Articles | Volume 7, issue 6
https://doi.org/10.5194/se-7-1521-2016
https://doi.org/10.5194/se-7-1521-2016
Research article
 | 
07 Nov 2016
Research article |  | 07 Nov 2016

Fully probabilistic seismic source inversion – Part 2: Modelling errors and station covariances

Simon C. Stähler and Karin Sigloch

Related authors

ObspyDMT: a Python toolbox for retrieving and processing large seismological data sets
Kasra Hosseini and Karin Sigloch
Solid Earth, 8, 1047–1070, https://doi.org/10.5194/se-8-1047-2017,https://doi.org/10.5194/se-8-1047-2017, 2017
Short summary
Performance report of the RHUM-RUM ocean bottom seismometer network around La Réunion, western Indian Ocean
S. C. Stähler, K. Sigloch, K. Hosseini, W. C. Crawford, G. Barruol, M. C. Schmidt-Aursch, M. Tsekhmistrenko, J.-R. Scholz, A. Mazzullo, and M. Deen
Adv. Geosci., 41, 43–63, https://doi.org/10.5194/adgeo-41-43-2016,https://doi.org/10.5194/adgeo-41-43-2016, 2016
Short summary
Fully probabilistic seismic source inversion – Part 1: Efficient parameterisation
S. C. Stähler and K. Sigloch
Solid Earth, 5, 1055–1069, https://doi.org/10.5194/se-5-1055-2014,https://doi.org/10.5194/se-5-1055-2014, 2014

Related subject area

Seismology
Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic–percussive separation algorithms
Zahra Zali, Theresa Rein, Frank Krüger, Matthias Ohrnberger, and Frank Scherbaum
Solid Earth, 14, 181–195, https://doi.org/10.5194/se-14-181-2023,https://doi.org/10.5194/se-14-181-2023, 2023
Short summary
Probing environmental and tectonic changes underneath Ciudad de México with the urban seismic field
Laura Ermert, Enrique Cabral-Cano, Estelle Chaussard, Dario Solano-Rojas, Luis Quintanar, Diana Morales Padilla, Enrique A. Fernandez-Torres, and Marine A. Denolle
EGUsphere, https://doi.org/10.5194/egusphere-2022-1361,https://doi.org/10.5194/egusphere-2022-1361, 2023
Short summary
Towards real-time seismic monitoring of a geothermal plant using Distributed Acoustic Sensing
Jerome Azzola, Katja Thiemann, and Emmanuel Gaucher
EGUsphere, https://doi.org/10.5194/egusphere-2022-1417,https://doi.org/10.5194/egusphere-2022-1417, 2022
Short summary
Constraints on fracture distribution in the Los Humeros geothermal field from beamforming of ambient seismic noise
Heather Kennedy, Katrin Löer, and Amy Gilligan
Solid Earth, 13, 1843–1858, https://doi.org/10.5194/se-13-1843-2022,https://doi.org/10.5194/se-13-1843-2022, 2022
Short summary
Mapping the basement of the Cerdanya Basin (Eastern Pyrenees) using seismic ambient noise
Jordi Diaz, Sergi Ventosa, Martin Schimmel, Mario Ruiz, Albert Macau, Anna Gabàs, David Martí, Özgenç Akin, and Jaume Vergés
EGUsphere, https://doi.org/10.5194/egusphere-2022-1138,https://doi.org/10.5194/egusphere-2022-1138, 2022
Short summary

Cited articles

Bodin, T.: Transdimensional Approaches to Geophysical Inverse Problems, Ph.D. thesis, Australian National University, 2010.
Bodin, T., Sambridge, M., Rawlinson, N., and Arroucau, P.: Transdimensional tomography with unknown data noise, Geophys. J. Int., 189, 1536–1556, https://doi.org/10.1111/j.1365-246X.2012.05414.x, 2012.
Bodin, T., Leiva, J., Romanowicz, B., Maupin, V., and Yuan, H.: Imaging anisotropic layering with Bayesian inversion of multiple data types, Geophys. J. Int., 206, 605–629, https://doi.org/10.1093/gji/ggw124, 2016.
Bogert, B.: Correction of seismograms for the transfer function of the seismometer, Bull. Seismol. Soc. Am., 52, 781–792, 1962.
Bondár, I. and Storchak, D. A.: Improved location procedures at the International Seismological Centre, Geophys. J. Int., 186, 1220–1244, https://doi.org/10.1111/j.1365-246X.2011.05107.x, 2011.
Short summary
Seismic source inversion is the method of inferring the spatial orientation of an earthquake source from seismic records. The results come with large uncertainties, which we try to estimate in a Bayesian approach. We propose an empirical relationship for the likelihood function based on a large dataset of deterministic solutions. This allows using the cross-correlation coefficient as a misfit criterion, which is better suited for waveform comparison than the popular root mean square or L2 norm.