective friction coefficient along the Sumatra-Andaman-Sagaing fault system after the 26 December 2004 (M$_w=9.2$) and the 28 March 2005 (M$_w=8.7$) earthquakes, Geochem. Geophys. Geosyst., 10, Q03011, https://doi.org/{10.1029/2008GC002167}, 2009.
Christensen, U. and Yuen, D.: The interaction of a subducting lithosphere slab with a chemical of phase boundary, J. Geophys. Res., 89, 4389–4402, 1984.
Christensen, U. R.: Convection with pressure- and temperature-dependent non-{N}ewtonian rheology, Geophys. J. R. Astron. Soc., 77, 343–384, 1984.
Christensen, U. R.: An {E}ulerian technique for thermomechanical modeling, J. Geophys. Res., 97, 2015–2036, 1992.
Collot, J.-Y., Ribodetti, A., and Sage, F.: The South Ecuador subduction channel:{E}vidence for a dynamic mega-shear zone from 2{D} fine-scale seismic reflection imaging and implications for material transfer, J. Geophys. Res., 116, B11102, https://doi.org/{10.1029/2011JB008429}, 2011.
Conder, J.: A case for hot slab surface temperatures in numerical viscous flow models of subduction zones with an improved fault zone parameterization, Phys. Earth Planet. Inter., 149, 155–164, 2005.
Currie, C., Hyndman, R., Wang, K., and Kostoglodov, V.: The thermal of the M}exico subduction zone: {I}mplications for the megathrust seismogenic zone, J. Geophys. Res., 107, 2370, https://doi.org/{10.1029/2001JB000886, 2002.
Currie, C., Wang, K., Hyndman, R., and He, J.: The thermal effects of steady-state slab-driven mantle flow above a subducting plate: the {C}ascadia subduction zone and backarck, Earth Planet. Sci. Lett., 223, 35–48, 2004.
Davaille, A. and Jaupart, C.: Transient high-{R}ayleigh number thermal convection with large viscosity variations, J. Fluid. Mech., 253, 141–166, 1993.
Davies, E. and Lewis, T.: Heat flow in a back-arc environment: {I}ntermontane and {O}mineca crystalline belts, southern {C}anadian {C}ordillera, Can. J. Earth Sci, 21, 715–726, 1984.
Delouis, B., Philip, H., Dorbath, L., and Cisternas, A.: Recent crustal deformation in the Antofagasta region(northern Chile) and the subduction process, Geophys. J. Int., 132, 302–338, 1998.
Doin, M.-P. and Fleitout, L.: Thermal evolution of the oceanic lithosphere: an alternative view, Earth Planet. Sci. Lett., 142, 121–136, 1996a.
Doin, M.-P. and Henry, P.: Subduction initiation and continental crust recycling: the roles of rheology and eclogitization, Tectonophysics, 342, 163–191, 2001.
Dumoulin, C., Doin, M.-P., Arcay, D., and Fleitout, L.: Onset of small-scale instabilities at the base of the lithosphere: scaling laws and role of pre-existing lithospheric structures, Geophys. J. Int., 160, 344–356, 2005.
Eberle, M., Grasset, O., and Sotin, C.: A numerical study of the interaction between the mantle wedge, the subducting slab, and overriding plate, Phys. Earth Planet. Inter., 134, 191–202, 2002.
Faccenda, M., Gerya, T., and Chakraborty, S.: Styles of post-subduction collisional orogeny: Influence of convergence velocity, crustal rheology and radiogenic heat production, Lithos, 103, 257–287, https://doi.org/{10.1016/j.lithos.2007.09.009}, 2008.
Furukawa, Y.: Depth of the decoupling plate interface and thermal structure under arcs, J. Geophys. Res., 98, 20005–20013, 1993.
Gomberg, J., Bedrosian, P., Bodin, P., Bostock, M., Brudzinski, M., Creager, K., Dragert, H., Egbert, G., Ghosh, A., Henton, J., Houston, H., Kao, H., McCrory, P., Melbourne, T., Peacock, S., Roeloffs, E., Rubinstein, J., Schmidt, D., Trèhu, A., Vidale, J., Wang, K., and Wech, A.: Slow-slip phenomena in Cascadia from 2007 and beyond: a review, Geol. Soc. Am. Bull., 122, 963–978, 2010.
