Articles | Volume 9, issue 2
https://doi.org/10.5194/se-9-469-2018
https://doi.org/10.5194/se-9-469-2018
Research article
 | 
23 Apr 2018
Research article |  | 23 Apr 2018

Controls on fault zone structure and brittle fracturing in the foliated hanging wall of the Alpine Fault

Jack N. Williams, Virginia G. Toy, Cécile Massiot, David D. McNamara, Steven A. F. Smith, and Steven Mills

Related authors

The Luangwa Rift Active Fault Database and fault reactivation along the southwestern branch of the East African Rift
Luke N. J. Wedmore, Tess Turner, Juliet Biggs, Jack N. Williams, Henry M. Sichingabula, Christine Kabumbu, and Kawawa Banda
Solid Earth, 13, 1731–1753, https://doi.org/10.5194/se-13-1731-2022,https://doi.org/10.5194/se-13-1731-2022, 2022
Short summary
Geologic and geodetic constraints on the magnitude and frequency of earthquakes along Malawi's active faults: the Malawi Seismogenic Source Model (MSSM)
Jack N. Williams, Luke N. J. Wedmore, Åke Fagereng, Maximilian J. Werner, Hassan Mdala, Donna J. Shillington, Christopher A. Scholz, Folarin Kolawole, Lachlan J. M. Wright, Juliet Biggs, Zuze Dulanya, Felix Mphepo, and Patrick Chindandali
Nat. Hazards Earth Syst. Sci., 22, 3607–3639, https://doi.org/10.5194/nhess-22-3607-2022,https://doi.org/10.5194/nhess-22-3607-2022, 2022
Short summary
A systems-based approach to parameterise seismic hazard in regions with little historical or instrumental seismicity: active fault and seismogenic source databases for southern Malawi
Jack N. Williams, Hassan Mdala, Åke Fagereng, Luke N. J. Wedmore, Juliet Biggs, Zuze Dulanya, Patrick Chindandali, and Felix Mphepo
Solid Earth, 12, 187–217, https://doi.org/10.5194/se-12-187-2021,https://doi.org/10.5194/se-12-187-2021, 2021
Short summary
A comparison of the use of X-ray and neutron tomographic core scanning techniques for drilling projects: insights from scanning core recovered during the Alpine Fault Deep Fault Drilling Project
Jack N. Williams, Joseph J. Bevitt, and Virginia G. Toy
Sci. Dril., 22, 35–42, https://doi.org/10.5194/sd-22-35-2017,https://doi.org/10.5194/sd-22-35-2017, 2017
Short summary

Related subject area

Structural geology
Natural fracture patterns at Swift Reservoir anticline, NW Montana: the influence of structural position and lithology from multiple observation scales
Adam J. Cawood, Hannah Watkins, Clare E. Bond, Marian J. Warren, and Mark A. Cooper
Solid Earth, 14, 1005–1030, https://doi.org/10.5194/se-14-1005-2023,https://doi.org/10.5194/se-14-1005-2023, 2023
Short summary
Rapid hydration and weakening of anhydrite under stress: implications for natural hydration in the Earth's crust and mantle
Johanna Heeb, David Healy, Nicholas E. Timms, and Enrique Gomez-Rivas
Solid Earth, 14, 985–1003, https://doi.org/10.5194/se-14-985-2023,https://doi.org/10.5194/se-14-985-2023, 2023
Short summary
Analogue experiments on releasing and restraining bends and their application to the study of the Barents Shear Margin
Roy Helge Gabrielsen, Panagiotis Athanasios Giannenas, Dimitrios Sokoutis, Ernst Willingshofer, Muhammad Hassaan, and Jan Inge Faleide
Solid Earth, 14, 961–983, https://doi.org/10.5194/se-14-961-2023,https://doi.org/10.5194/se-14-961-2023, 2023
Short summary
Structural framework and timing of the Pahtohavare Cu ± Au deposits, Kiruna mining district, Sweden
Leslie Logan, Ervin Veress, Joel B. H. Andersson, Olof Martinsson, and Tobias E. Bauer
Solid Earth, 14, 763–784, https://doi.org/10.5194/se-14-763-2023,https://doi.org/10.5194/se-14-763-2023, 2023
Short summary
Does the syn- versus post-rift thickness ratio have an impact on the inversion-related structural style?
Alexandra Tamas, Dan M. Tamas, Gabor Tari, Csaba Krezsek, Alexandru Lapadat, and Zsolt Schleder
Solid Earth, 14, 741–761, https://doi.org/10.5194/se-14-741-2023,https://doi.org/10.5194/se-14-741-2023, 2023
Short summary

Cited articles

Adam, L., Toy, V., and Boulton, C.: Mylonites as shales? Experimental observations of P-wave anisotropy dependence on mineralogy, layering and scale, in: SEG Technical Program Expanded Abstracts 2016, 3169–3173, Society of Exploration Geophysicists, 2016.
Allen, M. J., Tatham, D., Faulkner, D. R., Mariani, E., and Boulton, C.: Permeability and seismic velocity and their anisotropy across the Alpine Fault, New Zealand: An insight from laboratory measurements on core from the Deep Fault Drilling Project phase 1 (DFDP-1), J. Geophys.-Res.-Sol. Ea., 122, 6160–6179, https://doi.org/10.1002/2017JB014355, 2017.
Ampuero, J. P. and Mao, X.: Upper limit on damage zone thickness controlled by seismogenic depth, Fault Zo. Dyn. Process. Evol. Fault Prop. Dur. Seism. Rupture, 227, 243–253, 2017.
Andrews, D. J.: Rupture dynamics with energy loss outside the slip zone, J. Geophys.-Res.-Sol. Ea., 110, 1–14, https://doi.org/10.1029/2004JB003191, 2005.
Barth, N. C., Toy, V. G., Langridge, R. M., and Norris, R. J.: Scale dependence of oblique plate-boundary partitioning: New insights from LiDAR, central Alpine fault, New Zealand, Lithosphere, 4, 435–448, https://doi.org/10.1130/L201.1, 2012.
Download
Short summary
We present new data on the orientation of fractures, their fill, and their density around the Alpine Fault, a plate boundary fault on the South Island of New Zealand. Fractures < 160 m of the fault are filled and show a range of orientations, whilst fractures at greater distances (< 500 m) are open and parallel to the rock's mechanical weakness. We interpret the latter fracture set to reflect near-surface processes, whilst the latter are potentially linked to deep-seated Alpine Fault seismicity.