Articles | Volume 9, issue 2
https://doi.org/10.5194/se-9-469-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-9-469-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Controls on fault zone structure and brittle fracturing in the foliated hanging wall of the Alpine Fault
Jack N. Williams
CORRESPONDING AUTHOR
Department of Geology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
now at: School of Earth and Ocean Sciences, Cardiff University, Cardiff, CF10 3AT, UK
Virginia G. Toy
Department of Geology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
Cécile Massiot
School of Geography, Environment, and Earth Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6012, New Zealand
GNS Science, P.O. Box 30-368, Lower Hutt 5040, New Zealand
David D. McNamara
GNS Science, P.O. Box 30-368, Lower Hutt 5040, New Zealand
Department of Earth and Ocean Sciences, NUI Galway, University Road, Galway, Ireland
Steven A. F. Smith
Department of Geology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
Steven Mills
Department of Computer Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
Related authors
Luke N. J. Wedmore, Tess Turner, Juliet Biggs, Jack N. Williams, Henry M. Sichingabula, Christine Kabumbu, and Kawawa Banda
Solid Earth, 13, 1731–1753, https://doi.org/10.5194/se-13-1731-2022, https://doi.org/10.5194/se-13-1731-2022, 2022
Short summary
Short summary
Mapping and compiling the attributes of faults capable of hosting earthquakes are important for the next generation of seismic hazard assessment. We document 18 active faults in the Luangwa Rift, Zambia, in an active fault database. These faults are between 9 and 207 km long offset Quaternary sediments, have scarps up to ~30 m high, and are capable of hosting earthquakes from Mw 5.8 to 8.1. We associate the Molaza Fault with surface ruptures from two unattributed M 6+ 20th century earthquakes.
Jack N. Williams, Luke N. J. Wedmore, Åke Fagereng, Maximilian J. Werner, Hassan Mdala, Donna J. Shillington, Christopher A. Scholz, Folarin Kolawole, Lachlan J. M. Wright, Juliet Biggs, Zuze Dulanya, Felix Mphepo, and Patrick Chindandali
Nat. Hazards Earth Syst. Sci., 22, 3607–3639, https://doi.org/10.5194/nhess-22-3607-2022, https://doi.org/10.5194/nhess-22-3607-2022, 2022
Short summary
Short summary
We use geologic and GPS data to constrain the magnitude and frequency of earthquakes that occur along active faults in Malawi. These faults slip in earthquakes as the tectonic plates on either side of the East African Rift in Malawi diverge. Low divergence rates (0.5–1.5 mm yr) and long faults (5–200 km) imply that earthquakes along these faults are rare (once every 1000–10 000 years) but could have high magnitudes (M 7–8). These data can be used to assess seismic risk in Malawi.
Jack N. Williams, Hassan Mdala, Åke Fagereng, Luke N. J. Wedmore, Juliet Biggs, Zuze Dulanya, Patrick Chindandali, and Felix Mphepo
Solid Earth, 12, 187–217, https://doi.org/10.5194/se-12-187-2021, https://doi.org/10.5194/se-12-187-2021, 2021
Short summary
Short summary
Earthquake hazard is often specified using instrumental records. However, this record may not accurately forecast the location and magnitude of future earthquakes as it is short (100s of years) relative to their frequency along geologic faults (1000s of years). Here, we describe an approach to assess this hazard using fault maps and GPS data. By applying this to southern Malawi, we find that its faults may host rare (1 in 10 000 years) M 7 earthquakes that pose a risk to its growing population.
Jack N. Williams, Joseph J. Bevitt, and Virginia G. Toy
Sci. Dril., 22, 35–42, https://doi.org/10.5194/sd-22-35-2017, https://doi.org/10.5194/sd-22-35-2017, 2017
Short summary
Short summary
We compare images of drillcore from the Alpine Fault in New Zealand that were collected using X-ray computed tomography (CT) and neutron tomography (NT). Both techniques provide 3-D images of the core's internal structure, which would not be possible through visual analysis alone. We find that CT scans are more beneficial, as they can image a wider range of rock types, and this scanning technique is more practical. Nevertheless, NT provides complementary scans over limited intervals of core.
Luke N. J. Wedmore, Tess Turner, Juliet Biggs, Jack N. Williams, Henry M. Sichingabula, Christine Kabumbu, and Kawawa Banda
Solid Earth, 13, 1731–1753, https://doi.org/10.5194/se-13-1731-2022, https://doi.org/10.5194/se-13-1731-2022, 2022
Short summary
Short summary
Mapping and compiling the attributes of faults capable of hosting earthquakes are important for the next generation of seismic hazard assessment. We document 18 active faults in the Luangwa Rift, Zambia, in an active fault database. These faults are between 9 and 207 km long offset Quaternary sediments, have scarps up to ~30 m high, and are capable of hosting earthquakes from Mw 5.8 to 8.1. We associate the Molaza Fault with surface ruptures from two unattributed M 6+ 20th century earthquakes.
Jack N. Williams, Luke N. J. Wedmore, Åke Fagereng, Maximilian J. Werner, Hassan Mdala, Donna J. Shillington, Christopher A. Scholz, Folarin Kolawole, Lachlan J. M. Wright, Juliet Biggs, Zuze Dulanya, Felix Mphepo, and Patrick Chindandali
Nat. Hazards Earth Syst. Sci., 22, 3607–3639, https://doi.org/10.5194/nhess-22-3607-2022, https://doi.org/10.5194/nhess-22-3607-2022, 2022
Short summary
Short summary
We use geologic and GPS data to constrain the magnitude and frequency of earthquakes that occur along active faults in Malawi. These faults slip in earthquakes as the tectonic plates on either side of the East African Rift in Malawi diverge. Low divergence rates (0.5–1.5 mm yr) and long faults (5–200 km) imply that earthquakes along these faults are rare (once every 1000–10 000 years) but could have high magnitudes (M 7–8). These data can be used to assess seismic risk in Malawi.
Matthew S. Tarling, Matteo Demurtas, Steven A. F. Smith, Jeremy S. Rooney, Marianne Negrini, Cecilia Viti, Jasmine R. Petriglieri, and Keith C. Gordon
Eur. J. Mineral., 34, 285–300, https://doi.org/10.5194/ejm-34-285-2022, https://doi.org/10.5194/ejm-34-285-2022, 2022
Short summary
Short summary
Rocks containing the serpentine mineral lizardite occur in many tectonic settings. Knowing the crystal orientation of lizardite in these rocks tells us how they deform and gives insights into their physical properties. The crystal orientation of lizardite is challenging to obtain using standard techniques. To overcome this challenge, we developed a method using Raman spectroscopy to map the crystal orientation of lizardite with minimal preparation on standard thin sections.
Hamed Amiri, Francesco Cappuccio, Mai-Linh Doan, Marianne Conin, and Virginia Toy
Solid Earth Discuss., https://doi.org/10.5194/se-2021-150, https://doi.org/10.5194/se-2021-150, 2022
Publication in SE not foreseen
Short summary
Short summary
In March 2011, the Mw ~9 Tohoku-oki earthquake, one of the largest seismic events ever recorded, occurred across a megathrust fault in the west of the Japan trench. This devastating earthquake stressed the need for more detailed studies on the fault zone behavior and the main causes of this event.
Matteo Demurtas, Steven A.F. Smith, Elena Spagnuolo, and Giulio Di Toro
Solid Earth, 12, 595–612, https://doi.org/10.5194/se-12-595-2021, https://doi.org/10.5194/se-12-595-2021, 2021
Short summary
Short summary
We performed shear experiments on calcite–dolomite gouge mixtures to better understand the behaviour of carbonates during sub-seismic to seismic deformation in the shallow crust. The development of a foliation in the gouge was only restricted to coseismic sliding, whereas fluidisation occurred over a wide range of slip velocities (sub-seismic to coseismic) in the presence of water. These observations will contribute to a better interpretation of the rock record.
Jack N. Williams, Hassan Mdala, Åke Fagereng, Luke N. J. Wedmore, Juliet Biggs, Zuze Dulanya, Patrick Chindandali, and Felix Mphepo
Solid Earth, 12, 187–217, https://doi.org/10.5194/se-12-187-2021, https://doi.org/10.5194/se-12-187-2021, 2021
Short summary
Short summary
Earthquake hazard is often specified using instrumental records. However, this record may not accurately forecast the location and magnitude of future earthquakes as it is short (100s of years) relative to their frequency along geologic faults (1000s of years). Here, we describe an approach to assess this hazard using fault maps and GPS data. By applying this to southern Malawi, we find that its faults may host rare (1 in 10 000 years) M 7 earthquakes that pose a risk to its growing population.
Martina Kirilova, Virginia Toy, Katrina Sauer, François Renard, Klaus Gessner, Richard Wirth, Xianghui Xiao, and Risa Matsumura
Solid Earth, 11, 2425–2438, https://doi.org/10.5194/se-11-2425-2020, https://doi.org/10.5194/se-11-2425-2020, 2020
Short summary
Short summary
Processes associated with open pores can change the physical properties of rocks and cause earthquakes. In borehole samples from the Alpine Fault zone, we show that many pores in these rocks were filled by weak materials that can slide easily. The amount of open spaces was thus reduced, and fluids circulating within them built up high pressures. Both weak materials and high pressures within pores reduce the rock strength; thus the state of pores here can trigger the next Alpine Fault earthquake.
Bernhard Schuck, Anja M. Schleicher, Christoph Janssen, Virginia G. Toy, and Georg Dresen
Solid Earth, 11, 95–124, https://doi.org/10.5194/se-11-95-2020, https://doi.org/10.5194/se-11-95-2020, 2020
Matthew S. Tarling, Steven A. F. Smith, James M. Scott, Jeremy S. Rooney, Cecilia Viti, and Keith C. Gordon
Solid Earth, 10, 1025–1047, https://doi.org/10.5194/se-10-1025-2019, https://doi.org/10.5194/se-10-1025-2019, 2019
Short summary
Short summary
Shear zones dominated by hydrated mantle rocks (serpentinites) occur in many tectonic settings around the world. To better understand the internal structure, composition and possible mechanical behaviour of these shear zones, we performed a detailed field, petrological and microanalytical study of the Livingstone Fault in New Zealand. We propose a conceptual model to account for the main physical and chemical processes that control deformation in large serpentinite shear zones.
