Articles | Volume 11, issue 4
Solid Earth, 11, 1489–1510, 2020

Special issue: Inversion tectonics – 30 years later

Solid Earth, 11, 1489–1510, 2020
Research article
11 Aug 2020
Research article | 11 Aug 2020

Pre-inversion normal fault geometry controls inversion style and magnitude, Farsund Basin, offshore southern Norway

Thomas B. Phillips et al.

Related authors

The influence of crustal strength on rift geometry and development – Insights from 3D numerical modelling
Thomas Phillips, John Naliboff, Ken McCaffrey, Sophie Pan, Jeroen van Hunen, and Malte Froemchen
EGUsphere,,, 2022
Short summary
Oblique reactivation of lithosphere-scale lineaments controls rift physiography – the upper-crustal expression of the Sorgenfrei–Tornquist Zone, offshore southern Norway
Thomas B. Phillips, Christopher A.-L. Jackson, Rebecca E. Bell, and Oliver B. Duffy
Solid Earth, 9, 403–429,,, 2018
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Structural geology
A contribution to the quantification of crustal shortening and kinematics of deformation across the Western Andes ( ∼ 20–22° S)
Tania Habel, Martine Simoes, Robin Lacassin, Daniel Carrizo, and German Aguilar
Solid Earth, 14, 17–42,,, 2023
Short summary
Rift thermal inheritance in the SW Alps (France): insights from RSCM thermometry and 1D thermal numerical modelling
Naïm Célini, Frédéric Mouthereau, Abdeltif Lahfid, Claude Gout, and Jean-Paul Callot
Solid Earth, 14, 1–16,,, 2023
Short summary
The Luangwa Rift Active Fault Database and fault reactivation along the southwestern branch of the East African Rift
Luke N. J. Wedmore, Tess Turner, Juliet Biggs, Jack N. Williams, Henry M. Sichingabula, Christine Kabumbu, and Kawawa Banda
Solid Earth, 13, 1731–1753,,, 2022
Short summary
Clustering has a meaning: optimization of angular similarity to detect 3D geometric anomalies in geological terrains
Michał P. Michalak, Lesław Teper, Florian Wellmann, Jerzy Żaba, Krzysztof Gaidzik, Marcin Kostur, Yuriy P. Maystrenko, and Paulina Leonowicz
Solid Earth, 13, 1697–1720,,, 2022
Short summary
Shear zone evolution and the path of earthquake rupture
Erik M. Young, Christie D. Rowe, and James D. Kirkpatrick
Solid Earth, 13, 1607–1629,,, 2022
Short summary

Cited articles

Anderson, E. M.: The dynamics of faulting, Transactions of the Edinburgh Geol. Soc., 8, 387–402, 1905. 
Babuška, V. and Plomerová, J.: The Sorgenfrei–Tornquist Zone as the mantle edge of Baltica lithosphere: new evidence from three-dimensional seismic anisotropy, Terra Nova, 16, 243–249,, 2004. 
Baig, I., Faleide, J. I., Mondol, N. H., and Jahren, J.: Burial and exhumation history controls on shale compaction and thermal maturity along the Norwegian North Sea basin margin areas, Mar. Petrol. Geol., 104, 61–85,, 2019. 
Bergerat, F., Angelier, J., and Andreasson, P.-G.: Evolution of paleostress fields and brittle deformation of the Tornquist Zone in Scania (Sweden) during Permo-Mesozoic and Cenozoic times, Tectonophysics, 444, 93–110,, 2007. 
Berthelsen, A.: The Tornquist Zone northwest of the Carpathians: An intraplate pseudosuture, GFF, 120, 223–230,, 1998. 
Short summary
Normal faults often reactivate under compression, in a process called inversion. The 3D geometry of these structures (and the effect on resultant inversion structural style) is often not considered. Using seismic reflection data, we examine how stresses form different inversion styles that are controlled by the geometry of the pre-existing structure. Geometrically simple faults are preferentially reactivated; more complex areas are typically not reactivated and instead experience bulk uplift.