Gorczyk, W., Willner, A., Gerya, T., Connolly, J., and Burg, J.-P.: Physical controls of magmatic productivity at P}acific-type convergent margins: {N}ew insights from numerical modeling, Phys. Earth Planet. Inter., 163, 209–232, https://doi.org/{10.1016/j.pepi.2007.05.010, 2007.
Hall, C. and Gurnis, M.: Catastrophic initiation of subduction following forced convergence across fra ctures zones, Earth Planet. Sci. Lett., 212, 15–30, 2003.
Hall, R. and Morley, C. K.: Sundland basins, in: Continent-Ocean Interactions within East Asian Marginal Seas, edited by: Clift, P., Kuhnt, W., Wang, P., and Hayes, D., 149 of Geophys. Monogr. Ser., 55–85, AGU, Washington D.C., 2004.
Heuret, A., Lallemand, S., Funiciello, F., Piromallo, C., and Faccenna, C.: Physical characteristics of subduction interface type seismogenic zones revisited, Geochem. Geophys. Geosyst., 12, Q01004, https://doi.org/{10.1029/2010GC003230}, 2011.
Hirth, G. and Kohlstedt, D.: Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere, Earth Planet. Sci. Lett., 144, 93–108, 1996.
Honda, S.: Thermal structure beneath {T}ohoku, northeast {J}apan-a case study for understanding the detailed thermal structure of the ubduction zone, Tectonophysics, 112, 69–102, 1985.
Hyndman, R. and Lewis, T.: Geophysical consequences of the {C}ordillera-{C}raton thermal transition in southwestern {C}anada, Tectonophysics, 306, 397–422, 1999.
Ide, S.: Variety and spatial heterogeneity of tectonic tremor worldwide, J. Geophys. Res., 117, B03302, https://doi.org/{10.1029/2011JB008840}, 2012.
Kao, H., Shan, S., Dragert, H., and Rogers, G.: Northern Cascadia episodic tremor and slip: a decade of tremor observations from 1997 to 2007, J. Geophys. Res., 114, B00A12, https://doi.org/{10.1029/2008JB006046}, 2009.
Kelemen, P., Rilling, J., Parmentier, E., Mehl, L., and Hacker, B. R.: Thermal structure due to solid-state flow in the mantle wedge beneath arcs, in: Inside the Subduction factory, edited by: Eiler, J., Geophys. Monogr. Ser., AGU, Washington D.C., 293–311, 2003.
Kincaid, C. and Sacks, I.: Thermal and dynamical evolution of the upper mantle in subduction zones, J. Geophys. Res., 102, 12295–12315, 1997.
Kirby, S.: Rheology of the lithosphere, Rev. Geophys., 21, 1458–1487, 1983.
Kneller, E., van Keken, P., Karato, S., and Park, J.: B-type olivine fabric in the mantle wedge: {I}nsights from high-resolution non-{N}ewtonian subduction zone models, Earth Planet. Sci. Lett., 237, 781–797, 2005.
Kneller, E., van Keken, P., Katayama, I., and Karato, S.: Stress, strain, and B}-type olivine fabric in the fore-arc mantle: {S}ensitivity tests using high-resolution steady-state subduction zone models, J. Geophys. Res., 112, B04406, https://doi.org/{10.1029/2006JB004544, 2007.
Kuka\v cka, M. and Matyska, C.: Influence of the zone of weakness on dip angle and shear heating of subducted slabs, Phys. Earth Planet. Inter., 141, 243–252, 2004.
Lallemand, S.: High rates of arc consumption by subduction processes: {S}ome consequences, Geology, 23, 551–554, 1995.
Lallemand, S., Schnürle, P., and Malavieille, J.: Coulomb theory applied to accretionary and nonaccretionary wedges: Possible causes for tectonic erosion and/or frontal accretion, J. Geophys. Res., 99, 12033–12056, https://doi.org/{10.1029/94JB00124}, 1994.
Lamb, S.: Shear stresses on megathrusts: Implications for mountain building behind subduction zones, J. Geophys. Res., 111, B07401, https://doi.org/{10.1029/2005JB003916}, 2006.
Lay, T., Kanamori, H., Ammon, J., Koper, K., Hutko, A., Ye, L., Yue, H., and Rushing, T.: Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, https://doi.org/{10.1029/2011JB009133}, 2012.
Lewis, T., Bentkowski, W., Davis, E., Hyndman, R., Souther, J., and Wright, J.: Subduction of the {J}uan de {F}uca {P}late: thermal consequence, J. Geophys. Res., 93, 15207–15227, 1988.