Steven B. Kidder, Virginia G. Toy, David J. Prior, Timothy A. Little, Ashfaq Khan, and Colin MacRae
Solid Earth, 9, 1123–1139, https://doi.org/10.5194/se-9-1123-2018, https://doi.org/10.5194/se-9-1123-2018, 2018
Short summary
Short summary
By quantifying trace concentrations of titanium in quartz (a known geologic “thermometer”), we constrain the temperature profile for the deep crust along the Alpine Fault. We show there is a sharp change from fairly uniform temperatures at deep levels to a very steep gradient in temperature in the upper kilometers of the crust.
Martina Kirilova, Virginia Toy, Jeremy S. Rooney, Carolina Giorgetti, Keith C. Gordon, Cristiano Collettini, and Toru Takeshita
Solid Earth, 9, 223–231, https://doi.org/10.5194/se-9-223-2018, https://doi.org/10.5194/se-9-223-2018, 2018
Short summary
Short summary
Graphite crystallinity “irreversibly” increases with temperature and it has been calibrated as a thermometer recording peak temperatures experienced by a rock. To examine the possibility of mechanical modifications of graphite structure and the impacts on graphite thermometry we performed deformation experiments. Raman spectroscopy demonstrates a reduction in crystallinity due to mechanical reworking in the brittle field. This finding clearly compromises the validity of the graphite thermometry.
Jack N. Williams, Joseph J. Bevitt, and Virginia G. Toy
Sci. Dril., 22, 35–42, https://doi.org/10.5194/sd-22-35-2017, https://doi.org/10.5194/sd-22-35-2017, 2017
Short summary
Short summary
We compare images of drillcore from the Alpine Fault in New Zealand that were collected using X-ray computed tomography (CT) and neutron tomography (NT). Both techniques provide 3-D images of the core's internal structure, which would not be possible through visual analysis alone. We find that CT scans are more beneficial, as they can image a wider range of rock types, and this scanning technique is more practical. Nevertheless, NT provides complementary scans over limited intervals of core.
J. Shervais, J. Evans, V. Toy, J. Kirkpatrick, A. Clarke, and J. Eichelberger
Sci. Dril., 18, 19–33, https://doi.org/10.5194/sd-18-19-2014, https://doi.org/10.5194/sd-18-19-2014, 2014
Related subject area
Structural geology
Role of inheritance during tectonic inversion of a rift system in basement-involved to salt-decoupled transition: analogue modelling and application to the Pyrenean–Biscay system
Water release and homogenization by dynamic recrystallization of quartz
Time-dependent frictional properties of granular materials used in analogue modelling: implications for mimicking fault healing during reactivation and inversion
Large grain-size-dependent rheology contrasts of halite at low differential stress: evidence from microstructural study of naturally deformed gneissic Zechstein 2 rock salt (Kristallbrockensalz) from the northern Netherlands
Analogue modelling of the inversion of multiple extensional basins in foreland fold-and-thrust belts
Kinematics and time-resolved evolution of the main thrust-sense shear zone in the Eo-alpine orogenic wedge (the Vinschgau Shear Zone, Eastern Alps)
A contribution to the quantification of crustal shortening and kinematics of deformation across the Western Andes ( ∼ 20–22° S)
Rift thermal inheritance in the SW Alps (France): insights from RSCM thermometry and 1D thermal numerical modelling
Structural control of inherited salt structures during inversion of a domino basement-fault system from an analogue modelling approach
The Luangwa Rift Active Fault Database and fault reactivation along the southwestern branch of the East African Rift
Clustering has a meaning: optimization of angular similarity to detect 3D geometric anomalies in geological terrains
Shear zone evolution and the path of earthquake rupture
Mechanical compaction mechanisms in the input sediments of the Sumatra subduction complex – insights from microstructural analysis of cores from IODP Expedition 362
Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods
Multiscale lineament analysis and permeability heterogeneity of fractured crystalline basement blocks
Structural characterization and K–Ar illite dating of reactivated, complex and heterogeneous fault zones: lessons from the Zuccale Fault, Northern Apennines
How do differences in interpreting seismic images affect estimates of geological slip rates?
Progressive veining during peridotite carbonation: insights from listvenites in Hole BT1B, Samail ophiolite (Oman)
Tectonic evolution of the Indio Hills segment of the San Andreas fault in southern California, southwestern USA
Structural diagenesis in ultra-deep tight sandstones in the Kuqa Depression, Tarim Basin, China
Variscan structures and their control on latest to post-Variscan basin architecture: insights from the westernmost Bohemian Massif and southeastern Germany
Multi-disciplinary characterizations of the BedrettoLab – a new underground geoscience research facility
Biotite supports long-range diffusive transport in dissolution–precipitation creep in halite through small porosity fluctuations
De-risking the energy transition by quantifying the uncertainties in fault stability
Virtual field trip to the Esla Nappe (Cantabrian Zone, NW Spain): delivering traditional geological mapping skills remotely using real data
Marine forearc structure of eastern Java and its role in the 1994 Java tsunami earthquake
Roughness of fracture surfaces in numerical models and laboratory experiments
Impact of basement thrust faults on low-angle normal faults and rift basin evolution: a case study in the Enping sag, Pearl River Basin
Evidence for and significance of the Late Cretaceous Asteroussia event in the Gondwanan Ios basement terranes
Investigating spatial heterogeneity within fracture networks using hierarchical clustering and graph distance metrics
Dating folding beyond folding, from layer-parallel shortening to fold tightening, using mesostructures: lessons from the Apennines, Pyrenees, and Rocky Mountains
Deformation-enhanced diagenesis and bacterial proliferation in the Nankai accretionary prism
Rheological stratification in impure rock salt during long-term creep: morphology, microstructure, and numerical models of multilayer folds in the Ocnele Mari salt mine, Romania
Geodynamic and seismotectonic model of a long-lived transverse structure: The Schio-Vicenza Fault System (NE Italy)
Neogene kinematics of the Giudicarie Belt and eastern Southern Alpine orogenic front (northern Italy)
Fault interpretation uncertainties using seismic data, and the effects on fault seal analysis: a case study from the Horda Platform, with implications for CO2 storage
Application of anisotropy of magnetic susceptibility (AMS) fabrics to determine the kinematics of active tectonics: examples from the Betic Cordillera, Spain, and the Northern Apennines, Italy
Reply to Norini and Groppelli's comment on “Estimating the depth and evolution of intrusions at resurgent calderas: Los Humeros (Mexico)” by Urbani et al. (2020)
Emplacement of “exotic” Zechstein slivers along the inverted Sontra Graben (northern Hessen, Germany): clues from balanced cross sections and geometrical forward modeling
Kinematics of subduction in the Ibero-Armorican arc constrained by 3D microstructural analysis of garnet and pseudomorphed lawsonite porphyroblasts from Île de Groix (Variscan belt)
Mapping and evaluating kinematics and the stress and strain field at active faults and fissures: a comparison between field and drone data at the NE rift, Mt Etna (Italy)
Frictional properties and microstructural evolution of dry and wet calcite–dolomite gouges
Experimental evidence that viscous shear zones generate periodic pore sheets
Influence of inherited structural domains and their particular strain distributions on the Roer Valley graben evolution from inversion to extension
The Piuquencillo fault system: a long-lived, Andean-transverse fault system and its relationship with magmatic and hydrothermal activity
Extensional reactivation of the Penninic frontal thrust 3 Myr ago as evidenced by U–Pb dating on calcite in fault zone cataclasite
Distribution, microphysical properties, and tectonic controls of deformation bands in the Miocene subduction wedge (Whakataki Formation) of the Hikurangi subduction zone
Analysis of deformation bands associated with the Trachyte Mesa intrusion, Henry Mountains, Utah: implications for reservoir connectivity and fluid flow around sill intrusions
Characterization of discontinuities in potential reservoir rocks for geothermal applications in the Rhine-Ruhr metropolitan area (Germany)
On a new robust workflow for the statistical and spatial analysis of fracture data collected with scanlines (or the importance of stationarity)
Jordi Miró, Oriol Ferrer, Josep Anton Muñoz, and Gianreto Manastchal
Solid Earth, 14, 425–445, https://doi.org/10.5194/se-14-425-2023, https://doi.org/10.5194/se-14-425-2023, 2023
Short summary
Short summary
Using the Asturian–Basque–Cantabrian system and analogue (sandbox) models, this work focuses on the linkage between basement-controlled and salt-decoupled domains and how deformation is accommodated between the two during extension and subsequent inversion. Analogue models show significant structural variability in the transitional domain, with oblique structures that can be strongly modified by syn-contractional sedimentation. Experimental results are consistent with the case study.
Junichi Fukuda, Takamoto Okudaira, and Yukiko Ohtomo
Solid Earth, 14, 409–424, https://doi.org/10.5194/se-14-409-2023, https://doi.org/10.5194/se-14-409-2023, 2023
Short summary
Short summary
We measured water distributions in deformed quartz by infrared spectroscopy mapping and used the results to discuss changes in water distribution resulting from textural development. Because of the grain size reduction process (dynamic recrystallization), water contents decrease from 40–1750 wt ppm in host grains of ~2 mm to 100–510 wt ppm in recrystallized regions composed of fine grains of ~10 µm. Our results indicate that water is released and homogenized by dynamic recrystallization.
Michael Rudolf, Matthias Rosenau, and Onno Oncken
Solid Earth, 14, 311–331, https://doi.org/10.5194/se-14-311-2023, https://doi.org/10.5194/se-14-311-2023, 2023
Short summary
Short summary
Analogue models of tectonic processes rely on the reproduction of their geometry, kinematics and dynamics. An important property is fault behaviour, which is linked to the frictional characteristics of the fault gouge. This is represented by granular materials, such as quartz sand. In our study we investigate the time-dependent frictional properties of various analogue materials and highlight their impact on the suitability of these materials for analogue models focusing on fault reactivation.
Jessica Barabasch, Joyce Schmatz, Jop Klaver, Alexander Schwedt, and Janos L. Urai
Solid Earth, 14, 271–291, https://doi.org/10.5194/se-14-271-2023, https://doi.org/10.5194/se-14-271-2023, 2023
Short summary
Short summary
We analysed Zechstein salt with microscopes and observed specific microstructures that indicate much faster deformation in rock salt with fine halite grains when compared to salt with larger grains. This is important because people build large cavities in the subsurface salt for energy storage or want to deposit radioactive waste inside it. When engineers and scientists use grain-size data and equations that include this mechanism, it will help to make better predictions in geological models.
Nicolás Molnar and Susanne Buiter
Solid Earth, 14, 213–235, https://doi.org/10.5194/se-14-213-2023, https://doi.org/10.5194/se-14-213-2023, 2023
Short summary
Short summary
Progression of orogenic wedges over pre-existing extensional structures is common in nature, but deciphering the spatio-temporal evolution of deformation from the geological record remains challenging. Our laboratory experiments provide insights on how horizontal stresses are transferred across a heterogeneous crust, constrain which pre-shortening conditions can either favour or hinder the reactivatation of extensional structures, and explain what implications they have on critical taper theory.
Chiara Montemagni, Stefano Zanchetta, Martina Rocca, Igor Maria Villa, Corrado Morelli, Volkmar Mair, and Andrea Zanchi
EGUsphere, https://doi.org/10.5194/egusphere-2023-126, https://doi.org/10.5194/egusphere-2023-126, 2023
Short summary
Short summary
The Vinschgau Shear Zone is the most significant shear zones developed within the Austroalpine domain and dominated the structural setting of a large portion of central Austroalpine Late Cretaceous thrust stack. Here we explore the timing of deformation and kinematic of the flow along the Vinschgau Shear Zone and we propose that its evolution sheds new light on how large-scale thrust-sense shear zones act and how much exhumation they can accommodate in the frame of an evolving orogenic wedge.
Tania Habel, Martine Simoes, Robin Lacassin, Daniel Carrizo, and German Aguilar
Solid Earth, 14, 17–42, https://doi.org/10.5194/se-14-17-2023, https://doi.org/10.5194/se-14-17-2023, 2023
Short summary
Short summary
The Central Andes are one of the most emblematic reliefs on Earth, but their western flank remains understudied. Here we explore two rare key sites in the hostile conditions of the Atacama desert to build cross-sections, quantify crustal shortening, and discuss the timing of this deformation at ∼20–22°S. We propose that the structures of the Western Andes accommodated significant crustal shortening here, but only during the earliest stages of mountain building.
Naïm Célini, Frédéric Mouthereau, Abdeltif Lahfid, Claude Gout, and Jean-Paul Callot
Solid Earth, 14, 1–16, https://doi.org/10.5194/se-14-1-2023, https://doi.org/10.5194/se-14-1-2023, 2023
Short summary
Short summary
We investigate the peak temperature of sedimentary rocks of the SW Alps (France), using Raman spectroscopy on carbonaceous material. This method provides an estimate of the peak temperature achieved by organic-rich rocks. To determine the timing and the tectonic context of the origin of these temperatures we use 1D thermal modelling. We find that the high temperatures up to 300 °C were achieved during precollisional extensional events, not during tectonic burial in the Western Alps.
Oriol Ferrer, Eloi Carola, and Ken McClay
EGUsphere, https://doi.org/10.5194/egusphere-2022-1183, https://doi.org/10.5194/egusphere-2022-1183, 2022
Short summary
Short summary
Using an experimental approach based on scaled sandbox models, this work aims to understand how salt above different fault blocks influences the geometry and evolution of the cover first during extension and then during shortening. The results show that inherited structures constrain contractional deformation. We show for the first time how depleted salt layers are reopened during contractional deformation, having direct implications for the subsurface exploration of natural resources.
Luke N. J. Wedmore, Tess Turner, Juliet Biggs, Jack N. Williams, Henry M. Sichingabula, Christine Kabumbu, and Kawawa Banda
Solid Earth, 13, 1731–1753, https://doi.org/10.5194/se-13-1731-2022, https://doi.org/10.5194/se-13-1731-2022, 2022
Short summary
Short summary
Mapping and compiling the attributes of faults capable of hosting earthquakes are important for the next generation of seismic hazard assessment. We document 18 active faults in the Luangwa Rift, Zambia, in an active fault database. These faults are between 9 and 207 km long offset Quaternary sediments, have scarps up to ~30 m high, and are capable of hosting earthquakes from Mw 5.8 to 8.1. We associate the Molaza Fault with surface ruptures from two unattributed M 6+ 20th century earthquakes.
Michał P. Michalak, Lesław Teper, Florian Wellmann, Jerzy Żaba, Krzysztof Gaidzik, Marcin Kostur, Yuriy P. Maystrenko, and Paulina Leonowicz
Solid Earth, 13, 1697–1720, https://doi.org/10.5194/se-13-1697-2022, https://doi.org/10.5194/se-13-1697-2022, 2022
Short summary
Short summary
When characterizing geological/geophysical surfaces, various geometric attributes are calculated, such as dip angle (1D) or dip direction (2D). However, the boundaries between specific values may be subjective and without optimization significance, resulting from using default color palletes. This study proposes minimizing cosine distance among within-cluster observations to detect 3D anomalies. Our results suggest that the method holds promise for identification of megacylinders or megacones.
Erik M. Young, Christie D. Rowe, and James D. Kirkpatrick
Solid Earth, 13, 1607–1629, https://doi.org/10.5194/se-13-1607-2022, https://doi.org/10.5194/se-13-1607-2022, 2022
Short summary
Short summary
Studying how earthquakes spread deep within the faults they originate from is crucial to improving our understanding of the earthquake process. We mapped preserved ancient earthquake surfaces that are now exposed in South Africa and studied their relationship with the shape and type of rocks surrounding them. We determined that these surfaces are not random and are instead associated with specific kinds of rocks and that their shape is linked to the evolution of the faults in which they occur.
Sivaji Lahiri, Kitty L. Milliken, Peter Vrolijk, Guillaume Desbois, and Janos L. Urai
Solid Earth, 13, 1513–1539, https://doi.org/10.5194/se-13-1513-2022, https://doi.org/10.5194/se-13-1513-2022, 2022
Short summary
Short summary
Understanding the mechanism of mechanical compaction is important. Previous studies on mechanical compaction were mostly done by performing experiments. Studies on natural rocks are rare due to compositional heterogeneity of the sedimentary succession with depth. Due to remarkable similarity in composition and grain size, the Sumatra subduction complex provides a unique opportunity to study the micromechanism of mechanical compaction on natural samples.
Dongwon Lee, Nikolaos Karadimitriou, Matthias Ruf, and Holger Steeb
Solid Earth, 13, 1475–1494, https://doi.org/10.5194/se-13-1475-2022, https://doi.org/10.5194/se-13-1475-2022, 2022
Short summary
Short summary
This research article focuses on filtering and segmentation methods employed in high-resolution µXRCT studies for crystalline rocks, bearing fractures, or fracture networks, of very small aperture. Specifically, we focus on the identification of artificially induced (via quenching) fractures in Carrara marble samples. Results from the same dataset from all five different methods adopted were produced and compared with each other in terms of their output quality and time efficiency.
Alberto Ceccato, Giulia Tartaglia, Marco Antonellini, and Giulio Viola
Solid Earth, 13, 1431–1453, https://doi.org/10.5194/se-13-1431-2022, https://doi.org/10.5194/se-13-1431-2022, 2022
Short summary
Short summary
The Earth's surface is commonly characterized by the occurrence of fractures, which can be mapped, and their can be geometry quantified on digital representations of the surface at different scales of observation. Here we present a series of analytical and statistical tools, which can aid the quantification of fracture spatial distribution at different scales. In doing so, we can improve our understanding of how fracture geometry and geology affect fluid flow within the fractured Earth crust.
Giulio Viola, Giovanni Musumeci, Francesco Mazzarini, Lorenzo Tavazzani, Manuel Curzi, Espen Torgersen, Roelant van der Lelij, and Luca Aldega
Solid Earth, 13, 1327–1351, https://doi.org/10.5194/se-13-1327-2022, https://doi.org/10.5194/se-13-1327-2022, 2022
Short summary
Short summary
A structural-geochronological approach helps to unravel the Zuccale Fault's architecture. By mapping its internal structure and dating some of its fault rocks, we constrained a deformation history lasting 20 Myr starting at ca. 22 Ma. Such long activity is recorded by now tightly juxtaposed brittle structural facies, i.e. different types of fault rocks. Our results also have implications on the regional evolution of the northern Apennines, of which the Zuccale Fault is an important structure.
Wan-Lin Hu
Solid Earth, 13, 1281–1290, https://doi.org/10.5194/se-13-1281-2022, https://doi.org/10.5194/se-13-1281-2022, 2022
Short summary
Short summary
Having a seismic image is generally expected to enable us to better determine fault geometry and thus estimate geological slip rates accurately. However, the process of interpreting seismic images may introduce unintended uncertainties, which have not yet been widely discussed. Here, a case of a shear fault-bend fold in the frontal Himalaya is used to demonstrate how differences in interpretations can affect the following estimates of slip rates and dependent conclusions.
Manuel D. Menzel, Janos L. Urai, Estibalitz Ukar, Thierry Decrausaz, and Marguerite Godard
Solid Earth, 13, 1191–1218, https://doi.org/10.5194/se-13-1191-2022, https://doi.org/10.5194/se-13-1191-2022, 2022
Short summary
Short summary
Mantle rocks can bind large quantities of carbon by reaction with CO2, but this capacity requires fluid pathways not to be clogged by carbonate. We studied mantle rocks from Oman to understand the mechanisms allowing their transformation into carbonate and quartz. Using advanced imaging techniques, we show that abundant veins were essential fluid pathways driving the reaction. Our results show that tectonic stress was important for fracture opening and a key ingredient for carbon fixation.
Jean-Baptiste P. Koehl, Steffen G. Bergh, and Arthur G. Sylvester
Solid Earth, 13, 1169–1190, https://doi.org/10.5194/se-13-1169-2022, https://doi.org/10.5194/se-13-1169-2022, 2022
Short summary
Short summary
The San Andreas fault is a major active fault associated with ongoing earthquake sequences in southern California. The present study investigates the development of the Indio Hills area in the Coachella Valley along the main San Andreas fault and the Indio Hills fault. The Indio Hills area is located near an area with high ongoing earthquake activity (Brawley seismic zone), and, therefore, its recent tectonic evolution has implications for earthquake prediction.
Jin Lai, Dong Li, Yong Ai, Hongkun Liu, Deyang Cai, Kangjun Chen, Yuqiang Xie, and Guiwen Wang
Solid Earth, 13, 975–1002, https://doi.org/10.5194/se-13-975-2022, https://doi.org/10.5194/se-13-975-2022, 2022
Short summary
Short summary
(1) Structural diagenesis analysis is performed on the ultra-deep tight sandstone. (2) Fracture and intergranular pores are related to the low in situ stress magnitudes. (3) Dissolution is associated with the presence of fracture.