Magee, M. and Zoback, M.: Evidence for a weak interplate thrust fault along the northern {J}apan subduction zone and implications for the mechanics of thrust faulting and fluid explusion, Geology, 21, 809–812, 1993.
Obara, K.: Nonvolcanic deep tremor associated with subduction in {S}outhwest {J}apan, Science, 296, 1679–1681, 2002.
Peacock, S. and Hyndman, R.: Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes, Geophys. Res. Lett., 26, 2517–2520, 1999.
Peacock, S., Christensen, N., Bostock, M., and Audet, P.: High pore pressures and porosity at 35 km depth in the {C}ascadia subduction zone, Geology, 39, 471–474, 2011.
Peterson, C. L. and Christensen, D. H.: Possible relationship between nonvolcanic tremor and the 1998–2001 slow slip event, south central Alaska, J. Geophys. Res., 104, B06302, https://doi.org/{10.1029/JB089iB08p06980}, 2009.
Schmidt, M. and Poli, S.: Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation, Earth Planet. Sci. Lett., 163, 361–379, 1998.
Springer, M.: Interpretation of heat-flow density in the {C}entral {A}ndes, Tectonophysics, 306, 377–395, 1999.
Stachnik, J., Abers, G., and Christensen, D.: Seismic attenuation and mantle wedge temperatures in the A}laska subduction zone, J. Geophys. Res., 109, B10304, https://doi.org/{10.1029/2004JB003018, 2004.
Tagawa, M., Nakakuki, T., Kameyama, T., and Tajima, F.: The role of history-dependent rheology in plate boundary lubrication for generating one-sided subduction, Pure Appl. Geophys., 164, 125–130, 2007.
Townend, J.: Estimates of conductive heat flow through bottom-simulating reflectors on the Hikurangi and southwest Fiordland continental margins, New Zealand, Mar. Geol., 141, 209–220, https://doi.org/{10.1016/S0025-3227(97)00073-X}, http://www.sciencedirect.com/science/article/pii/S00253227970%0073X, 1997.
Turcotte, D. and Schubert, G.: Geodynamics: Applications of continuum physics to geological problems, Cambridge University Press, New York, second edn., 1982.
van Keken, P., King, S., Schmeling, H., Christensen, U., Neumeister, D., and Doin, M.-P.: A comparison of methods for the modeling of thermochemical convection, J. Geophys. Res., 102, 22477–22495, 1997.
van Keken, P., Kiefer, B., and Peacock, S.: High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle, Geochem. Geophys. Geosyst., 3, 1056, https://doi.org/{10.1029/2001GC000256}, 2002.
von Herzen, R., Ruppel, C., Molnar, P., Nettles, M., Nagihara, S., and Ekström, G.: A constraint in the shear stress at the {P}acific-{A}ustralian plate boundary from heat flow and seismicity at the {K}ermadec forearc, J. Geophys. Res., 106, 6817–6833, 2001.
Wada, I. and Wang, K.: Common depth of slab-mantle decoupling: R}econciling diversity and uniformity of subduction zones, Geochem. Geophys. Geosyst., 10, Q10009, https://doi.org/{10.1029/2009GC002570, 2009.
Wada, I., Wang, K., He, J., and Hyndman, R.: Weakening of the subduction interface and its effects on surface heat flow, slab dehydration, and mantle wedge serpentinization, J. Geophys. Res., 113, B04402, https://doi.org/{10.1029/2007JB005190}, 2008.
Wang, K. and He, J.: Mechanics of low-stress forearcs: N}ankai and {C}ascadia, J. Geophys. Res., 104, 15191–15205, https://doi.org/{10.1029/1999JB900103, 1999.
Wang, K. and Suyehiro, K.: How does plate coupling affect crustal stresses in {N}ortheast and {S}outhwest {J}apan?, Geophys. Res. Lett., 26, 2307–2310, 1999.
Wang, K., Mulder, T., Rogers, G., and Hyndman, R.: Case for very low coupling stress on the Cascadia subduction fault, J. Geophys. Res., 100, 12907–12918, 1995.
Zhao, D., Wang, K., Rogers, G., and Peacock, S.: Tomographic image of low P velocity anomalies above slab in northern {C}ascadia subduction zones, Earth Planets Space, 53, 285–293, 2001.
Ziagos, J., , Blackwell, D., and Mooser, F.: Heat flow in southern {M}exico and the thermal effects of subduction, J. Geophys. Res., 90, 5410–5420, 1985.