Hamed Fazlikhani, Wolfgang Bauer, and Harald Stollhofen
Solid Earth, 13, 393–416, https://doi.org/10.5194/se-13-393-2022, https://doi.org/10.5194/se-13-393-2022, 2022
Short summary
Short summary
Interpretation of newly acquired FRANKEN 2D seismic survey data in southeeastern Germany shows that upper Paleozoic low-grade metasedimentary rocks and possible nappe units are transported by Variscan shear zones to ca. 65 km west of the Franconian Fault System (FFS). We show that the locations of post-Variscan upper Carboniferous–Permian normal faults and associated graben and half-graben basins are controlled by the geometry of underlying Variscan shear zones.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Berit Schwichtenberg, Florian Fusseis, Ian B. Butler, and Edward Andò
Solid Earth, 13, 41–64, https://doi.org/10.5194/se-13-41-2022, https://doi.org/10.5194/se-13-41-2022, 2022
Short summary
Short summary
Hydraulic rock properties such as porosity and permeability are relevant factors that have an impact on groundwater resources, geological repositories and fossil fuel reservoirs. We investigate the influence of chemical compaction upon the porosity evolution in salt–biotite mixtures and related transport length scales by conducting laboratory experiments in combination with 4-D analysis. Our observations invite a renewed discussion of the effect of sheet silicates on chemical compaction.
David Healy and Stephen Paul Hicks
Solid Earth, 13, 15–39, https://doi.org/10.5194/se-13-15-2022, https://doi.org/10.5194/se-13-15-2022, 2022
Short summary
Short summary
The energy transition requires operations in faulted rocks. To manage the technical challenges and public concern over possible induced earthquakes, we need to quantify the risks. We calculate the probability of fault slip based on uncertain inputs, stresses, fluid pressures, and the mechanical properties of rocks in fault zones. Our examples highlight the specific gaps in our knowledge. Citizen science projects could produce useful data and include the public in the discussions about hazards.
Manuel I. de Paz-Álvarez, Thomas G. Blenkinsop, David M. Buchs, George E. Gibbons, and Lesley Cherns
Solid Earth, 13, 1–14, https://doi.org/10.5194/se-13-1-2022, https://doi.org/10.5194/se-13-1-2022, 2022
Short summary
Short summary
We describe a virtual geological mapping course implemented in response to travelling and social restrictions derived from the ongoing COVID-19 pandemic. The course was designed to replicate a physical mapping exercise as closely as possible with the aid of real field data and photographs collected by the authors during previous years in the Cantabrian Zone (NW Spain). The course is delivered through Google Earth via a KMZ file with outcrop descriptions and links to GitHub-hosted photographs.
Yueyang Xia, Jacob Geersen, Dirk Klaeschen, Bo Ma, Dietrich Lange, Michael Riedel, Michael Schnabel, and Heidrun Kopp
Solid Earth, 12, 2467–2477, https://doi.org/10.5194/se-12-2467-2021, https://doi.org/10.5194/se-12-2467-2021, 2021
Short summary
Short summary
The 2 June 1994 Java tsunami earthquake ruptured in a seismically quiet subduction zone and generated a larger-than-expected tsunami. Here, we re-process a seismic line across the rupture area. We show that a subducting seamount is located up-dip of the mainshock in a region that did not rupture during the earthquake. Seamount subduction modulates the topography of the marine forearc and acts as a seismic barrier in the 1994 earthquake rupture.
Steffen Abe and Hagen Deckert
Solid Earth, 12, 2407–2424, https://doi.org/10.5194/se-12-2407-2021, https://doi.org/10.5194/se-12-2407-2021, 2021
Short summary
Short summary
We use numerical simulations and laboratory experiments on rock samples to investigate how stress conditions influence the geometry and roughness of fracture surfaces. The roughness of the surfaces was analyzed in terms of absolute roughness and scaling properties. The results show that the surfaces are self-affine but with different scaling properties between the numerical models and the real rock samples. Results suggest that stress conditions have little influence on the surface roughness.
Chao Deng, Rixiang Zhu, Jianhui Han, Yu Shu, Yuxiang Wu, Kefeng Hou, and Wei Long
Solid Earth, 12, 2327–2350, https://doi.org/10.5194/se-12-2327-2021, https://doi.org/10.5194/se-12-2327-2021, 2021
Short summary
Short summary
This study uses seismic reflection data to interpret the geometric relationship and evolution of intra-basement and rift-related structures in the Enping sag in the northern South China Sea. Our observations suggest the primary control of pre-existing thrust faults is the formation of low-angle normal faults, with possible help from low-friction materials, and the significant role of pre-existing basement thrust faults in fault geometry, paleotopography, and syn-rift stratigraphy of rift basins.
Sonia Yeung, Marnie Forster, Emmanuel Skourtsos, and Gordon Lister
Solid Earth, 12, 2255–2275, https://doi.org/10.5194/se-12-2255-2021, https://doi.org/10.5194/se-12-2255-2021, 2021
Short summary
Short summary
We do not know when the ancient Tethys Ocean lithosphere began to founder, but one clue can be found in subduction accreted tectonic slices, including Gondwanan basement terranes on the island of Ios, Cyclades, Greece. We propose a 250–300 km southwards jump of the subduction megathrust with a period of flat-slab subduction followed by slab break-off. The initiation and its subsequent rollback of a new subduction zone would explain the onset of Oligo–Miocene extension and accompanying magmatism.
Rahul Prabhakaran, Giovanni Bertotti, Janos Urai, and David Smeulders
Solid Earth, 12, 2159–2209, https://doi.org/10.5194/se-12-2159-2021, https://doi.org/10.5194/se-12-2159-2021, 2021
Short summary
Short summary
Rock fractures are organized as networks with spatially varying arrangements. Due to networks' influence on bulk rock behaviour, it is important to quantify network spatial variation. We utilize an approach where fracture networks are treated as spatial graphs. By combining graph similarity measures with clustering techniques, spatial clusters within large-scale fracture networks are identified and organized hierarchically. The method is validated on a dataset with nearly 300 000 fractures.
Olivier Lacombe, Nicolas E. Beaudoin, Guilhem Hoareau, Aurélie Labeur, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 12, 2145–2157, https://doi.org/10.5194/se-12-2145-2021, https://doi.org/10.5194/se-12-2145-2021, 2021
Short summary
Short summary
This paper aims to illustrate how the timing and duration of contractional deformation associated with folding in orogenic forelands can be constrained by the dating of brittle mesostructures observed in folded strata. The study combines new and already published absolute ages of fractures to provide, for the first time, an educated discussion about the factors controlling the duration of the sequence of deformation encompassing layer-parallel shortening, fold growth, and late fold tightening.
Vincent Famin, Hugues Raimbourg, Muriel Andreani, and Anne-Marie Boullier
Solid Earth, 12, 2067–2085, https://doi.org/10.5194/se-12-2067-2021, https://doi.org/10.5194/se-12-2067-2021, 2021
Short summary
Short summary
Sediments accumulated in accretionary prisms are deformed by the compression imposed by plate subduction. Here we show that deformation of the sediments transforms some minerals in them. We suggest that these mineral transformations are due to the proliferation of microorganisms boosted by deformation. Deformation-enhanced microbial proliferation may change our view of sedimentary and tectonic processes in subduction zones.
Marta Adamuszek, Dan M. Tămaş, Jessica Barabasch, and Janos L. Urai
Solid Earth, 12, 2041–2065, https://doi.org/10.5194/se-12-2041-2021, https://doi.org/10.5194/se-12-2041-2021, 2021
Short summary
Short summary
We analyse folded multilayer sequences in the Ocnele Mari salt mine (Romania) to gain insight into the long-term rheological behaviour of rock salt. Our results indicate the large role of even a small number of impurities in the rock salt for its effective mechanical behaviour. We demonstrate how the development of folds that occur at various scales can be used to constrain the viscosity ratio in the deformed multilayer sequence.
Dario Zampieri, Paola Vannoli, and Pierfrancesco Burrato
Solid Earth, 12, 1967–1986, https://doi.org/10.5194/se-12-1967-2021, https://doi.org/10.5194/se-12-1967-2021, 2021
Short summary
Short summary
The long-lived Schio-Vicenza Fault System is a major shear zone cross-cutting the foreland and the thrust belt of the eastern southern Alps. We review 150 years of scientific works and explain its activity and kinematics, characterized by sinistral and dextral transcurrent motion along its southern and northern sections, respectively, by a geodynamic model that has the Adria indenter as the main actor and coherently reconciles the available geological and geophysical evidence collected so far.
Vincent F. Verwater, Eline Le Breton, Mark R. Handy, Vincenzo Picotti, Azam Jozi Najafabadi, and Christian Haberland
Solid Earth, 12, 1309–1334, https://doi.org/10.5194/se-12-1309-2021, https://doi.org/10.5194/se-12-1309-2021, 2021
Short summary
Short summary
Balancing along geological cross sections reveals that the Giudicarie Belt comprises two kinematic domains. The SW domain accommodated at least ~ 18 km Late Oligocene to Early Miocene shortening. Since the Middle Miocene, the SW domain experienced at least ~ 12–22 km shortening, whereas the NE domain underwent at least ~ 25–35 km. Together, these domains contributed to ~ 40–47 km of sinistral offset of the Periadriatic Fault along the Northern Giudicarie Fault since the Late Oligocene.
Emma A. H. Michie, Mark J. Mulrooney, and Alvar Braathen
Solid Earth, 12, 1259–1286, https://doi.org/10.5194/se-12-1259-2021, https://doi.org/10.5194/se-12-1259-2021, 2021
Short summary
Short summary
Generating an accurate model of the subsurface is crucial when assessing a site for CO2 storage, particularly for a fault-bound storage site that may act as a seal or could reactivate upon CO2 injection. However, we have shown how picking strategy, i.e. line spacing, chosen to create the model significantly influences any subsequent fault analyses but is surprisingly rarely discussed. This analysis has been performed on the Vette Fault bounding the Smeaheia potential CO2 storage site.
David J. Anastasio, Frank J. Pazzaglia, Josep M. Parés, Kenneth P. Kodama, Claudio Berti, James A. Fisher, Alessandro Montanari, and Lorraine K. Carnes
Solid Earth, 12, 1125–1142, https://doi.org/10.5194/se-12-1125-2021, https://doi.org/10.5194/se-12-1125-2021, 2021
Short summary
Short summary
The anisotropy of magnetic susceptibility (AMS) technique provides an effective way to interpret deforming mountain belts. In both the Betics, Spain, and Apennines, Italy, weak but well-organized AMS fabrics were recovered from young unconsolidated and unburied rocks that could not be analyzed with more traditional methods. Collectively, these studies demonstrate the novel ways that AMS can be combined with other data to resolve earthquake hazards in space and time.
Stefano Urbani, Guido Giordano, Federico Lucci, Federico Rossetti, and Gerardo Carrasco-Núñez
Solid Earth, 12, 1111–1124, https://doi.org/10.5194/se-12-1111-2021, https://doi.org/10.5194/se-12-1111-2021, 2021
Short summary
Short summary
Structural studies in active calderas have a key role in the exploration of geothermal systems. We reply in detail to the points raised by the comment of Norini and Groppelli (2020), strengthening the relevance of our structural fieldwork for geothermal exploration and exploitation in active caldera geothermal systems including the Los Humeros caldera.
Jakob Bolz and Jonas Kley
Solid Earth, 12, 1005–1024, https://doi.org/10.5194/se-12-1005-2021, https://doi.org/10.5194/se-12-1005-2021, 2021
Short summary
Short summary
To assess the role smaller graben structures near the southern edge of the Central European Basin System play in the basin’s overall deformational history, we take advantage of a feature found on some of these structures, where slivers from older rock units appear along the graben's main fault, surrounded on both sides by younger strata. The implications for the geometry of the fault provide a substantially improved estimate for the magnitude of normal and thrust motion along the fault system.
Domingo G. A. M. Aerden, Alejandro Ruiz-Fuentes, Mohammad Sayab, and Aidan Forde
Solid Earth, 12, 971–992, https://doi.org/10.5194/se-12-971-2021, https://doi.org/10.5194/se-12-971-2021, 2021
Short summary
Short summary
We studied the geometry of foliations and microfolds preserved within metamorphic garnet crystals using X-ray tomography. The studied rocks are blueschists from Ile de Groix formed during Late Devonian subduction of Gondwana under Armorica. Several sets of differently oriented microfabrics were found recording variations in the direction of subduction. Comparison with similar data for Iberia supports that Iberia rotated only 10–20° during the Cretaceous opening of the North Atlantic.
Alessandro Tibaldi, Noemi Corti, Emanuela De Beni, Fabio Luca Bonali, Susanna Falsaperla, Horst Langer, Marco Neri, Massimo Cantarero, Danilo Reitano, and Luca Fallati
Solid Earth, 12, 801–816, https://doi.org/10.5194/se-12-801-2021, https://doi.org/10.5194/se-12-801-2021, 2021
Short summary
Short summary
The Northeast Rift of Mt Etna is affected by ground deformation linked to gravity sliding of the volcano flank and dike injection. Drone surveys show that the rift is affected by NE-striking extensional fractures and normal faults. Given an age of 1614 CE for the offset lavas, we obtained an extension rate of 1.9 cm yr−1 for the last 406 years. The stress field is characterised by a NW–SE σHmin. Drone surveys allow us to quickly collect data with a resolution of 2–3 cm.
Matteo Demurtas, Steven A.F. Smith, Elena Spagnuolo, and Giulio Di Toro
Solid Earth, 12, 595–612, https://doi.org/10.5194/se-12-595-2021, https://doi.org/10.5194/se-12-595-2021, 2021
Short summary
Short summary
We performed shear experiments on calcite–dolomite gouge mixtures to better understand the behaviour of carbonates during sub-seismic to seismic deformation in the shallow crust. The development of a foliation in the gouge was only restricted to coseismic sliding, whereas fluidisation occurred over a wide range of slip velocities (sub-seismic to coseismic) in the presence of water. These observations will contribute to a better interpretation of the rock record.
James Gilgannon, Marius Waldvogel, Thomas Poulet, Florian Fusseis, Alfons Berger, Auke Barnhoorn, and Marco Herwegh
Solid Earth, 12, 405–420, https://doi.org/10.5194/se-12-405-2021, https://doi.org/10.5194/se-12-405-2021, 2021
Short summary
Short summary
Using experiments that simulate deep tectonic interfaces, known as viscous shear zones, we found that these zones spontaneously develop periodic sheets of small pores. The presence of porous layers in deep rocks undergoing tectonic deformation is significant because it requires a change to the current model of how the Earth deforms. Emergent porous layers in viscous rocks will focus mineralising fluids and could lead to the seismic failure of rocks that are never supposed to have this occur.
Jef Deckers, Bernd Rombaut, Koen Van Noten, and Kris Vanneste
Solid Earth, 12, 345–361, https://doi.org/10.5194/se-12-345-2021, https://doi.org/10.5194/se-12-345-2021, 2021
Short summary
Short summary
This study shows the presence of two structural domains in the western border fault system of the Roer Valley graben. These domains, dominated by NW–SE-striking faults, displayed distinctly different strain distributions during both Late Cretaceous compression and Cenozoic extension. The southern domain is characterized by narrow, localized faulting, while the northern domain is characterized by wide, distributed faulting. The non-colinear WNW–ESE Grote Brogel fault links both domains.
José Piquer, Orlando Rivera, Gonzalo Yáñez, and Nicolás Oyarzún
Solid Earth, 12, 253–273, https://doi.org/10.5194/se-12-253-2021, https://doi.org/10.5194/se-12-253-2021, 2021
Short summary
Short summary
A proper recognition of deep, long-lived fault systems is very important for society. They can produce potentially dangerous earthquakes. They can also act as pathways for magmas and hydrothermal fluids, leading to the formation of volcanoes, geothermal systems and mineral deposits. However, the manifestations of these very old faults in the present-day surface can be very subtle. Here, we present a detailed, multi-disciplinary study of a fault system of this type in the Andes of central Chile.
Antonin Bilau, Yann Rolland, Stéphane Schwartz, Nicolas Godeau, Abel Guihou, Pierre Deschamps, Benjamin Brigaud, Aurélie Noret, Thierry Dumont, and Cécile Gautheron
Solid Earth, 12, 237–251, https://doi.org/10.5194/se-12-237-2021, https://doi.org/10.5194/se-12-237-2021, 2021
Short summary
Short summary
As a result of the collision between the European and Apulian plates, the Alps have experienced several evolutionary stages. The Penninic frontal thrust (PFT) (major thrust) was associated with compression, and now seismic studies show ongoing extensional activity. Calcite mineralization associated with shortening and extensional structures was sampled. The last deformation stages are dated by U–Pb on calcite at ~ 3.5 and ~ 2.5 Ma. Isotope analysis evidences deep crustal fluid mobilization.
Kathryn E. Elphick, Craig R. Sloss, Klaus Regenauer-Lieb, and Christoph E. Schrank
Solid Earth, 12, 141–170, https://doi.org/10.5194/se-12-141-2021, https://doi.org/10.5194/se-12-141-2021, 2021
Short summary
Short summary
We analysed a sedimentary rock package located in Castlepoint, New Zealand, to test the control of the tectonic setting on the observed deformation structures. In extension and contraction, we observed faults and small fault-like structures characterised by complex spatial patterns and a reduction in porosity and grain size compared with the host rock. With these properties, the structures are likely to act as barriers to fluid flow and cause compartmentalisation of the sedimentary sequence.
Penelope I. R. Wilson, Robert W. Wilson, David J. Sanderson, Ian Jarvis, and Kenneth J. W. McCaffrey
Solid Earth, 12, 95–117, https://doi.org/10.5194/se-12-95-2021, https://doi.org/10.5194/se-12-95-2021, 2021
Short summary
Short summary
Magma accommodation in the shallow crust leads to deformation of the surrounding host rock through the creation of faults, fractures and folds. This deformation will impact fluid flow around intrusive magma bodies (including sills and laccoliths) by changing the porosity and permeability network of the host rock. The results may have important implications for industries where fluid flow within the subsurface adds value (e.g. oil and gas, hydrology, geothermal and carbon sequestration).
Martin Balcewicz, Benedikt Ahrens, Kevin Lippert, and Erik H. Saenger
Solid Earth, 12, 35–58, https://doi.org/10.5194/se-12-35-2021, https://doi.org/10.5194/se-12-35-2021, 2021
Short summary
Short summary
The geothermal potential of a carbonate reservoir in the Rhine-Ruhr area, Germany, was investigated by field and laboratory investigations. The carbonate layer of interest is approx. 150 m thick; located at 4 to 6 km depth; and might extend below Essen, Bochum, and Dortmund. We proposed focusing on discontinuities striking NNW–SSE for geothermal applications, as these are the most common, strike in the direction of the main horizontal stress, and dominate reservoir fluid flow.
Andrea Bistacchi, Silvia Mittempergher, Mattia Martinelli, and Fabrizio Storti
Solid Earth, 11, 2535–2547, https://doi.org/10.5194/se-11-2535-2020, https://doi.org/10.5194/se-11-2535-2020, 2020
Short summary
Short summary
We present an innovative workflow for the statistical analysis of fracture data collected along scanlines. Our methodology is based on performing non-parametric statistical tests, which allow detection of important features of the spatial distribution of fractures, and on the analysis of the cumulative spacing function (CSF) and cumulative spacing derivative (CSD), which allows the boundaries of stationary domains to be defined in an objective way.
Cited articles
Adam, L., Toy, V., and Boulton, C.: Mylonites as shales? Experimental observations of P-wave anisotropy dependence on mineralogy, layering and scale, in: SEG Technical Program Expanded Abstracts 2016, 3169–3173, Society of Exploration Geophysicists, 2016.
Allen, M. J., Tatham, D., Faulkner, D. R., Mariani, E., and Boulton, C.: Permeability and seismic velocity and their anisotropy across the Alpine Fault, New Zealand: An insight from laboratory measurements on core from the Deep Fault Drilling Project phase 1 (DFDP-1), J. Geophys.-Res.-Sol. Ea., 122, 6160–6179, https://doi.org/10.1002/2017JB014355, 2017.
Ampuero, J. P. and Mao, X.: Upper limit on damage zone thickness controlled by seismogenic depth, Fault Zo. Dyn. Process. Evol. Fault Prop. Dur. Seism. Rupture, 227, 243–253, 2017.
Andrews, D. J.: Rupture dynamics with energy loss outside the slip zone, J. Geophys.-Res.-Sol. Ea., 110, 1–14, https://doi.org/10.1029/2004JB003191, 2005.
Barth, N. C., Toy, V. G., Langridge, R. M., and Norris, R. J.: Scale dependence of oblique plate-boundary partitioning: New insights from LiDAR, central Alpine fault, New Zealand, Lithosphere, 4, 435–448, https://doi.org/10.1130/L201.1, 2012.
Barth, N. C., Boulton, C., Carpenter, B. M., Batt, G. E., and Toy, V. G.: Slip localization on the southern Alpine Fault New Zealand, Tectonics, 32, 620–640, https://doi.org/10.1002/tect.20041, 2013.
Ben-Zion, Y. and Sammis, C. G.: Characterization of Fault Zones, Pure Appl. Geophys., 160, 677–715, https://doi.org/10.1007/PL00012554, 2003.
Berg, S. S. and Skar, T.: Controls on damage zone asymmetry of a normal fault zone: Outcrop analyses of a segment of the Moab fault, SE Utah, J. Struct. Geol., 27, 1803–1822, https://doi.org/10.1016/j.jsg.2005.04.012, 2005.
Bistacchi, A., Massironi, M., and Menegon, L.: Three-dimensional characterization of a crustal-scale fault zone: The Pusteria and Sprechenstein fault system (Eastern Alps), J. Struct. Geol., 32, 2022–2041, https://doi.org/10.1016/j.jsg.2010.06.003, 2010.
Bistacchi, A., Massironi, M., Menegon, L., Bolognesi, F., and Donghi, V.: On the nucleation of non-Andersonian faults along phyllosilicate-rich mylonite belts, Geol. Soc. London, Spec. Publ., 367, 185–199, https://doi.org/10.1144/sp367.13, 2012.
Boese, C. M. M., Townend, J., Smith, E., and Stern, T.: Microseismicity and stress in the vicinity of the Alpine Fault, central Southern Alps, New Zealand, J. Geophys.-Res.-Sol. Ea., 117, B02302, https://doi.org/10.1029/2011JB008460, 2012.
Boulton, C., Yao, L., Faulkner, D. R., Townend, J., Toy, V. G., Sutherland, R., Ma, S., and Shimamoto, T.: High-velocity frictional properties of Alpine Fault rocks: Mechanical data, microstructural analysis, and implications for rupture propagation, J. Struct. Geol., 97, 71–92, https://doi.org/10.1016/j.jsg.2017.02.003, 2017.
Boulton, C. J., Carpenter, B. M., Toy, V., and Marone, C.: Physical properties of surface outcrop cataclastic fault rocks, Alpine Fault, New Zealand, Geochem., Geophy. Geosy., 13, Q01018, https://doi.org/10.1029/2011GC003872, 2012.
Caine, J. S., Evans, J. P., and Forster, C. B.: Fault zone architecture and permeability structure, Geology, 24, 1025–1028, 1996.
Chamberlain, C. J., Boese, C. M., and Townend, J.: Cross-correlation-based detection and characterisation of microseismicity adjacent to the locked, late-interseismic Alpine Fault, South Westland, New Zealand, Earth Planet. Sci. Lett., 457, 63–72, https://doi.org/10.1016/j.epsl.2016.09.061, 2017.
Chester, F. M. and Chester, J. S.: Stress and deformation along wavy frictional faults, J. Geophys. Res., 105, 23421, https://doi.org/10.1029/2000JB900241, 2000.
Chester, F. M. and Logan, J. M.: Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California, Pure Appl. Geophys. PAGEOPH, 124, 79–106, https://doi.org/10.1007/BF00875720, 1986.
Chester, F. M., Evans, J. P., and Biegel, R. L.: Internal structure and weakening mechanisms of the San Andreas Fault, J. Geophys. Res., 98, 771, https://doi.org/10.1029/92JB01866, 1993.
Chester, J. S. and Fletcher, R. C.: Stress distribution and failure in anisotropic rock near a bend on a weak fault, J. Geophys. Res.-Earth, 102, 693–708, https://doi.org/10.1029/96JB02791, 1997.
Choi, J. H., Edwards, P., Ko, K., and Kim, Y. S.: Definition and classification of fault damage zones: A review and a new methodological approach, Earth-Science Rev., 152, 70–87, https://doi.org/10.1016/j.earscirev.2015.11.006, 2016.
Christensen, N. I. and Okaya, D. A.: Compressional and shear wave velocities in South Island, New Zealand rocks and their application to the interpretation of seismological models of the New Zealand crust, A Cont. Plate Bound. Tectonics South Island, New Zeal., 123–155, 2007.
Columbus, J., Sirguey, P., and Tenzer, R.: A free, fully assessed 15-m DEM for New Zealand, Surv. Q., 66, 16–19, 2011.
Cooper, A. F. and Norris, R. J.: Anatomy, structural evolution, and slip rate of a plate-boundary thrust: the Alpine Fault at Gaunt Creek, Westland, New Zealand, Geol. Soc. Am. Bull., 106, 627–633, https://doi.org/10.1130/0016-7606(1994)106<0627:ASEASR>2.3.CO;2, 1994.
Cooper, A. F. and Norris, R. J.: Inverted metamorphic sequences in Alpine fault mylonites produced by oblique shear within a plate boundary fault zone, Geology, New Zealand, 39, 1023–1026, 2011.
Cowie, P. A. and Scholz, C. H.: Physical Explanation for the Displacement Length Relationship of Faults Using a Post-Yield Fracture-Mechanics Model, J. Struct. Geol., 14, 1133–1148, https://doi.org/10.1016/0191-8141(92)90065-5, 1992.
Cox, S., and Barrel, D. J. A.: Geology of the Aoraki area, Institute of Geological and Nuclear Sciences, 1:250 000 Geological Map, Lower Hutt, New Zealand (GNS Science), 71, 2007.
Cox, S. C., Menzies, C. D., Sutherland, R., Denys, P. H., Chamberlain, C., and Teagle, D. A. H.: Changes in hot spring temperature and hydrogeology of the Alpine Fault hanging wall, New Zealand, induced by distal South Island earthsquakes, Geofluids, 15, 216–239, 2015.
DeMets, C., Gordon, R. G., Argus, D. F., and Stein, S.: Effect of recent revisions to the geomagnetic reversal time scale on estimate of current plate motions, Geophys. Res. Lett., 21, 2191–2194, https://doi.org/10.1029/94GL02118, 1994.
Donath, F. A.: Experimental study of shear failure in anisotropic rocks, Geol. Soc. Am. Bull., 72, 985–989, https://doi.org/10.1130/0016-7606(1961)72[985:ESOSFI]2.0.CO;2, 1961.
Eberhart-Phillips, D., Stanley, W. D., Rodriguez, B. D., and Lutter, W. J.: Surface seismic and electrical methods to detect fluids related to faulting, J. Geophys. Res., 100, 12919–12936, https://doi.org/10.1029/94JB03256, 1995.
Eberhart-Phillips, D.: Examination of seismicity in the central Alpine fault region, South Island, New Zealand, New Zeal. J. Geol. Geophys., 38, 571–578, 1995.
Eccles, J. D., Gulley, A. K., Malin, P. E., Boese, C. M., Townend, J., and Sutherland, R.: Fault Zone Guided Wave generation on the locked, late interseismic Alpine Fault, New Zealand, Geophys. Res. Lett., 42, 5736–5743, https://doi.org/10.1002/2015GL064208, 2015.
Ellsworth, W. L. and Malin, P. E.: Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves, in: Geol. Earthq. Source A Vol. Honor Rick Sibson, edited by: Fagereng, A., Toy, V. G., and Rowland, J., Geol. Soc. London, Spec. Publ., 359, 39–53, https://doi.org/10.1144/SP359.3, 2011.
Engelder, T.: Loading paths to joint propagation during a tectonic cycle: an example from the Appalachian Plateau, U.S.A., J. Struct. Geol., 7, 459–476, https://doi.org/10.1016/0191-8141(85)90049-5, 1985.
Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton, Z. K., Wibberley, C. A. J., and Withjack, M. O.: A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones, J. Struct. Geol., 32, 1557–1575, https://doi.org/10.1016/j.jsg.2010.06.009, 2010.
Faulkner, D. R., Mitchell, T. M., Jensen, E., and Cembrano, J.: Scaling of fault damage zones with displacement and the implications for fault growth processes, J. Geophys.-Res.-Sol. Ea., 116, B05403, https://doi.org/10.1029/2010JB007788, 2011.
Finzi, Y., Hearn, E. H., Ben-Zion, Y., and Lyakhovsky, V.: Structural properties and deformation patterns of evolving strike-slip faults: Numerical simulations incorporating damage rheology, Pure Appl. Geophys., 166, 1537–1573, https://doi.org/10.1007/s00024-009-0522-1, 2009.
Haggas, S., Brewer, T. S., Harvey, P. K., and Iturrino, G. I.: Relocating and orientating cores by the integration of electrical and optical images, J. Geol. Soc. London, 158, 615–623, https://doi.org/10.1144/jgs.158.4.615, 2001.
Ikari, M. J., Carpenter, B. M., Kopf, A. J., and Marone, C.: Frictional strength, rate-dependence, and healing in DFDP-1 borehole samples from the Alpine Fault, New Zealand, Tectonophysics, 630, 1–8, https://doi.org/10.1016/j.tecto.2014.05.005, 2014.
Jarrard, R. D., Paulsen, T. S., and Wilson, T. J.: Orientation of CRP-3 core, Victoria Land Basin, Antarctica, Terra Antarct., 8, 161–166, 2001.
Kim, Y. S. and Sanderson, D. J.: Fault propagation, displacement and damage zones, Struct. Geol. New Res., 1, 99–117, 2008.
Kim, Y. S., Peacock, D. C. P., and Sanderson, D. J.: Fault damage zones, J. Struct. Geol., 26, 503–517, https://doi.org/10.1016/j.jsg.2003.08.002, 2004.
Kulander, B. R., Dean, S. L., and Ward, B. J.: Fracture core analysis: interpretation, logging and use of natural and induced fractures in core, vol. 8, American Association of Petroleum Geologists, 88 pp., 1990.
Langridge, R. M., Ries, W. F., Farrier, T., Barth, N. C., Khajavi, N., and De Pascale, G. P.: Developing sub 5-m LiDAR DEMs for forested sections of the Alpine and Hope faults, South Island, New Zealand: Implications for structural interpretations, J. Struct. Geol., 64, 53–66, https://doi.org/10.1016/j.jsg.2013.11.007, 2014.
Lees, J. M.: RFOC: Graphics for spherical distributions and earthquake focal mechanisms, R package version 3.3-3, available at: http://CRAN.R-project.org/package=RFOC (last access: 18 April 2018), R Packag. version, 3, 2014.
Li, Y. G., De Pascale, G. P., Quigley, M. C., and Gravley, D. M.: Fault damage zones of the M7.1 Darfield and M6.3 Christchurch earthquakes characterized by fault-zone trapped waves, Tectonophysics, 618, 79–101, https://doi.org/10.1016/j.tecto.2014.01.029, 2014.
Little, T. A., Cox, S., Vry, J. K., and Batt, G.: Variations in exhumation level and uplift rate along the obliqu-slip Alpine fault, central Southern Alps, New Zealand, Geol. Soc. Am. Bull., 117, 707–723, https://doi.org/10.1130/B25500.1, 2005.
Lund Snee, J. E., Toy, V. G., and Gessner, K.: Significance of brittle deformation in the footwall of the Alpine Fault, New Zealand: Smithy Creek Fault zone, J. Struct. Geol., 64, 79–98, https://doi.org/10.1016/j.jsg.2013.06.002, 2014.
Ma, S.: Distinct asymmetry in rupture-induced inelastic strain across dipping faults: An off-fault yielding model, Geophys. Res. Lett., 36, L20317, https://doi.org/10.1029/2009GL040666, 2009.
Manning, C. E. and Ingebritsen, S. E.: Permeability of the continental crust: Implications of geothermal data and metamorphic systems, Rev. Geophys., 37, 127–150, https://doi.org/10.1029/1998RG900002, 1999.
Massiot, C.: Fracture system characterisation and implications for fluid flow in volcanic and metamorphic rocks, available at: http://hdl.handle.net/10063/6194 (last access: 18 April 2018), 1–191, 2017.
Massiot, C., Mcnamara, D. D., and Lewis, B.: Geothermics Processing and analysis of high temperature geothermal acoustic borehole image logs in the Taupo Volcanic Zone, New Zealand, Geothermics, 53, 190–201, https://doi.org/10.1016/j.geothermics.2014.05.010, 2015.
Massironi, M., Bistacchi, A., and Menegon, L.: Misoriented faults in exhumed metamorphic complexes: Rule or exception?, Earth Planet. Sci. Lett., 307, 233–239, https://doi.org/10.1016/j.epsl.2011.04.041, 2011.
Mauldon, M., Dunne, W. M., and Rohrbaugh, M. B.: Circular scanlines and circular windows: New tools for characterizing the geometry of fracture traces, J. Struct. Geol., 23, 247–258, https://doi.org/10.1016/S0191-8141(00)00094-8, 2001.
McCahon, I.: Amethyst Hydro Scheme 2006 Drilling Investigation Summary Report, Prepared by Geotech Consulting Company Limited for Westpower Limited, GNS Science library, No. 2745, 41 pp., 2006.
McNamara, D.: Exploring New Zealand's subsurface using borehole images, in Presented at the 2015 New Zealand Geosciences Conference, Wellington, 25–27th November, 2015.
Mills, S. and Williams, J. N.: Generating circumferential images of tomographic drill-core scans, GFZ Data Serv., available at: https://doi.org/10.5880/ICDP.5052.005 (last access: 18 April 2018), 2017.
Misra, S., Ellis, S., and Mandal, N.: Fault damage zones in mechanically layered rocks: The effects of planar anisotropy, J. Geophys. Res., 120, 5432–5452, https://doi.org/10.1002/2014JB011780, 2015.
Mitchell, T. M. and Faulkner, D. R.: The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile, J. Struct. Geol., 31, 802–816, https://doi.org/10.1016/j.jsg.2009.05.002, 2009.
Mitchell, T. M. and Toy, V. G.: Photograph of the month, J. Struct. Geol., 64, iii, https://doi.org/10.1016/S0191-8141(14)00094-7, 2014.
Muir-Wood, R. and King, G. C. P.: Hydrological signatures of earthquake strain, J. Geophys. Res., 98, 22035, https://doi.org/10.1029/93JB02219, 1993.
Nasseri, M. H. B., Rao, K. S., and Ramamurthy, T.: Anisotropic strength and deformation behavior of Himalayan schists, Int. J. Rock Mech. Min. Sci., 40, 3–23, https://doi.org/10.1016/S1365-1609(02)00103-X, 2003.
Norris, R. J. and Cooper, A. F.: Origin of small-scale segmentation and transpressional thrusting along the Alpine Fault, New Zealand, Geol. Soc. Am. Bull., 107, 231–240, https://doi.org/10.1130/0016-7606(1995)107<0231:OOSSSA>2.3.CO;2, 1995.
Norris, R. J. and Cooper, A. F.: Erosional control on the structural evolution of a transpressional thrust complex on the Alpine fault, New Zealand, J. Struct. Geol., 19, 1323–1342, https://doi.org/10.1016/S0191-8141(97)00036-9, 1997.
Norris, R. J. and Cooper, A. F.: Late Quaternary slip rates and slip-partitioning on the Alpine Fault, New Zealand, J. Struct. Geol., 23, 507–520, 2001.
Norris, R. J. and Cooper, A. F.: Very high strains recorded in mylonites along the Alpine Fault, New Zealand: implications for the deep structure of plate boundary faults, J. Struct. Geol., 25, 2141–2157, 2003.
Norris, R. J. and Cooper, A. F.: The Alpine Fault, New Zealand: Surface Geology and Field Relationships, in: A Continental Plate Boundary: Tectonics at South Island, New Zealand, edited by: Okaya, D., Stern, T. A., and Davey, F., 157–175, American Geophysical Union, https://doi.org/10.1029/175GM09, 2007.
Norris, R. J. and Toy, V. G.: Continental transforms: A view from the Alpine Fault, J. Struct. Geol., 64, 3–31, https://doi.org/10.1016/j.jsg.2014.03.003, 2014.
O'Brien, G. A., Cox, S. C., and Townend, J.: Spatially and temporally systematic hydrologic changes within large geoengineered landslides, Cromwell Gorge, New Zealand, induced by multiple regional earthquakes, J. Geophys.-Res.-Sol. Ea., 121, 8750–8773, 2016.
Paterson, M. S. and Wong, T. F.: Experimental rock deformation – The brittle field, Springer-Verlag Berlin Heidelberg, 2005.
Paulsen, T. S., Jarrard, R. D., and Wilson, T. J.: A simple method for orienting drill core by correlating features in whole-core scans and oriented borehole-wall imagery, J. Struct. Geol., 24, 1233–1238, https://doi.org/10.1016/S0191-8141(01)00133-X, 2002.
Peacock, D. C. P. and Sanderson, D. J.: Effects of layering and anisotropy on fault geometry, J. Geol. Soc. London, 149, 793–802, https://doi.org/10.1144/gsjgs.149.5.0793, 1992.
Price, N. J.: Mechanics of jointing in rocks, Geol. Mag., 96, 149–167, https://doi.org/10.1017/S0016756800060040, 1959.
Priest, S.: Discontinuity Analysis for Rock Engineering, Springer Science & Business Media, 1993.
Rattenbury, M. and Isaac, M.: The QMAP 1:250 000 Geological Map of New Zealand project, New Zeal. J. Geol. Geophys., 8306, https://doi.org/10.1080/00288306.2012.725417, 55, 393–405, 2012.
Reed, J. J.: Mylonites, cataclasites, and associated rocks along the Alpine fault, South Island, New Zealand, New Zeal. J. Geol. Geophys., 7, 645–684, https://doi.org/10.1080/00288306.1964.10428124, 1964.
Rice, J. R., Sammis, C. G., and Parsons, R.: Off-fault secondary failure induced by a dynamic slip pulse, Bull. Seismol. Soc. Am., 95, 109–134, https://doi.org/10.1785/0120030166, 2005.
Savage, E.: Investigating Rock Mass Conditions and Implications for Tunnelling and Construction of the Amethyst Hydro Project, Harihari, University of Canterbury, 2013.
Savage, H. M. and Brodsky, E. E.: Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones, J. Geophys.-Res.-Sol. Ea., 116, B03405, https://doi.org/10.1029/2010JB007665, 2011.
Savage, H. M., Keranen, K. M., Schaff, D., and Dieck, C.: Possible Precursory Signals in Damage Zone Foreshocks, Geophys. Res. Lett., 4, 5411–5417, 2017.
Schulz, S. E. and Evans, J. P.: Mesoscopic structure of the Punchbowl Fault, Southern California and the geologic and geophysical structure of active strike-slip faults, J. Struct. Geol., 22, 913–930, https://doi.org/10.1016/S0191-8141(00)00019-5, 2000.
Shigematsu, N., Otsubo, M., Fujimoto, K., and Tanaka, N.: Orienting drill core using borehole-wall image correlation analysis, J. Struct. Geol., 67, 293–299, https://doi.org/10.1016/j.jsg.2014.01.016, 2014.
Sibson, R. H.: Earthquake faulting as a structural process, J. Struct. Geol., 11, 1–14, https://doi.org/10.1016/0191-8141(89)90032-1, 1989.
Sibson, R. H., White, S. H., and Atkinson, B. K.: Structure and distribution of fault rocks in the Alpine Fault Zone, New Zealand, Geol. Soc. London, Spec. Publ., 9, 197–210, 1981.
Simpson, G. D. H., Cooper, A. F., and Norris, R. J.: Late Quaternary evolution of the Alpine Fault Zone at Paringa, South Westland, New Zealand, New Zeal. J. Geol. Geophys., 37, 49–58, https://doi.org/10.1080/00288306.1994.9514600, 1994.
Stanley, C. R. and Hooper, J. J.: POND: An Excel spreadsheet to obtain structural attitudes of planes from oriented drillcore, Comput. Geosci., 29, 531–537, https://doi.org/10.1016/S0098-3004(03)00033-5, 2003.
Stern, T., Okaya, D., Kleffmann, S., Scherwath, M., Henrys, S., and Davey, F.: Geophysical exploration and dynamics of the Alpine Fault Zone, A Cont. Plate Bound. Tectonics South Island, New Zeal. Geophys. Monogr. Ser., 175, 207–233, https://doi.org/10.1029/175GM11, 2007.
Sutherland, R., Eberhart-Phillips, D., Harris, R. A., Stern, T., Beavan, J., Ellis, S., Henrys, S., Cox, S., Norris, R. J., Berryman, K. R., Townend, J., Bannister, S., Pettinga, J., Leitner, B., Wallace, L., Little, T. A., Cooper, A. F., Yetton, M., and Stirling, M.: Do Great Earthquakes Occur on the Alpine Fault in Central South Island, New Zealand?, in: A Continental Plate Boundary: Tectonics at South Island, New Zealand, 175, edited by: Okaya, D., Stern, T., and Davey, F., 235–251, American Geophysical Union, https://doi.org/10.1029/175GM12, 2007.
Sutherland, R., Toy, V. G., Townend, J., Cox, S. C., Eccles, J. D., Faulkner, D. R., Prior, D. J., Norris, R. J., Mariani, E., Boulton, C., Carpenter, B. M., Menzies, C. D., Little, T. A., Hasting, M., De Pascale, G. P., Langridge, R. M., Scott, H. R., Reid Lindroos, Z., Fleming, B., and Kopf, J.: Drilling reveals fluid control on architecture and rupture of the Alpine fault, New Zealand, Geology, 40, 1143–1146, https://doi.org/10.1130/G33614.1, 2012.
Sutherland, R., Townend, J., Toy, V. G., Upton, P., Coussens, J., and DFDP2, S. T.: Extreme hydrothermal conditions at an active plate-bounding fault, Nature, 546, 137–140, https://doi.org/10.1038/nature22355, 2017.
Sylvester, A. G.: Strike-Slip Faults, Geol. Soc. Am. Bull., 100, 1666–1703, https://doi.org/10.1130/0016-7606(1988)100<1666:SSF>2.3.CO;2, 1988.
Templeton, E. L., Rice, J. R., Viesca, R. C., Templeton, E. L., and Rice, J. R.: Off-fault plasticity and earthquake rupture dynamics: 2. Effects of fluid saturation, J. Geophys.-Res.-Sol. Ea., 113, https://doi.org/10.1029/2007JB005530, 2008.
Terzaghi, R. D.: Sources of Error in Joint Surveys, Géotechnique, 15, 287–304, https://doi.org/10.1680/geot.1965.15.3.287, 1965.
Tippett, J. M. and Kamp, P. J. J.: Quantitative relationships between uplift and relief parameters for the Southern Alps, New Zealand, as determined by fission track analysis, Earth Surf. Process. Landforms, 20, 153–175, 1995.
Townend, J. and Zoback, M. D.: How faulting keeps the crust strong, Geology, 28, 399–402, https://doi.org/10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO;2, 2000.
Townend, J., Sutherland, R., Toy, V. G., Eccles, J. D., Boulton, C., Cox, S. C., and McNamara, D.: Late-interseismic state of a continental plate-bounding fault: Petrophysical results from DFDP-1 wireline logging and core analysis, Alpine Fault, New Zealand, Geochem., Geophy. Geosy., 14, 3801–3820, https://doi.org/10.1002/ggge.20236, 2013.
Townend, J., Sutherland, R., Toy, V. G., Doan, M. L., Célérier, B., Massiot, C., Coussens, J., Jeppson, T., Janku-Capova, L., Remaud, L., Upton, P., Schmitt, D. R., Pezard, P., Williams, J., Allen, M. J., Baratin, L. M., Barth, N., Becroft, L., Boese, C. M., Boulton, C., Broderick, N., Carpenter, B., Chamberlain, C. J., Cooper, A., Coutts, A., Cox, S. C., Craw, L., Eccles, J. D., Faulkner, D., Grieve, J., Grochowski, J., Gulley, A., Hartog, A., Henry, G., Howarth, J., Jacobs, K., Kato, N., Keys, S., Kirilova, M., Kometani, Y., Langridge, R., Lin, W., Little, T., Lukacs, A., Mallyon, D., Mariani, E., Mathewson, L., Melosh, B., Menzies, C., Moore, J., Morales, L., Mori, H., Niemeijer, A., Nishikawa, O., Nitsch, O., Paris, J., Prior, D. J., Sauer, K., Savage, M. K., Schleicher, A., Shigematsu, N., Taylor-Offord, S., Teagle, D., Tobin, H., Valdez, R., Weaver, K., Wiersberg, T., and Zimmer, M.: Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone, Geochem., Geophy. Geosy., 18, 4709–4732, https://doi.org/10.1002/2017GC007202, 2017.
Toy, V.: Rheology of the Alpine Fault mylonite zone: deformation processes at and below the base of the seismogenic zone in a major plate boundary structure, University of Otago, available at: http://hdl.handle.net/10523/4548 (last access: 18 April 2018), 2008.
Toy, V. G., Prior, D. J., and Norris, R. J.: Quartz fabrics in the Alpine Fault mylonites: Influence of pre-existing preferred orientations on fabric development during progressive uplift, J. Struct. Geol., 30, 602–621, https://doi.org/10.1016/j.jsg.2008.01.001, 2008.
Toy, V. G., Craw, D., Cooper, A. F., and Norris, R. J.: Thermal regime in the central Alpine Fault zone, New Zealand: Constraints from microstructures, biotite chemistry and fluid inclusion data, Tectonophysics, 485, 178–192, https://doi.org/10.1016/j.tecto.2009.12.013, 2010.
Toy, V. G., Boulton, C. J., Sutherland, R., Townend, J., Norris, R. J., Little, T. A., Prior, D. J., Mariani, E., Faulkner, D., Menzies, C. D., Scott, H., and Carpenter, B. M.: Fault rock lithologies and architecture of the central Alpine fault, New Zealand, revealed by DFDP-1 drilling, Lithosphere, 7, 155–173, https://doi.org/10.1130/l395.1, 2015.
Toy, V. G., Sutherland, R., Townend, J., Allen, M. J., Becroft, L., Boles, A., Boulton, C., Carpenter, B., Cooper, A., Cox, S. C., Daube, C., Faulkner, D. R., Halfpenny, A., Kato, N., Keys, S., Kirilova, M., Kometani, Y., Little, T., Mariani, E., Melosh, B., Menzies, C. D., Morales, L., Morgan, C., Mori, H., Niemeijer, A., Norris, R., Prior, D., Sauer, K., Schleicher, A. M., Shigematsu, N., Teagle, D. A. H., Tobin, H., Valdez, R., Williams, J., Yeo, S., Baratin, L. M., Barth, N., Benson, A., Boese, C., Célérier, B., Chamberlain, C. J., Conze, R., Coussens, J., Craw, L., Doan, M. L., Eccles, J., Grieve, J., Grochowski, J., Gulley, A., Howarth, J., Jacobs, K., Janku-Capova, L., Jeppson, T., Langridge, R., Mallyon, D., Marx, R., Massiot, C., Mathewson, L., Moore, J., Nishikawa, O., Pooley, B., Pyne, A., Savage, M. K., Schmitt, D., Taylor-Offord, S., Upton, P., Weaver, K. C., Wiersberg, T., and Zimmer, M.: Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand, New Zeal. J. Geol. Geophys., 60, 497–518, https://doi.org/10.1080/00288306.2017.1375533, 2017.
Turnbull, I. M., Mortimer, N., and Craw, D.: Textural zones in the Haast Schist – a reappraisal, New Zeal. J. Geol. Geophys., 44, 171–183, https://doi.org/10.1080/00288306.2001.9514933, 2001.
Upton, P., Song, B. R., and Koons, P. O.: Topographic control on shallow fault structure and strain partitioning near Whataroa, New Zealand demonstrates weak Alpine Fault, New Zeal. J. Geol. Geophys., 61, 1–8, https://doi.org/10.1080/00288306.2017.1397706, 2017.
Vermilye, J. M. and Scholz, C. H.: The process zone: A microstructural view of fault growth, J. Geophys. Res. Earth, 103, 12223–12237, https://doi.org/10.1029/98JB00957, 1998.
Warr, L. N. and Cox, S.: Clay mineral transformations and weakening mechanisms along the Alpine Fault, New Zealand, in: Geological Society, London, Special Publications, vol. 186, edited by: Holdsworth, R. E., Strachan, R. A., Magloughlin, J. F., and Knipe, R. J., 85–101, The Geological Society, London, 2001.
Wellman, H.: Data for the Study of Recent and Late Pleistocene Faulting in the South, New Zeal. J. Sci. Technol., 34, 270–288, 1953.
Williams, J. N., Toy, V. G., Massiot, C., McNamara, D. D., and Wang, T.: Damaged beyond repair? Characterising the damage zone of a fault late in its interseismic cycle, the Alpine Fault, New Zealand, J. Struct. Geol., 90, 76–94, https://doi.org/10.1016/j.jsg.2016.07.006, 2016.
Williams, J. N., Toy, V. G., Smith, S. A. F., and Boulton, C.: Fracturing, fluid-rock interaction and mineralisation during the seismic cycle along the Alpine Fault, J. Struct. Geol., 103, 151–166, https://doi.org/10.1016/j.jsg.2017.09.011, 2017a.
Williams, J. N., Toy, V. G., Massiot, C., and McNamara, D.: X-ray Computed Tomography and borehole televiewer images of the Alpine Fault's hanging-wall, New Zealand: Deep Fault Drilling Project phase 1 (DFDP-1) and Amethyst Hydro Project (AHP), GFZ Data Serv., https://doi.org/10.5880/ICDP.5052.004, 2017b.
Wilson, J. E., Chester, J. S., and Chester, F. M.: Microfracture analysis of fault growth and wear processes, Punchbowl Fault, San Andreas system, California, J. Struct. Geol., 25, 1855–1873, https://doi.org/10.1016/S0191-8141(03)00036-1, 2003.
Wright, C. A.: Geology and paleoseismicity of the central Alpine Fault, New Zealand, 1998.
Yukutake, Y., Ito, H., Honda, R., Harada, M., Tanada, T., and Yoshida, A.: Fluid-induced swarm earthquake sequence revealed by precisely determined hypocenters and focal mechanisms in the 2009 activity at Hakone volcano, Japan, J. Geophys.-Res.-Sol. Ea., 116, B04308, https://doi.org/10.1029/2010JB008036, 2011.
Zangerl, C., Loew, S., and Eberhardt, E.: Structure, geometry and formation of brittle discontinuities in anisotropic crystalline rocks of the central Gotthard massif, Switzerland, Eclogae Geol. Helv., 99, 271–290, https://doi.org/10.1007/s00015-006-1190-0, 2006.
Short summary
We present new data on the orientation of fractures, their fill, and their density around the Alpine Fault, a plate boundary fault on the South Island of New Zealand. Fractures < 160 m of the fault are filled and show a range of orientations, whilst fractures at greater distances (< 500 m) are open and parallel to the rock's mechanical weakness. We interpret the latter fracture set to reflect near-surface processes, whilst the latter are potentially linked to deep-seated Alpine Fault seismicity.
We present new data on the orientation of fractures, their fill, and their density around the...